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Abstract. We analyze the dynamical evolution of asteroidal
fragments released in the Flora region, near the inner edge of
the main asteroid belt, and drifting into theν6 secular resonance
due to Yarkovsky non-gravitational effects. We find that frag-
ments 5 to 20 m in size evolve under the “seasonal” Yarkovsky
effect which causes a secular semimajor axis decay; they reach
ν6 after a time shorter than their collisional lifetime when they
start within about0.05 to 0.2 AU out of the resonance. Metal-
rich fragments drift slower but have have much longer lifetimes
than stony ones, so they drift farther from their formation site
and sample a wider portion of the inner belt. Fragments around
100 m in size are mainly influenced by the “diurnal” Yarkovsky
effect if their surface is covered by a (thin) regolith layer; this
causes a random walk in semimajor axis controlled by impacts
which reorient the spin axis. Within their lifetime of≈ 100 Myr
these fragments can move throughout the inner part of the aster-
oid belt, episodically crossingν6. Meter-sized stony fragments,
which probably deliver most meteorite falls, may also drift into
the resonance under the “diurnal” effect, provided their surfaces
have low thermal conductivities and/or their rotation is unusu-
ally slow. According to our dynamical model, which is truncated
to 15th degree in the fragment’s orbital eccentricity,ν6 reso-
nance effects typically result into large eccentricity increases,
such that main-belt orbits rapidly become Earth-crossing when
the resonance is reached and/or crossed. This confirms the idea
that the interplay of resonant dynamics and Yarkovsky-related
semimajor axis mobility is crucial in the transport of meteorites
and small near-Earth asteroids from the main asteroid belt to
the near-Earth space.

Key words: celestial mechanics, stellar dynamics – minor plan-
ets, asteroids – meteors, meteoroids

1. Introduction

The Earth permanently experiences the infall of interplanetary
matter, a large fraction of which origins in the main asteroid belt.
Because of the relatively frequent collisions there, this source
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population spans all possible values of masses and sizes, with
a characteristic quasi-power-law distribution (Dohnanyi 1969,
Campo Bagatin et al. 1994). Whereas most meteorites appear
to be delivered by pre-atmospheric bodies of the order of0.1 to
1 m in size, occasional bright bolides reach several meters, and
according to Ceplecha (1992, 1996) a clear maximum of the in-
coming mass versus size curve is present at a size of10–20 m.
These objects have been recently observed also in near-Earth
space (Rabinowitz et al. 1993, Rabinowitz 1994) and while ex-
ploding in the high atmosphere (Tagliaferri et al. 1994). For
Tunguska-like impactors50–100 m in diameter, only one event
per 100–1000 yr is expected, but extensive disruption on the
ground is engendered. Therefore, for a number of different rea-
sons it is important to understand the dynamical mechanisms
which are involved in transferring from the main belt objects
of sizes between≈ 0.1 and100 m – especially if, as we will
argue in this paper, these dynamical mechanism are somewhat
different from those relevant for larger asteroids.

The standard way of solving the problem of how material
is transported from the asteroid belt to the Earth resorts to the
peculiar dynamical evolution of bodies once they get close to
or inside the main mean motion and/or secular resonances with
the planets. Fragments from asteroidal collisions undergo orbital
velocity changes of the order of100 m/s, and as a result the orbits
of some of them are injected into the resonances starting from the
nonresonant orbits of their parent bodies (Farinella et al. 1993a,
1994a). Subsequently, as a consequence of resonant gravita-
tional perturbations by the giant planets, the orbital eccentricity
grows to values (≈ 0.6) allowing Earth crossing within only a
few Myr, and then the interplay of resonant effects and plane-
tary encounters drives the bodies to hit the Sun or the planets,
or to be ejected from the Solar System by Jupiter (Farinella
et al. 1993b, 1994b; Froeschlé et al. 1995; Jopek et al. 1995;
Migliorini et al. 1997; Gladman et al. 1997).

However, it has been realized recently that, at least for
meteorite-sized (≈ 0.1 to10 m) bodies, this cannot be the whole
story. While in interplanetary space, meteorites are exposed to
cosmic radiation (provided they lay within about 1 m from the
surface of the body carrying them), and measurements of these
cosmic-ray exposure (CRE) ages give values between5 and
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50 Myr for most stony meteorites, and about 10 times as long
for iron-rich meteorites. Since these ages are much longer than
the dynamical transfer times through the resonances, and also
than the typical lifetimes of near-Earth objects (≈ 10 Myr, ac-
cording to Gladman et al. 1997), one must assume that asteroid
fragments typically spend relatively long times in nonresonant
main-belt orbits before being transferred to the near-Earth space.
As we have recently pointed out (Hartmann et al. 1997, Farinella
et al. 1997, 1998), a non-gravitational dynamical mechanism al-
lowing for such a slow drift of small bodies through the asteroid
belt before “falling” into the resonances is known since a long
time: it is the so-calledYarkovsky effect.

This effect is a recoil force due to radiation pressure, arising
whenever a spinning body re-emits anisotropically the absorbed
solar radiation. As shown by a number of authors (Öpik 1951;
Radzievskii 1952; Peterson 1976; Afonso et al. 1995; Rubin-
cam, 1995, 1998; Farinella et al. 1998), it can cause significant
long-term semimajor axis effects on asteroid fragments in the
size range from about0.1 to 100 m (smaller bodies are more
affected by other non-gravitational forces, see Burns et al. 1979,
while larger ones have a too small area-to-mass ratio). In partic-
ular Farinella et al. (1998) have recently shown that, depending
on the size, rotational state and thermal properties of the frag-
ment, two different variants of the Yarkovsky effect may play
a dominant role: a “diurnal” effect, which is more important
for slowly rotating, low-obliquity, regolith-covered fragments;
and a “seasonal” effect, favoured for high-obliquity, fast rota-
tors with a lower (bare-rock) surface thermal inertia. Whereas
the latter effect always causes a secular, drag-like decrease of
the orbital semimajor axis, the former one may result into either
positive or negative semimajor axis changes, depending on the
sense of rotation; in all cases, the amplitude of the semimajor
axis effect depends on the obliquity angle. If collisions change
frequently enough and in random way the orientation of the spin
axis, the Yarkovsky-driven semimajor axis drift also undergoes
stochastic variations in rate. These peculiarities make a realistic
modelling of the orbital evolution of small asteroid fragments
much more complicated than in the case of larger bodies, for
which gravitational forces alone are important.

In this paper we intend to start a detailed, realistic study
of how the Yarkovsky effect can interact with resonant N-body
dynamics in transporting small asteroid fragments to the near-
Earth region. We will deal in particular with objects originating
in the so-called Flora region, in the inner part of the main as-
teroid belt, and drifting into theν6 secular resonance, which
corresponds to the inner edge of this zone at a semimajor axis
slightly exceeding2 AU. In the last decade several studies have
addressed the purely gravitational dynamics of bodies located in
theν6 resonance (Froeschlé and Scholl 1987; Yoshikawa 1987;
Scholl and Froeschlé 1991; Morbidelli and Henrard 1991; Mor-
bidelli 1993; Valsecchi et al. 1995) or injected into it as a result
of collisions in the neighboring Flora region of the main belt
(Farinella et al. 1993a,b; Morbidelli et al. 1994). However, little
is known about the effectiveness of this resonance in pumping
up the orbital eccentricity in the presence of dissipative, non-
gravitational perturbations such as the Yarkovsky force.

Therefore, our aim here is that of presenting a relatively sim-
ple model for the orbital evolution of asteroidal fragments in the
region of the orbital element space close to theν6 resonance, un-
der the simultaneous influence of the gravitational perturbations
by the major planets and the Yarkovsky thermal effects. In order
to better understand the significance of our results, we have de-
cided to keep our model analytical as far as possible for the time
being. Thus, we average analytically the gravitational perturb-
ing function and integrate numerically the averaged system of
Lagrange equations only. Moreover, due to the complexity of the
thermal effects, we consider only their most important orbital
effect, namely the secular changes in semimajor axis, neglect-
ing their influence on other orbital elements. This is certainly a
crude approximation, as Rubincam (1995, 1998) and Vokrouh-
lický and Farinella (1998) have showed that Yarkovsky effects
can lead to significant long-term changes in the eccentricity and
inclination as well.

The remainder of this paper is organized as follows. Sect. 2
is devoted to a description of our dynamical model, for both the
gravitational (Sect. 2.1) and non-gravitational (Sect. 2.2) pertur-
bations. In Sect. 3 we present some tests of the corresponding
theory compared to direct numerical integrations and other re-
sults, and then we discuss a number of runs for different model
populations of bodies, for which either the “seasonal” or the
“diurnal” Yarkovsky effects play a dominant role. In Sect. 4 we
discuss the significance of these results for our understanding
of the delivery of small asteroid fragments and meteorites to the
near-Earth space.

2. Dynamical model

2.1. Secular perturbations by the outer planets

As a first step we are going to summarize our analytical model
for the secular influence of the major planets, Jupiter and Saturn,
on the fragment’s orbit. Following the formalism of planetary
theories such as those of Duriez (1977) and Laskar (1985), we
introduce the pair of complex, non-singular mean orbital ele-
ments(ζ, ξ) defined as

ζ = k + ıh = e exp(ı$) , (1)

ξ = q + ıp = σ exp(ıΩ) , (2)

wheree is the mean eccentricitye, $ = Ω + ω the mean argu-
ment of pericenter,σ = sin I/2, I being the mean inclination,
andı =

√−1. Then, the secular evolution of the orbit is deter-
mined by the set of differential equations
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(see Laskar 1985), whereD = −ıd/dt, η =
√

1 − e2 =
(1 − ζζ̄)1/2, a is the mean semimajor axis,n the mean mo-
tion (n2a3 = Gm�, m� being the solar mass). Overbarred
quantities are complex conjugates, while Re and Im denote the
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real and imaginary parts of a complex quantity, respectively.
The functionR in Eqs. (3) and (4) is the secular part of the plan-
etary perturbing function. In our approximate model, we adopt
the two following simplifications:

1. we neglect the inclinations of the perturbing planets (ξ′ =
0) and take into account only their eccentricities (ζ ′ /= 0;
planetary variables are primed);

2. we adopt a linear approximation for the averaged (secular)
perturbing function, neglecting quadratic and higher order
terms in the planetary masses.

In this case, it is well known (see e.g. Brouwer and Clemence
1961) that the disturbing functionR is due to the direct part of
the planetary perturbation only, and reads

R =
[

Gm′

|r − r′|
]
sec

=
Gm′

a′
∑
i∈Z6

φi(α)ξ2i1 ξ̄2i2ζi3 ζ̄i4ζ ′i5 ζ̄ ′i6 , (5)

wherei denotes the vector of indexes(i1, i2, ..., i6), m′ anda′

are the planet’s mass and semimajor axis (a sum over the two
considered planets is implicit), andα is the ratio between the
fragment’s and planet’s semimajor axes. Taking into account the
specific problem we are dealing with (fragments witha ≈ 2 AU
ande up to≈ 0.7), we have expanded the perturbing potential
(5) to a high order in the fragment’s eccentricity. By using the
algebraic manipulator MINIMS, developed by M. Moons at the
University of Namur (Moons 1991), we have computed all terms
with indexes|i3|+ |i4| ≤ 15 and|i1|+ |i2|+ |i5|+ |i6| ≤ 3. In
other words, the disturbing function has been developed up to
the fifteenth degree in the fragment’s eccentricity. The second
condition means that we have kept a lower number of terms in the
fragment’s inclination, namely those up tosin6 I/2 (included)
only.

Theφi(α) factors in Eq. (5) can be expressed as functions
of the Laplace coefficients and their derivatives. Because of the
specific character of our application, with secular changes in the
fragment’s semimajor axis, we have calculated all these terms
with particular care analytically. Starting from the formulæ for
the lowest order Laplace coefficients (Brouwer and Clemence
1961):

b
(0)
1/2(α) =

4
π

K(α) , (6)

b
(1)
1/2(α) =

4
π

K(α) − E(α)
α

, (7)

with K(α) andE(α) denoting the complete elliptic integrals of
the first and second kind, we have

b
(j)
s+1/2(α) = αJw2s(α)

[
P j

s (α)b(0)
1/2(α) + Qj

s(α)b(1)
1/2(α)

]
,

(8)

whereJ = min(0, 1 − j) andw(α) = 1/(1 − α2). Recur-
rence formulæ for the polynomialsP j

s (α) andQj
s(α) are given

by Šidlichovsḱy and Melendo (1986) ořSidlichovsḱy (1989;

alternatively, see Laskar 1991). The derivatives of the Laplace
coefficients (8) can then be computed by simple algebra.

The structure of the eccentricity Eq. (3) can be schematically
written as

Dζ = g
(
a, e2, σ2) ζ + f

(
a, e2, σ2) ζ ′

+ other nonlinear terms, (9)

whereg andf are known functions. As for the long-term evolu-
tion of the planetary orbits, we have used the Laplace-Lagrange
secular solution with numerical coefficients given by Kneževíc
(1986). Jupiter’s and Saturn’s complex eccentricities are thus
given by the simple harmonic development

ζ ′ =
∑

Aj exp ı (gjt + φj) , (10)

with constant coefficients. In our case, the most important of of
these constants isg6 = 27.”360 yr−1; this value, derived by
Kneževíc (1986), is in good agreement with numerical deter-
minations of the corresponding frequency (Laskar 1988; Nobili
et al. 1989); as we will see in Sect. 3.1, our results are not sen-
sitive to small changes in this value. The structure of Eqs. (9)
and (10) shows that the linear solution of these equations has a
singularity wheng

(
a, e2, σ2

)
= g6: of course this is the well-

known condition for theν6 resonance, which is located near the
inner edge of the main asteroid belt.

We have not taken into account the influence of the inner
planets for several reasons. On one hand, we have chosen to
develop an analytical model, and it is well known (see e.g. Hag-
ihara 1971) that classical developments of the planetary per-
turbing potential in the form (5) suffer divergencies whenever
the minor body can cross the orbit of a planet. As we shall see,
crossing theν6 resonance typically leads to high-eccentricity
orbits, which cross those of both Mars and the Earth, and there-
fore analytical developments of type (5) would be useless if we
wanted to include these planets. On the other hand, we believe
that the main conclusions of our work would not be altered by
the inclusion of the gravitational influence of the inner plan-
ets, because (i) the corresponding shift in the position ofν6 is
small (Knězevíc et al. 1991); (ii) mean motion and secular reso-
nances with the inner planets can be effective only for semimajor
axes smaller than2 AU (Milani et al. 1989, Michel 1997); and
(iii) close encounters with Mars do not affect much the orbital
evolution of bodies which are being transported from the main
asteroid belt to the near-Earth zone (Gladman et al. 1997).

2.2. Thermal perturbations of the fragment’s orbit

Besides the gravitational effects, and as a major novelty of this
work, we include in our model a simplified treatment of the ther-
mal Yarkovsky effects acting on small asteroidal fragments, by
taking into account the corresponding secular changes in semi-
major axis. A complete theory for the orbital perturbations due
to the Yarkovsky force is fairly complex, since the intensity of
the force at a given time depends on the thermal state of the
body, that is on the thermal inertia and the insolation the body
has received over a time of the order of a rotation (for the “di-
urnal” effect) or orbital period (for the seasonal one); hence, at
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Fig. 1. Diffusion timeTcr (in Myr) required for reaching theν6 reso-
nance at zero inclination vs. initial semimajor axisa (in AU). Two types
of objects are assumed to evolve under the Yarkovsky “seasonal” ef-
fect: (i) R = 5 m basalt fragments (curve 1), and (ii) R=10 m iron-rich
bodies (curve 2).

least in the “seasonal” case, the Yarkovsky force depends in a
complex way on the orbital elements. In the current context, in
order to keep the problem tractable, we just simulate the sec-
ular semimajor axis effects by adding a simple linear term in
the semimajor axis of the fragment’s orbit, that is assuming that
a(t) ' a(0) + ȧ t. The value of the semimajor axis rateȧ is in
principle determined by a number of different circumstances.
As we mentioned in Sect. 1, in the case of the “seasonal” ver-
sion of the Yarkovsky effect the sign ofȧ is always negative,
while in the case of of the “diurnal” version it can be either pos-
itive or negative, according to the orientation of the spin axis. In
quantitative terms, we are going to use the results of Farinella
et al. (1998). For the reasons discussed in that paper, we as-
sume that the rotation rate of asteroid fragments is inversely
proportional to their size, with 1 km diameter bodies spinning
in 5 hr.

The “seasonal” effect is the dominant one for regolith-free
fragments of size of the order of 10 m. For this case, we adopt
the following empirical model:

ȧ ' − ȧmax(Θn, R, a) sin2 γ , (11)

whereγ is the obliquity of the fragment’s polar axis (that is, the
angle between the spin axis and the normal to the mean orbit),
a is the semimajor axis andΘn is a thermal inertia parameter
related to temperature changes with periodicities of the order
of the orbital period. The dependence of the amplitudeȧmax on
a, on the body’s (mean) radiusR and on theΘn parameter is
quite complex (see Farinella et al. 1998, Rubincam 1998), so we
just use the following typical values, consistent with the results
of the above-mentioned papers forR = 5 m and at an orbital
semimajor axisa ≈ 2 AU: ȧmax ' 3.7 × 10−3 AU/Myr for
stony fragments anḋamax ' 4.2 × 10−4 AU/Myr for iron-rich
objects. If one assumes a frequent enough collisional reorien-
tation of the spin axis (with all directions being equally likely),
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Fig. 2.Diffusion of regolith-covered stony objects 50 m in radius under
the “diurnal” Yarkovsky effect, taking into account the random reori-
entation of spin axes caused by impacts (assumed to occur at typical
intervalsτrot = 24 Myr). The initial semimajor axes values (in AU) are
given on the horizontal axis. The full lines give the average percentage
of a collisional lifetimeτdisr required to reachν6 and the dashed lines
the percentage of bodies reaching the resonance before being disrupted.
Curves 1 and 2 were derived assumingτdisr = 140 Myr (according to
Farinella et al. 1998) andτdisr = 4 Byr, respectively.
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Fig. 3. The same as Fig. 2 but for objects 1 m in radius. Curves 1
correspond to stony bodies, withτrot = 3.3 Myr andτdisr = 20 Myr;
curves 2 correspond to iron bodies, withτrot = 7 Myr and τdisr =
1.4 Byr (Farinella et al. 1998).

the average drift rate is reduced by a factor2/3 with respect to
ȧmax.

As for the “diurnal” Yarkovsky effect, which is probably
the dominant one for meter-sized bodies and for relatively large
(R ' 25 − 100 m) regolith-covered fragments, we use

ȧ ' ȧmax f (Θω, R, a) cos γ , (12)

where Θω is the thermal parameter related to temperature
changes over times comparable to the spin period. In this case
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Fig. 4.Mean eccentricitye vs. the critical argument of theν6 resonance
$−$6 (with $6 = g6t+constant), for initial conditions correspond-
ing to Yoshikawa’s (1987) case A test body. The plot shows the orbital
evolution over a time span of 1 Myr, computed by the analytical scheme
described in Sect. 2.

the value ofȧmax depends sensitively on the thermal conduc-
tivity of the surface layer, as a very thin (≈ 1 mm) layer of
regolith-like low-conductivity material is enough to strongly
affect the “diurnal” component of the surface temperature distri-
bution. Assuming thermal properties similar to those measured
for the lunar regolith (Rubincam 1995), Farinella et al. (1998)
obtained in this casėamax ' 2.65 × 10−3 AU/Myr for a
R = 50 m object andȧmax ' 4.52 × 10−2 AU/Myr for
R = 1 m. On the other hand, for bare-rock surfaces Farinella
et al. (1998) used the conductivity of terrestrial basalt, which
is close to the maximum values measured for chondritic me-
teorites (Yomogida and Matsui 1983), and this gives the much
lower valueȧmax ' 8.25 × 10−4 AU/Myr at a radius of1 m.
For meter-sized, regolith-free iron meteorites, using the higher
conductivity of metallic iron, Farinella et al. (1998) obtained
ȧmax ' 7.29 × 10−5 AU/Myr. These estimates were always
obtained ata ≈ 2 AU.

As we explained in Sect. 1, an essential ingredient of the
Yarkovsky effects is the collisional reorientation of the frag-
ment spin axes, resulting into random changes of the obliquity
angleγ. To take this into account, we can use the Farinella
et al. (1998) estimates for the characteristic time between two
collisions imparting to a given target an angular momentum of
rotation comparable to the pre-existing one – keeping in mind
that estimates of this kind are highly uncertain, owing to our
poor knowledge of the small-size projectile flux in the asteroid
belt. According to these estimates, the reorientation timeτrot

scales proportionally toR1/2, and is≈ 3.3, 8 and24 Myr for
fragments1, 5 and50 m in radius, respectively. For iron frag-
ments, the higher density results in time scales longer by a factor
of about2.5.

In order to assess the extent of the overall semimajor axis
decay in the case of the “seasonal” Yarkovsky effect and of the
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Fig. 5.The same as Fig. 3 but for Yoshikawa’s (1987) case B test body.
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Fig. 6. Effects on the orbital eccentricitye of ν6 resonance crossings
with different semimajor axis decay ratesda/dt (in AU/Myr). Higher
decay rates result into a lower efficiency of the resonance in pumping
up the eccentricity.

corresponding random walk for the “diurnal” effect, we have
performed the following tests. Taking the initial semimajor axis
in the range2.1 to 2.35 AU, we have let the orbits evolve ac-
cording to Eqs. (11) and (12). We have considered separately
the cases of bodies dominated by the “seasonal” and “diurnal”
effect: in the former case we simulated the orbital evolution of
stony and iron fragments, 5 and 10 m in radius, respectively,
whereas in the latter case we considered either “large” bodies,
50 m in radius, or “small”, meter-sized fragments (both stones
and irons). For the “diurnal” runs we always assumed that the
bodies are covered by thin, regolith-like insulating layers, be-
cause otherwise the random-walk evolution is very limited (at
most a few hundredths AU). In each case we performed106 test
runs, always reorienting the spin axis in a random direction at
the typical intervals specified above.
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Fig. 7a–c Orbital evolution of a fictitious basalt fragment5 m in ra-
dius under the “seasonal” Yarkovsky effect. Panela shows the secular
semimajor axis decrease (at a variable rate, depending on the collisional
changes in the obliquity of the spin axis), with the dashed line marking
the position of theν6 resonance for the instantaneous values of the ec-
centricity and inclination. Starting froma = 2.28 AU, the resonance is
reached in about110 Myr, in good agreement with the statistical results
shown in Fig. 1. The mean eccentricity [panelb] and inclination [panelc]
undergo rapid changes after crossing the resonance, and the eccentricity
is pumped up to about0.6. The initial conditions correspond to the Flora
region asteroid 1981 WR.

Fig. 1 shows the mean time required for asteroid frag-
ments drifting under the “seasonal” effect to reach the value
a = a6 ' 2.06 AU, which corresponds to the position of theν6
resonance for small-inclination orbits. Statistically, a5-meter
stony boulder released at the middle of the Flora region (ap-
proximately2.25 AU) reaches the resonance in about120 Myr,
whereas a time span a factor10 longer is necessary for iron-rich
objects. We recall that, according to the estimates of Farinella
et al. (1998), the typical collisional lifetimes of the two types of
bodies in the main belt are of45 Myr and4.4 Byr, respectively. If
these average lifetimes are correct, our results imply that stony
fragments can reach the resonance before being shattered by
impacts if they are unusually long-lived and/or they start from
a semimajor axis strip of width≈ 0.075 AU along the reso-
nance border, whereas iron fragments may come from the whole
Flora region. Thus, although iron fragments drift slower, they
can drift much farther inside from their formation site as a con-
sequence of the longer collisional lifetime. Note that the bodies
discussed here are larger than the majority of meteorites, which
have pre-atmospheric sizes≈ 0.1–1 m; nevertheless, we think
that they are quite relevant not only in themselves (as explained

in Sect. 1), but also for meteorites, because a significant fraction
of their mass lies at depths such that cosmic-ray irradiation is
possible, and since many meteorites appear to have undergone
complex exposure histories (Wetherill 1980), it is possible that
they are just multi-generational fragments from objects several
meters across.

Fig. 2 shows the results of our test runs for the larger,
regolith-covered fragments whose semimajor axis undergoes
a kind of random walk. Of course, only a fraction of the test
bodies reaches the resonance within any given time. The two
dashed lines in the figure give the fraction of bodies ending up
into ν6 within 140 Myr (which is approximately the collisional
lifetime of stony objects of this size) and4 Byr. Note that, while
there is equal probability of increasing and decreasing the semi-
major axis at any given instant, the probability of crossing the
ν6-resonance is greater than50% over4 Byr, because any ex-
cursion in semimajor axis below the critical limita6 = 2.06 AU
has been classified as a resonance crossing, independently of the
subsequent evolution. The full lines in Fig. 2 show the average
diffusion time as a function of the starting semimajor axis. The
“jumps” apparent in particular in the upper curve are related
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Fig. 8a–d The orbital evolution shown in
Fig. 7 is shown here in the eccentricity vs.
critical argument ($ − $6) plane, superim-
posed onto the the level curves of the av-
eraged Hamiltonian. The four plots refer to
four successive stages of the evolution, in
which the semimajor axis and inclination
are approximately constant. As the semima-
jor axis is decreased, the level curves of the
Hamiltonian shift and change their topology,
and as a result the orbit evolves from a low-
eccentricity circulation, to a libration around
$ − $6 = 180◦ to a high-eccentricity cir-
culation.

to the discrete number of reorienting impacts undergone dur-
ing the trip by fragments starting at different distances from the
resonance. These results show that theν6 resonance can collect
regolith-covered fragments several tens of meters in size from
the whole inner part of the Flora region. Possibly this might ex-
plain why bodies in this size range appear to be overabundant in
near-Earth space, compared to a power-law extrapolation from
km-sized objects (Rabinowitz 1993, 1997, 1998), since the lat-
ter are not affected by non-gravitational forces in a significant
way.

Fig. 3 illustrates the corresponding results for meter-sized
objects. Also at this size a large fraction of asteroid fragments
can reach the resonance from the Flora region within their col-
lisional lifetime, provided they are covered by a thin insulating
layer. The “jumps” are due to the same reason as for Fig. 2.
Again, iron bodies are more mobile owing to their longer life-
times. We stress that the “diurnal” Yarkovsky random walk be-
comes much less effective assuming a surface conductivity typ-
ical of “bare” rock or iron. For real meteorites, the situation may
be in between these two extreme cases, because of the signif-
icant porosity of many meteorites (Consolmagno et al. 1998)
which is likely to lower their thermal conductivity (Yomogida
and Matsui, Fig. 10). Also, we have neglected the possibility that
as a result of chance impacts some fragments end up spinning
at rates much lower than usual (say, with a1-hr spin period).
Such slow rotators would have a “diurnal”ȧmax almost an order
of magnitude larger than our nominal fast-rotating bodies (see
Farinella et al. 1998, Fig. 1), and therefore some “steps” in the
random walk controlled by collisions may become much larger
than usual.

We note that in the models used to derive Figs. 2 and 3
we have neglected the presence of the 3:1 mean motion Jo-
vian resonance near2.5 AU, which would also rapidly eject
any fragments inserted into it. Of course, taking into account
this resonance would somewhat decrease the percentages ofν6-
reaching fragments starting from the middle and outer portions
of the Flora region. On the other hand, taking into account the
relatively weak dependence of the Yarkovsky effects on semi-
major axis (Farinella et al. 1998), the results illustrated in Figs. 2
and 3 can be applied more or less unchanged to fragments start-
ing near the 3:1 resonance and eventually falling into it (instead
of ν6). However, we plan to investigate in more detail the inter-
play of mean motion resonances and the Yarkovsky effects in a
future paper.

3. Tests and results

3.1. Validation of the method

Before discussing the results of our orbital evolution runs in-
cluding the Yarkovsky effects, we report on some checks that
we have made to test our analytical integration scheme for the
secular resonance effects.

First, we repeated several integrations performed with a fully
numerical technique by Yoshikawa (1987). Figs. 4 and 5 show
our results over a1 Myr time span for Yoshikawa’s fictitious
test particles A and B. Comparing these plots with Yoshikawa’s
Figs. 9a and 9b, we observe an excellent agreement with the
numerical results, at least as far as the eccentricity evolution
is concerned. Actually, the situation is somewhat worse for the
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Fig. 9a–cOrbital evolution of a fictitious regolith-covered fragment50 m
in radius under the “diurnal” Yarkovsky effect. A random walk-like evo-
lution in semimajor axis is shown by the full line in panela, and from time
to time this leads the orbit to cross theν6 resonance (whose instantaneous
location is shown by the dashed line). At the times of resonance cross-
ing, the mean eccentricity [panelb] and inclination [panelc] undergo
rapid changes, with the eccentricity reaching values≈ 0.8. The initial
conditions correspond to a Flora region asteroid, (2580) Smilevskia.

inclination evolution, but this had to be expected, because we
have neglected completely the planetary inclinations and have
kept only a small number of terms containing the asteroid’s in-
clination in the perturbing function (see Sect. 2). On the other
hand, since we are mostly interested in the way theν6 reso-
nance pumps up the eccentricity, a very accurate model for the
inclination effects is not really needed.

By performing a number of tests of this kind we have become
confident that our results are realistic provided the eccentricity
and the inclination of the fragment’s orbit do not exceed maxi-
mum values of about0.6 − 0.7 and10 − 15◦, respectively. For
very high eccentricities, the the results of the analytical model
become unreliable (for instance, we could not reproduce the
Sun-grazing dynamics described by Farinella et al. 1994b and
Froeschĺe et al. 1995). Also, we failed to reproduce Yoshikawa’s
(1987) case C test integration when the eccentricity exceeds
≈ 0.7. Actually, in this case it is mainly the inclination that un-
dergoes large excursions (up to about25◦) near the peak of the
eccentricity cycle, and this appears to trigger an instability in our
analytical results for the eccentricity. This behavior is probably
related to the presence of theη factor, which becomes singu-

lar for e → 1, in the denominator of Eq. (4). Overall, however,
these limitations of the analytical model are not very important
in the current context, since fragments injected intoν6 become
Earth-crossing for eccentricities of about0.5, and most asteroids
in the Flora region have inclinations smaller than10◦.

As a second test, we have checked how the eccentricity evo-
lution in crossing theν6 resonance is affected by different rates
of the semimajor axis decay. The results are summarized in
Fig. 6. The same initial conditions (a = 2.16 AU, e = 0.06,
i = 0) have been taken in the three cases. As the decay rate
ȧ increases in magnitude (i.e., for faster crossings of the reso-
nance), the eccentricity evolution becomes less and less sensi-
tive to the resonance crossing. Basically, this is due to the fact
that fast-decaying orbits spend shorter times in the resonance re-
gion, where planetary perturbations are effective in pumping up
the eccentricity. This is a general property of resonance cross-
ing processes due to dissipative perturbations (see e.g. Hamilton
1994, Liou and Zook 1997), and our model reproduces it very
well.

Finally, we have repeated the integrations of Fig. 6 but re-
placing the Knězevíc (1986) model for the evolution of plane-
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Fig. 10a–cThe same as Fig. 9, but with different initial conditions, cor-
responding to the mean elements of asteroid 3996 1988 XG1. At the end
of the integrated evolution, the eccentricity has been pumped to a very
high value (greater than0.9). The inclination also shows relatively large
oscillations. At this point our integration scheme gives spurious results,
as discussed in the text.

tary orbits with that of Laskar (1988). We have observed minor
changes, mainly due to a small difference in the value of the
g6 frequency and a much richer frequency spectrum in the evo-
lution of Jupiter’s and Saturn’s orbits. However, no qualitative
change was apparent in the results.

Having gained confidence in our integration scheme we are
going to discuss, in the next two subsections, the results of two
sets of runs performed with different samples of bodies cross-
ing the ν6 resonance as a consequence of the Yarkovsky ef-
fects. First, we use a sample of regolith-free bodies5 to 20 m
in size, both stony and iron-rich. In this case, as we discussed
earlier (Sect. 2.2), the “seasonal” Yarkovsky effect is probably
the dominant one and Eq. (11) can be used for the semimajor
axis evolution. Secondly, we consider two populations of as-
teroidal fragments,50 m and1 m in radius, with regolith-like
surface properties, and in this case we use Eq. (12) to model the
dominant “diurnal” Yarkovsky effect.

3.2. Regolith-free bodies evolving under the “seasonal” effect

Fig. 7 shows the evolution of the mean orbital elements which
is typical for this class of objects. We have chosen initial

mean elements corresponding to asteroid 1981 WR, that is
a = 2.280061 AU, e = 0.0889699, i = 2◦.82532 (from the
Milani and Knězevíc database, see Milani et al. 1994). This as-
teroid is located more or less in the middle of the Flora region.

Panel (a) of the figure shows the secular semimajor axis
decay, with a variable rate due to random changes in the obliq-
uity γ. The time required to reach the resonance matches the
time scale shown in Fig. 1. When theν6 resonance is crossed,
the mean eccentricity [shown in panel (b)] undergoes a sud-
den increase, and then keeps oscillating around a mean value of
about0.62. Thanks to this high eccentricity, the mean inclina-
tion [shown in panel (c)] also undergoes large perturbations. The
way the resonance crossing works in pumping up the eccentric-
ity is shown clearly in Fig. 8: as the semimajor axis decreases,
the topology of the level curves of the averaged Hamiltonian is
drastically changed and the orbit is “dragged” from a low- to a
high-eccentricity circulation of the critical argument through an
intermediate phase of resonant libration around$−$6 = 180◦.
This behavior matches well the topology of the phase space
at theν6 resonance according to the theory of Morbidelli and
Henrard (1991, Fig. 1), which shows moderate-eccentricity li-
brations around$ − $6 = 180◦ at mean inclinations between
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Fig. 11a and bThe same as in Fig. 8 but for
the orbital evolution shown in Fig. 10, near
a time of rapid eccentricity growth [panela]
and decrease [panelb]. In either case the or-
bit switches from low- to high-eccentricity
circulation orvice versa, without being cap-
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Fig. 12. The same as in Fig. 11 but for the interval preceding the end
of the integration. Here the orbit gets trapped into a large-amplitude,
high-eccentricity libration about$ − $6 = 0, which gradually shifts
upwards as the semimajor axis is increased.

3◦ and5◦. Note that the integrated orbit follows only approx-
imately the level curves, with “wiggles” caused by Jupiter’s
nonresonant perturbations. We have performed a large number
of similar runs for both stony and iron bodies, and found in all
cases the same kind of qualitative results, namely the transi-
tion to a high-eccentricity circulation mode after crossing the
resonance.

Of course, the real orbital evolution is expected to be more
complicated and should be investigated by using fully numeri-
cal integrations (we plan to do this in the next stage of our work
on this issue). After crossing theν6 resonance, the fragments
soon encounter the4 : 1 mean motion resonance with Jupiter
and theν16 secular resonance, and after this other resonances
with the inner planets can affect the orbital elements in a signifi-
cant way (Michel and Froeschlé 1997, Michel 1997). However,
we believe that the most important result reported above – the
effectiveness of theν6 resonance in pumping up the eccentricity
of orbits crossing it under the Yarkovsky effect – is a robust one,
and will be confirmed by more complex dynamical models. The
same applies to the results described in the next subsection.

3.3. Regolith-covered bodies evolving
under the “diurnal” effect

Fig. 9 shows an example of orbital evolution for a regolith-
covered body50 m in radius in the Flora region, under the
effect of the “diurnal” Yarkovsky effect. The initial conditions
correspond to the mean elements of asteroid (2580) Smilevskia
(a = 2.18255 AU, e = 0.19527, i = 0◦.32962).

Panel (a) shows that the semimajor axis undergoes a random
walk with varying slopes, corresponding to collisional changes
in the obliquity. In two occasions the orbit crosses the resonance,
and at these times the eccentricity undergoes sudden and drastic
changes, and the inclination is also affected. In this particular
case the eccentricity, after staying at high peak values for a few
tens of Myr at the resonance crossings, returns to more or less
the previous moderate (≈ 0.3) values when the orbit is driven
back into the Flora region.

However, this is not always the case. Fig. 10 shows an-
other example of the orbital evolution driven by the “diurnal”
Yarkovsky effect. The initial conditions now correspond to the
mean elements of asteroid 3996 1988 XG1 (a = 2.25933 AU,
e = 0.103693, i = 0◦.89691). Several features are similar to
those of the previous case, but here at the end of the400 Myr
run the mean eccentricity exceeds0.9, and after the first res-
onance crossing the orbit spends most of the time in the high-
eccentricity state. We acknowledge that for such extreme values
of the eccentricity the15th degree truncation of the perturbing
function in the asteroid’s eccentricity adopted in our dynami-
cal model (see Sect. 2.1) is certainly not sufficient to yield an
accurate orbital evolution, and therefore we may get spurious
results.

On the other hand, the same “phase space diagrams” we used
in Fig. 8 are useful to understand the dynamical mechanisms at
work in this case as well. Panels (a) and (b) of Fig. 11 corre-
spond to two intervals of a few Myr centered at about283 and
320 Myr after the beginning of the integration shown in Fig. 10,
respectively. In the former case, the orbit passes directly from
the low- to the high-eccentricity circulation mode, without be-
ing captured into a “libration island” as in the case of Fig. 8.
Possibly this is simply due to the higher rate of the semima-
jor axis change in this case. The opposite happens in the panel
(b) interval, when the eccentricity is rapidly decreased by the
resonance crossing. Finally, Fig. 12 shows what happens just
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Fig. 13a–cThe same as Fig. 10, but with the parameter values appropriate
for a 1-meter body.

before the end of the evolution shown in Fig. 10: here the orbit
gets trapped into a large-amplitude, high-eccentricity libration
about$ − $6 = 0, which shifts to higher eccentricities as the
semimajor axis grows due to the “diurnal” Yarkovsky effect (see
Figs. 10a and 10b). Of course, this kind of mechanism should
be explored by using a better dynamical model, maintaining a
good accuracy at very high eccentricities.

Finally, Fig. 13 shows the result of an evolution starting from
the same initial conditions used for Fig. 10 but taking theȧmax

andτrot value appropriate for a 1-meter body. The main differ-
ence with respect to Fig. 10 is that the time step for the random
walk in semimajor axis is shorter. On the other hand, the be-
haviors of the eccentricity and the inclination are very similar
to those of Fig. 10.

4. Conclusions

The main results of this paper can be summarized as follows:

1. We have estimated by numerical simulations the character-
istic time scales for transporting asteroid fragments into the
ν6 resonance through diffusion of semimajor axes caused
by the Yarkovsky effects. Regolith-free bodies 5 to 20 m

in size can drift into the resonance through the “seasonal”
semimajor axis decay within their collisional lifetime from
a region of the inner asteroid belt of width ranging from
several hundredths to a few tenths of AU, depending on the
stony vs. metal-rich composition. Larger, 100-m sized bod-
ies can also random walk into the resonance from the inner
part of the Flora region provided their surface is covered by
a thin regolith. For meter-sized bodies, the effectiveness of
the “diurnal” Yarkovsky effect in changing their semimajor
axis depends sensitively upon the thermal conductivity of
their surface layer and their rotation rate. Further data on
these physical properties are needed to assess whether or
when the Yarkovsky effect is important in delivering them
to the resonances.

2. The bodies whose orbital evolution is dominated by the “sea-
sonal” version of the Yarkovsky effect always undergo large
increases of eccentricity (enough for their orbits to become
Earth-crossing) when they cross the resonance at semimajor
axes≈ 2.1 AU.

3. When the “diurnal” effect is the dominant one, the semima-
jor axis evolution has a random walk-like character, allowing
these bodies to cross theν6 resonance in both senses; such
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episodic resonance-crossing events are typically accompa-
nied by large “jumps” in the eccentricity and lesser pertur-
bations in the inclination. The Yarkovsky-driven evolution
into ν6 may explain the observed overabundance of “Small
Earth Approachers” (SEAs) compared to larger near-Earth
asteroids (Rabinowitz 1994, 1998). However, it seems un-
likely that the subgroup of SEAs witha ≈ 1 AU and small
eccentricities (Rabinowitz et al. 1993, Bottke et al. 1996)
can come from the main asteroid belt thanks to Yarkovsky
effects, as proposed by Rubincam (1995). The reason is that
according to our results theν6-crossing episodes always lead
to large eccentricity increases (even disregarding other res-
onances), and the Yarkovsky force is not effective enough
in circularizing the orbits while their semimajor axes are de-
creased (Rubincam 1998, Vokrouhlický and Farinella 1998).
Of course Earth encounters could bring down the eccentric-
ity, but this is not likely to occur frequently enough.

Further work on the issues addressed in this paper is needed
in several directions. In particular, we plan to carry out fully
numerical simulations of fragment orbits including the gravi-
tational forces of both the outer and inner planets besides the
Yarkovsky effects, and taking into account the stochastic obliq-
uity changes related to impacts. As far as analytical models are
concerned, it would be very useful to develop them, in analogy
to what we have done here forν6, for the Jovian mean mo-
tion resonances, such as the 3:1 and 4:1 resonances which are
probably very important for meteorite transport.
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Farinella P., D. Vokrouhlicḱy, W.K. Hartmann, 1998, Icarus 132, 378
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A. Cellino, 1997, Meteoritics Planet. Sci. 32, 903
Milani A., M. Carpino, G. Hahn, A.M. Nobili, 1989, Icarus 78, 212
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