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Abstract. We derive a new analytical solution for the seasonal
Yarkovsky effect, the mean–motion frequency mode of the re-
coil force due to reradiated sunlight, on a spherical asteroid
fragment. The body is assumed to have a thin low–conductivity
(regolith–like) surface layer, covering a much more thermally
conductive core. If the penetration depth of the seasonal thermal
wave in the low–conductivity surface material is larger than the
regolith’s geometrical thickness, the previous simplified solu-
tion assuming a homogeneous interior of the body might lead
to wrong estimates on the intensity of the perturbing force.
Our approach removes this problem and the results indicate:
(i) an increased seasonal mobility of 10–m sized and larger
fragments with an insulating surface layer, and (ii) a decreased
seasonal mobility of meter–sized fragments with the same struc-
ture. These results may affect the accuracy of simulations of me-
teorite and NEA transport to the Earth, as well as the dynamical
evolution of some real small asteroids (e.g. 1566 Icarus).

Key words: celestial mechanics, stellar dynamics – minor plan-
ets, asteroids

1. Introduction

Thermal phenomena on asteroid fragments have attracted con-
siderable attention over the last few years, since their dynamical
aspects, known as the Yarkovsky effects, have been found to be
important in solving some interesting problems related to the
transport of NEAs and meteoroids to the Earth vicinity (e.g.
Farinella et al. 1998; Hartmann et al. 1999, Vokrouhlický &
Farinella 1998; Farinella & Vokrouhlicḱy 1999; Bottke et al.
1999). A quantitative understanding of the astronomical role
of the Yarkovsky effects requires: (i) a reliable knowledge of
the thermal and other parameters affecting their efficiency (e.g.,
the surface thermal conductivity of asteroid fragments, colli-
sional evolution time scales, etc.), and (ii) a realistic modelling
of the thermal effects themselves. Whereas the former problem
basically requires observational inputs (such as thermal–IR ob-
servations of asteroid surfaces during fly–by space missions),
the latter demands theoretical efforts. Among the issues to be
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investigated one can mention the role of non–spherical shapes
(see Vokrouhlicḱy 1998b and Vokrouhlicḱy & Farinella 1998
for some preliminary results), the effects of fractures running
through the body, and the emission properties of the body’s
surface (including those due to surface roughness and the direc-
tional properties of the emission lobe, improving on the simple
Lambert–law isotropic geometry which has been always as-
sumed so far in the framework of Yarkovsky force studies).

In this note we aim to extend the applicability of the existing
thermal models by taking into account another problem, namely
the possible inhomogeneity of the thermal parameters in the
bodies. A related problem in radiometry has been studied by
Brown & Matson (1987), who have investigated the role of
the finite propagation depth for insolation on a porous asteroid
surface. In this paper, we shall focus on modelling the thermal
effects for bodies which have a layered structure: a highly–
conductive core covered by a thin layer of a low–conductivity
material (such as a porous, dusty or finely fragmented regolith).

This problem is interesting for the following reasons, which
are different for the diurnal and the seasonal components of the
Yarkovsky effect. In the case of the seasonal effect, which has
been recently analyzed for a range of surface thermal conduc-
tivities including the very low values appropriate for regoliths
(Rubincam 1995, Farinella et al. 1998), the penetration depth
ls of the seasonal thermal wave for a body covered by low–
conductivity, regolith–like surface material would be of about
15 cm. Because the corresponding penetration depth is much
larger for compact rocky material, due to its higher thermal
conductivity (e.g.ls ≈ 2 m for a bare–rock basalt surface) the
seasonal temperature changes would affect a much larger frac-
tion of the body’s volume than just the surface layer if the latter
were thinner than the corresponding value ofls and the under-
lying core were much more conductive. In such a case, the tem-
perature gradient across the body and the resulting Yarkovsky
effect would be very different with respect to the values pre-
dicted by assuming a homogeneous structure, having the same
conductivity throughout the interior as on the surface.

Modelling the diurnal component of the Yarkovsky effect
for bodies with very low surface conductivity presents a dif-
ferent problem. Using the thermal parameters measured for the
lunar regolith (e.g. Langseth et al. 1973), we obtain an esti-
mate of38.3/

√
ω µm for the penetration depth of the diurnal
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thermal wave (hereω is the rotation frequency of the body in
rad/s). Assuming a linear dependence of the rotation periodP
on mean radiusR of the body, such asP = (2π/ω) = 5R
(with R in meters; this is the relationship recently adopted for
asteroid fragments by Farinella & Vokrouhlický 1999), we can
express the estimated diurnal penetration depth as a function
of the body’s size:34.2

√
R µm. For the meter–sized bodies

of interest in meteoritics this depth is submillimetric. Since on
this scale the surface is likely to be dusty or particulate, with
a complex mixture of micrometric grains and voids of similar
size, the current models based on the homogeneity assumption
are very likely to be simplistic. If the surface microparticles are
optically thin, the impinging radiation may penetrate to some
depth in the body and represent effectively an additional source
of energy (see e.g. Brown & Matson 1987). However, dealing
with this problem is much more complicated than in the previ-
ously mentioned case of the seasonal effect, and in this paper
we will limit ourselves to the latter.

Coming back to the regolith issue, is it plausible to assume
that small (say, meter–sized) asteroid fragments or meteoroids
have a thin, low–conductivity surface layer? In our opinion, the
available observational evidence allows no definite reply for the
time being. Meteorites are normally covered by a fusion crust
developed during their passage through the Earth’s atmosphere
and their original surface material cannot be observed; recent
studies of these fusion crusts (Genge & Grady 1999) indicate
that their compositions are similar to those of the bulk mete-
orites, both at the same time suggest that meteorite ablation
spheres produced at high altitudes resemble cosmic spherules
derived from coarse-grained precursors. It is also interesting to
note, in this respect, that many fireballs show anomalous ab-
lation efficiencies and/or IR luminosities already at very high
altitudes, a possible explanation of which would be the early
loss of loose surface material (Z. Ceplecha, private communi-
cation). As for larger bodies, surface regolith has been observed
on asteroids such as Gaspra and Ida; recently, the presence of
a meter–thick dust coating on the Martian moon Phobos has
been inferred from the large temperature differences (more than
100 K) between the day and night sides of this satellite, mea-
sured by the Mars Global Surveyor thermal emission spectrome-
ter instrument (see e.g. http://www.newmars.com/). This case is
particularly interesting because most of Phobos’s surface over-
flows its Roche lobe (Dobrovolskis & Burns 1980), and despite
this the near–surface dust particles have not been flung off – an
indication that electrostatic interactions (see e.g. Lee 1996) may
keep dust or fine fragments sticking on the surface despite the
centrifugal force due to the presumably rapid rotation of small
bodies. In this regard, we stress that the theory discussed in the
remainder of this paper is not meant to be applied only in the
case of real regoliths, formed by ejecta from relatively large–
scale impacts, but also to bodies whose surface material may
have developed a certain degree of porosity or granularity, e.g.
because of micrometeorite impacts. Measurements of Wechsler
et al. (1972), Presley & Christensen (1997) and Yomogida &
Matsui (1983) show that such porous or particulate materials
have thermal conductivities much lower (even by two or three
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Fig. 1.The interior structure of a layered body as discussed in the text.

orders of magnitude) than compact rocks, including most me-
teorite samples used by Yomogida & Matsui. In conclusion, we
think that the the possibility of a layered structure for small as-
teroids/meteoroids cannot be ruled out at this time, and therefore
it is worth some modelling effort.

In this note, we consider the seasonal Yarkovsky effect only
and remove the homogeneity assumption adopted in the previ-
ous thermal models, by considering bodies with a simple layered
structure. Sect. 2 is devoted to the derivation of the semimajor
axis drift rate in this case from a linearized thermal theory, while
in Sect. 3 we discuss some specific examples and applications
and draw some conclusions on the importance of this issue.

2. Theory

Hereinafter we shall use the same mathematical approach and,
to a large extent, the same notations introduced in the series of
papers by Vokrouhlicḱy (1998a,b; 1999). The reader is referred
to these papers for further details.

We are going to derive a linearized solution for the temper-
ature variations in a spherical and rotating body, that revolves
around a radiating source (the Sun in our case) in a circular orbit.
The body, of radiusR, is assumed to have a thin and homoge-
neous surface layer of thicknessh, characterized by thermal
conductivityK1, thermal capacityC1 and densityρ1. The cor-
responding parameters for the underlying core areK2, C2 and
ρ2. We assume that the thermal conductivitiesK1 andK2 are
different; typically,ξ2 ≡ K1/K2 ≤ 1/100. For later use we
also introduce the ratio between the thermal depths in the two
parts of the body,ξ1 ≡ √

K1ρ2C2/K2ρ1C1 ≤ 1/15. Fig. 1
shows the geometrical structure of the bodies discussed in this
note.

Since we shall use a linearized heat conduction theory,
the temperatureT throughout the body is assumed to oscil-
late around a constant mean valueTav: T = Tav + ∆T . The
constant average part is defined by the formal conservation of
absorbed and reradiated energy, without taking into account the
heat conduction effects. The heat conduction problem then re-
quires one to solve for the temperature variation∆T at any time
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t everywhere in the body. The volume elements in the body are
labelled by their spherical coordinates(r; θ, φ).

A suitable scaling of the variables simplifies the mathemati-
cal formulation of the problem. The radial coordinater is scaled
by the thermal penetration depthl1s =

√
K1/ρ1C1n of the sur-

face layer:r → r′ = r/l1s (scaled quantities are denoted by a
prime;n is the mean motion of the orbital revolution around
the Sun). The temperature variation∆T is scaled by the sub-
solar surface temperatureT?, defined fromεσT 4

? = αE? (ε is
the thermal emissivity andα the optical absorption coefficient
of the surface,σ the Stefan–Boltzmann constant andE? the so-
lar radiation flux at the body’s distance from the Sun). Finally,
time t is replaced by the complex variableζ = exp(iλ), where
λ = n(t − t0) is the mean longitude along the orbit. The time
origin t0 is chosen in such a way that the solar colatitudeθ0 in
the body’s reference frame (measured from the body’s spin axis)
fulfils the conditioncos θ0 = sin γ sinλ (hereγ is the obliquity
of the spin axis).

The linearized heat conduction problem then satisfies the
Fourier equation (see e.g. Vokrouhlický 1998a; 1999):

iζ
∂

∂ζ
∆T ′(r′; θ, φ; ζ) = (1)

=
1
r′2

{
∂

∂r′

(
r′2 ∂

∂r′

)
+ Λ (θ, φ)

}
∆T ′(r′; θ, φ; ζ) ,

where the operatorΛ(θ, φ) is given by

Λ (θ, φ) =
1

sin θ

[
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin θ

∂2

∂φ2

]
. (2)

The general solution of Eq. (1) is constrained by three boundary
conditions. The energy flux conservation at the body’s surface
(r′ = R′) reads

√
2∆T ′(R′) + Θ

[
∂∆T ′(R′)

∂r′

]
= ∆E ′ , (3)

with the incident radiation fluxE normalized by the “subsolar”
valueE? (E ′ = E/E?) andΘ =

√
K1ρ1C1

√
n/εσT 3

? defined as
the seasonal thermal parameter of the surface low–conductivity
layer. The boundary condition (3) depends on the particular
surface element(θ, φ) and time(ζ) that are considered. The
right–hand side term in Eq. (3)(∆E ′ = E ′− 1

4 ) can be developed
in a spherical harmonics series

∆E ′ =
∑
n≥1

n∑
k=−n

εnk(ζ)Ynk(θ, φ) , (4)

where only the dipole zonal term will be relevant below.
Vokrouhlický (1999) has showed that the corresponding am-
plitudeε10(ζ) is

ε10(ζ) =
1
2i

√
π

3
sin γ

(
ζ − ζ−1) . (5)

A new type of constraint in this case is due to the boundary
between the surface layer and the core (atr′ = R′ −h′), which
are assumed to be in perfect thermal contact (see e.g. Boley &

Weiner 1960). Both the temperature and the heat flux are to be
continuous on this surface, and therefore

∆T ′(R′ − h′)+ = ∆T ′(R′ − h′)− , (6)

ξ2

[
∂∆T ′(R′ − h′)

∂r′

]
+

=
[
∂∆T ′(R′ − h′)

∂r′

]
−
. (7)

The indexes± indicate that the corresponding quantities have
to be computed as a limit (r′ → R′ −h′) from the surface layer
(+) or the core (−) region.

Thanks to the spherical geometry, the temperature distri-
bution in the body can be developed as a spherical harmonics
series

∆T ′(r′; θ, φ; ζ) =
∑
n≥1

n∑
k=−n

t′nk(r′; ζ)Ynk(θ, φ) , (8)

with the coefficientst′nk(r′; ζ) depending on the scaled radial
distancer′ from the center and timeζ. Only the dipole part
t′10(r

′; ζ) is required to compute the seasonal Yarkovsky accel-
erationa (see Vokrouhlicḱy 1999), since

a(ζ) = −4
3

√
2
3π

αΦ t′10(R
′; ζ) s . (9)

Here,s is the unit vector in the direction of the spin axis and
Φ = πR2E?/mc is the usual radiation pressure factor (m is the
mass of the body andc the velocity of light). Like in the simpler
case of thermal effects on a homogeneous body (e.g. Rubincam
1998; Vokrouhlicḱy 1999), thet′10(r

′; ζ) coefficient satisfies a
Bessel equation in both the surface layer and the core. In the
core, the solution depends only on the spherical Bessel function
of the first kind (in order to guarantee regularity atr′ = 0),
whereas in the surface layer the solution in general is a mixture
of the two fundamental solutions (of first and second kind) of
the Bessel equation.

After a great deal of algebra we obtain

t′10(R
′; ζ) =

√
π

6
sin γ

ER′ sin(λ+ δR′)
1 + χ

, (10)

where

ER′ exp(iδR′) =
β4 − β3

β1β4 − β2β3
. (11)

The auxiliary complexβ–factors are given by

β1 = 1 +
χ

1 + χ
ψ1(z1) , (12)

β2 = 1 − 3χ
1 + χ

+
χ

1 + χ
ψ2(z1) , (13)

β3 = [ξ2 − 1 + ξ2ψ1 (z2) − ψ1 (z3)] ψ3 (z2) , (14)

β4 = [−2ξ2 − 1 + ξ2ψ2 (z2) − ψ1 (z3)] ψ3 (z1) , (15)

with

ψ1(z) =
z

j1(z)
dj1(z)
dz

− 1 , (16)

ψ2(z) =
z

n1(z)
dn1(z)
dz

+ 2 , (17)

ψ3(z) =
j1(z)
n1(z)

. (18)
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Here, j1(z) and n1(z) are the spherical Bessel functions of
the first and the second kind. The complex arguments of the
β functions read:z1 =

√−i R′, z2 =
√−i (R′ − h′) and

z3 =
√−i ξ1(R′ − h′). Finally, the real parameterχ is defined

by: χ = Θ/
√

2R′.
Finally, using the corresponding Gauss perturbation equa-

tion we can estimate the secular rate of the orbital semimajor
axis:
da

dt
=

4α
9

Φ
n

ER′ sin δR′

1 + χ
sin2 γ . (19)

This result is formally identical to Eq. (26) in Vokrouhlický
(1999), which had been derived for a homogeneous spherical
body. However, in our case the amplitudeER′ and the seasonal
thermal phase lagδR′ are given by the much more complex
expressions (11) – (18) derived above (see Appendix A for a
numerical method suitable for the evaluation of theER′ sin δR′

factor whenR′ � 1). Obviously, taking the limit for a homo-
geneous body (i.e.K1 = K2, ρ1 = ρ2 andC1 = C2) the semi-
major axis secular drift (19) reduces to the simpler result (26)
in Vokrouhlický (1999). The same applies for the limith → R,
when the surface layer formally extends over the whole body,
and the limith → 0, when the surface layer disappears.

3. Examples and conclusions

In order to assess the importance of the effects related to the pos-
sible layered structure of asteroid fragments, we have performed
two tests. In both of them we assume the following parameters:
(i) K1 = 0.0015 W/m/K andρ1 = 1.5 g/cm3 for the low–K
surface layer, and (ii)K2 = 1 W/m/K andρ2 = 3.5 g/cm3 for
the high–K core.

First, we have estimated the timescale required to move a
main–belt body by0.05 AU due to the seasonal Yarkovsky ef-
fect, assuming a body initially ata = 2.25 AU (for a similar
discussion see Hartmann et al. 1999). The statistical method of
Farinella & Vokrouhlicḱy (1999) was used to include the effects
of random changes in the spin axis orientation due to collisions
with the background population of main–belt bodies. The re-
sults, shown in Fig. 2, indicate that the previous, simplified ap-
proach (assuming a homogeneous low–K body) overestimates
in a significant way the seasonal effect mobility of meter–sized,
regolith–covered fragments, while at the same time it signifi-
cantly underestimates the seasonal effect mobility bodies with
the same structure in 10 to 100 m size range. On the other hand,
assuming a high–K homogeneous structure would overestimate
the seasonal Yarkovsky drift rate over all the size range exceed-
ing a few tens of cm.

These results are easy to understand. We recall that the as-
sumed geometrical thickness of the regolith–layer (up to10 mm
in Fig. 2) is smaller than the penetration depthl1s (about15 cm)
of the seasonal thermal wave corresponding to the thermal pa-
rameters of this material. The surface temperature variations
thus penetrate well into the highly conductive core of the body.
Since the typical penetration depthl2s of the seasonal thermal
wave in the core is of the order of1 –3 m, the efficient heat con-
duction through the interior of the meter–sized body results in a
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Fig. 2.The average time (in Myr) required to move an asteroid fragment
by 0.05 AU in semimajor axis through the seasonal variant of the
Yarkovsky effect is plotted vs. the body’s radiusR (in meters). The
solutions of this paper for three thicknessesh of the low–K layer (thick
solid lines:h = 1 mm,h = 5 mm,h = 10 mm) are compared with the
simplified solutions for a homogeneous body (thin solid lines: curve 1
for K1 = 0.0015 W/m/K, corresponding to the low–K surface layer;
curve 2 forK2 = 1 W/m/K, corresponding to the highly conductive
core). The asymptotic behaviors, based on the solutions of the 1–D
heat diffusion problem (see Appendix B), are shown by the dashed
lines. Timescales longer than the estimated collisional lifetimes of the
fragments correspond to the shaded upper region.

significant decrease of its thermal gradients and semimajor axis
mobility. In other words, the effect of the highly conductive core
helps the temperature to get closer to an average value and thus
decreases the efficiency of the seasonal Yarkovsky effect. On
the other hand, the higher conductivity of the core also helps in
increasing the “average” thermal parameter (indicating roughly
how much the thermal reemission lags behind the absorption of
sunlight) in the case of 10 m sized and larger bodies. This effect
then leads to a faster seasonal Yarkovsky mobility compared to
low–K homogeneous bodies in this size range, as illustrated in
Fig. 2.

Fig. 3 shows the average semimajor axis drift of asteroid
fragments of different sizes within their estimated collisional
lifetimes (compare with Fig. 3 in Farinella & Vokrouhlický
1999). The more efficient mobility of fragments around 10 m
in radius when they are covered by a poorly conductive surface
layer is confirmed here [see the bump on the thick curves in
strip (b)]. Bodies of this size have both a high diurnal effect
mobility and, on top of this, a significantly increased seasonal
effect mobility (as discussed above). We recall that thanks to
the very small penetration depth of the diurnal thermal wave
(see Sect. 1), the previous models for the diurnal effect remain
essentially correct – unless, of course, the granularity effects
mentioned in Sect. 1 play an important role.

Let us now comment briefly on the possible astronomical
relevance of the enhanced (for “large” bodies) or inhibited (for
“small” bodies) seasonal Yarkovsky mobility resulting from the
effect analysed in this paper.

First, the increased semimajor axis mobility of bodies
around 10 m in size, when they have a thin, low–conductivity
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Fig. 3. Average semimajor axis drift (in AU) within the lifetime of
an asteroid fragment vs. its radiusR (in km). Both diurnal and sea-
sonal effects are included here. The assumed collisional lifetime of
16.8

√
R Myr is taken from Farinella & Vokrouhlicḱy (1999). The com-

plete solution of the seasonal effect (as derived in this paper) is shown
for three thicknesses of the low–K layer (thick solid lines: curve 1 for
h = 1 mm; curve 2 forh = 5 mm; curve 3 forh = 10 mm) and is
compared to the simplified solution for a homogeneous body whose
thermal parameters correspond to the surface layer (thin solid line).
The diurnal variant of the Yarkovsky effect is the same in all cases.
Region (b) of the figure, where the largest differences are found, corre-
sponds to Tunguska–like Earth impactors with typical diameters of10
–60 m. Regions (a) and (c) correspond to the size ranges characteristic
of meteorites and large NEAs, respectively, as discussed by Farinella
& Vokrouhlický (1999).

surface layer, could enhance the flux of these bodies into the
main–belt resonances. Their overabundance in the resonances
should then result in a corresponding excess among the Earth–
crossing objects. Rabinowitz’s (1993, 1994) analysis of Space-
watch survey data indicates that such an excess exists in the ob-
served NEA population, and several authors (Rubincam 1995;
Hartmann et al. 1999; Vokrouhlický & Farinella 1999a) have
suggested the relatively high Yarkovsky mobility of these bod-
ies as a plausible explanation. Future quantitative simulations
on the transport and “demography” of NEAs of different sizes
should take into account Yarkovsky effects in the best possible
way, including the implications of the improved thermal model
discussed here, in particular in the critical diameter range be-
tween about 10 and 50 m.

Second, the quantitative results on the expected cosmic ray
exposure ages of different types of meteorites recently obtained
by Vokrouhlicḱy & Farinella (1999b) by a Monte Carlo model
depend on the mobility of asteroid fragments in the critical size
range around 10 m. The reason is that the model indicates that
most meteorites reach the Earth after a cascade of successive
fragmentation events (as already suggested by Wetherill 1985),
and the 10–m objects often are the immediate precursors of the
recovered meteorites. What is the abundance of these bodies in
the main belt, do they often succeed in reaching the resonances
before being broken up, how many are disrupteden routeto
the Earth, are all open questions at present, and the replies may
depend upon the assumed thermal models.

Let us consider, for instance, a 10 m sized, regolith–covered
body released at a0.15 AU distance from a resonance in the
inner region of the asteroid belt – this is roughly the case of
ejecta from asteroid Vesta, the best candidate parent body for
the HED meteorites. Using the results shown in Fig. 3, we can
see that the simplified (homogeneous) thermal model predicts
a typical drift of about0.1 AU within the estimated lifetime
of a 10 m body, which would not be sufficient to reach the
resonances for many fragments released from Vesta. However,
when the model developed here is used instead, the enhanced
mobility may protect most 10 m bodies from being disrupted
on their way to the resonances, thus inhibiting to some extent
the importance of the collisional cascade effects.

A detailed analysis of the orbital dynamics of the near–Earth
asteroid (1566) Icarus represents a special problem where the
results of this paper might provide an element of the solution.
According to Sitarski (1991), Icarus’s orbit determination re-
veals an unexplained secular semimajor axis decrease of about
7.5 × 10−4 AU/Myr. Given the fact that Icarus, which is about
≈ 900 m in diameter, could well have a regolith cover, the results
reported above suggest that in modelling the seasonal Yarkovsky
effect on this body the homogeneity assumption might lead to
wrong estimates (an additional difficulty is that Icarus’s orbit is
very eccentric, and that also poses a special problem for the eval-
uation of the seasonal Yarkovsky effect). Indeed, preliminary at-
tempt to model the Yarkovsky semimajor axis drift for Icarus’s
orbit (Vokrouhlicḱy, in preparation) indicates that the current
models fail to predict the observed value as reported by Sitarski
(1991). Of course, there are some simple possible explanations
this discrepancy, such as: (i) Sitarski’s value is overestimated
[e.g., Yeomans (1992) was unable to confirm Sitarski’s result];
(ii) Icarus is smaller than it was assumed. However, the possibil-
ity should also be considered that the seasonal Yarkovsky effect
has been somewhat underestimated due to the simplifying as-
sumptions of the current thermal models, and a fully numerical
model that would simulate consistently the abrupt change in the
thermal conductivity at the boundary between the two layers
(but extending to the nonlinear regime the linearized analysis
of this paper) is required to obtain more accurate results. Al-
though this possibility seems plausible to us, we must await a
detailed re–analysis of Icarus’s orbit for a realistic assessment.
In any case, Icarus’s dynamics might offer a unique test of the
Yarkovsky effect on such a large, natural orbiting body.
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sions and assistance in revising the paper. They are also grateful to
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Appendix A: numerical evaluation of Eq. (11)

In this appendix we comment on the numerical evaluation of
the complex functionER′ exp(iδR′) in Eq. (11), which is an
important step in the procedure to estimate the semimajor axis
drift (19). Curiously, this problem is rather tricky, for reasons
that will be explained below.
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First, a more suitable representation of Eq. (11) reads

ER′ exp(iδR′) =
1

β1 + β3
β1−β2
β4−β3

. (A1)

where the ratio of theβ functions in the second term of the
denominator is of particular concern. Using simple algebraic
identities for the spherical Bessel functions, one proves that

β1 − β2 =
χ

1 + χ

z1
ψ3(z1)

dψ3(z1)
dz

. (A2)

More cumbersome algebra then leads to

β4 − β3 = −z1 dψ3(z1)
dz

[
ξ2 +

h

R
α1 (z1;R, ξ1, ξ2)

+
(
h

R

)2

α2 (z1;R, ξ1, ξ2) + . . .

]
, (A3)

whereα1, α2, etc. are some complex functions. Note that both
(β1 − β2) and(β4 − β3) are proportional to the first derivative
of theψ3 function defined in Eq. (18). One easily proves that
this term decays to zero extremely fast when the norm|z1| of
its argument grows. In quantitative terms, we estimate

dψ3(z1)
dz

∝ exp
(
−

√
2R′

)
. (A4)

Since a typical value for the penetration depth of the seasonal
thermal wave in the regolith layer isl1s ≈ 15 cm and the ra-
diusR of the bodies of interest may be as large as100 meters,
in such a case we obtain|dψ3(z1)/dz| ≈ 10−400! While both
the numerator and the denominator factors are of this order,
their ratio is a finite number. Of course, without factorizing the
dψ3(z1)/dz term, a precise evaluation of the complex num-
berER′ exp(iδR′) in the left–hand side of Eq. (A1) would be
impossible. In our examples, therefore, we have developed the
(h/R) term in Eq. (A3) up to the third power by using a Taylor
expansion of theβ3 andβ4 functions.

Appendix B: plane–parallel solution

As explained in Appendix A, evaluating the seasonal semima-
jor axis drift (19) requires a special attention in the case of
large bodies (R′ � 1). In this limit, the plane–parallel (1–D)
approximation of the heat diffusion problem becomes appropri-
ate. This approach has been adopted by Rubincam (1995) and,
using the same notations of this paper, by Vokrouhlický (1998b).
The corresponding non–linearized theory has been developed
by Vokrouhlicḱy & Farinella (1998).

We have generalized the analysis given in Vokrouhlický
(1998b) to account for: (i) the seasonal variant of the Yarkovsky
effect; and (ii) the layered structure of the bodies studied in this
paper. The final formula for the semimajor axis drift due to the

seasonal component of the Yarkovsky effect is identical with
Eq. (19), provided theER′ exp(iδR′) function reads

ER′ exp(iδR′)
1 + χ

= − 1

1 − Θ
√

− i
2

1+ξ12 exp(2
√−ih′)

1−ξ12 exp(2
√−ih′)

, (B1)

keeping the same notations as above, with

ξ12 =
ξ1 − ξ2
ξ1 + ξ2

(B2)

[obviously, the dependence onR′ has disappeared from
Eq. (B1)]. Interestingly, formula (B1) can be evaluated without
any numerical problems and can be used to check the quality of
the approximation discussed in Appendix A. Results based on
(B1) are shown in Fig. 2 as dashed curves. WhenR′ � 1, we
note a fairly good match with the complete solution (solid line),
while at small sizes (R′ ≤ 1/ξ1) the plane–parallel approxima-
tion of course fails.
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Vokrouhlický D., Farinella P., 1999a, In: The Impact of Modern

Dynamics in Astronomy. Proceedings of the IAU Colloquium
No. 172, Kluwer, Dordrecht, in press
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