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Abstract. Thermal (Yarkovsky) forces acting on small bodies in the solar system have been shown to play an
important role in the the delivery of meteoroids and km–sized asteroids to Earth. So far, several aspects of the
Yarkovsky force have been studied in some detail, including non–linear effects of the heat diffusion problem, non–
sphericity and the layered–structure of the objects. In this paper, we address the concept of optical absorptivity.
We find that the best formulation of the Yarkovsky effect uses the first two moment–integrals of an object’s
hemispheric albedo. A useful approximation of these albedo parameters is an object’s Bond albedo.
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1. Introduction

The Yarkovsky effect is a radiation recoil force caus-
ing objects to undergo semimajor axis drift according to
their spin, orbit, and material properties (Rubincam 1995,
1998; Farinella et al. 1998; Vokrouhlický 1999). To ac-
curately evaluate its importance in the dynamical evolu-
tion of small solar system bodies, we require more pre-
cise observations and improved theoretical models. As
far as these theoretical models are concerned, we note
that the principal step forward has been performed by
Rubincam (1995), who extended the classical (rotation–
frequency–dependent) formulation by the mean–motion
variant (the so–called seasonal effect). Later, the solu-
tion of the Yarkovsky force has been extended for the
non–spherical bodies (Vokrouhlický 1998b), objects with
layered–structure (Vokrouhlický & Brož 1999) and a de-
gree by which the classical and seasonal variants of the
Yarkovsky effects are mixed (Vokrouhlický 1999). At the
same time, non–linearized models have been developed in
both the large–body (Vokrouhlický & Farinella 1998) and
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general approximations (Vokrouhlický & Farinella 1999;
Spitale & Greenberg 2001).

Even though progress has been made in many areas,
theoretical models of the Yarkovsky effect still need to
be improved. Specifically, we believe that some attention
should be paid to the selection of the appropriate “albedo”
for an object evolving under Yarkovsky forces. Previous
works have used several different types of albedos. For ex-
ample, Rubincam (1995, 1998) refers to a single albedo
value A in his models, but usually considers A = 0 in
applications (at best, the Bond albedo has been substi-
tuted for the A–parameter, e.g. in Bottke et al. 2000).
Vokrouhlický and Farinella, in their series of papers, also
refer to a single value of the albedo parameter, assum-
ing Lambert diffusion of the sunlight on the surface of
the body. Similarly, none of the non–linearized theories of
the Yarkovsky effect have examined the concept of surface
albedo in detail.

To clarify the situation, it is useful to describe the
differences between the various albedos used above. Two
general types of albedo can be found in the literature,
normal albedo and Bond albedo. The former, also called
normal reflectance or geometric albedo, is a measure of
a surface’s relative brightness when illuminated and
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observed vertically. It derives from the hemispheric
albedo, defined below, at zero zenith distance. The normal
albedo is commonly used to determine the surface com-
position of asteroids. For reference, the normal albedo of
(4) Vesta is nearly 0.35, while the surface of (1) Ceres
is 0.09, not much brighter than charcoal. This param-
eter is used, along with diameter and distance, to de-
termine the brightness of an object. Bond (sometimes
spherical) albedo is defined as the fraction of the total in-
cident solar radiation reflected by an object back to space.
Hence, Bond albedo measures an object’s energy balance.
Working with bolometric quantities, the Bond albedo is
frequently calculated by multiplying the normal albedo by
an estimated phase integral (Lebofsky & Spencer 1989).
More precise computations of the Bond albedo for some
asteroids can be found in the literature (e.g., 243 Ida;
Helfenstein et al. 1996).

In this note, we aim to clarify the concept of albedo
parameter(s) within the context of the Yarkovsky force
theory. The reference papers, as far as the notation is con-
cerned, are those by Vokrouhlický (1998a, 1999).

2. Theory

Consider a spherical body of radius R revolving around
the Sun. The body absorbs the incident solar radiation
and it partly reradiates (reflects) the sunlight in the op-
tical band. Directional characteristics of the reflection are
described by the so–called bidirectional reflectance func-
tion r. Given a surface element which is illuminated by
the sunlight from the local direction n0 (characterized by
the zenith angle ϑ0; µ0 = cosϑ0), the reflectance func-
tion yields the radiation (specific) intensity I of the re-
flected sunlight at the local direction n (charaterized by
the zenith angle ϑ; µ = cosϑ) by

I(n;n0) = I(µ, µ0; g) = J r(µ, µ0; g). (1)

Here, cos g = n ·n0 and J means the radiation intensity of
the incident sunlight. The reflectance function r depends
on the surface material properties and its roughness. The
classical formulations of r(µ, µ0; g) by Hapke and Lumme–
Bowell are reviewed in Bowell et al. (1989).

The thermally reprocessed part of the absorbed energy
by the chosen surface element is given by

E = Jµ0 [1− AH (µ0)] , (2)

for µ0 ≥ 0 and vanishes for µ0 ≤ 0. Here, AH(µ0) means
the hemispheric albedo given by

AH(µ0) =
1
Jµ0

∫
Ω+

dΩµI(µ, µ0; g) (3)

(Ω+ denotes integration over upper hemisphere).
Treatment of the Yarkovsky effect profits from pos-
sibility to represent the absorbed energy (2) in terms of
the spherical function series

E = J
∑
n≥0

n∑
k=−n

ank Ynk(θ, φ), (4)

from which the monopole and dipole terms are relevant
in the linearized problem. Here, the spherical angle θ is
measured from the rotation axis of the body and the “lon-
gitude” angle φ from an arbitrary origin in the equatorial
plane of the body. A brief algebra yields

a00 = (1−A1)
√
π

2
, (5)

a10 = (1−A2)
√
π

3
cos θ0, (6)

a1±1 = ∓(1−A2)
√
π

6
sin θ0 e∓iφ0 , (7)

with (θ0, φ0) being the solar direction angles in the chosen
system of coordinates. As it can be noticed from (5)–(7),
the coefficients at each multipole level in the energy de-
velopment (4) require proper definition of the “albedo”
parameter. In general, the necessary albedo parameters
are related to the algebraic moments of the hemispheric
albedo AH(µ0). Notably, we have defined for each n ≥ 1

An = (n+ 1)
∫ 1

0

dµ0 µ
n
0 AH(µ0). (8)

The lowest–degree albedo parameter – A1 – coincides with
the Bond albedo. Since the monopole energy term (5)
determines the mean and subsolar temperatures of the
body, the Bond albedo A1 affects these values. However,
the Yarkovsky thermal force is more intimately linked to
the dipole level coefficients (6)–(7) of the energy develop-
ment (4) and thus more naturally contains the higher–
degree albedo coefficient A2. The aim of this paper is
to show that both the Bond albedo A1 and the second–
degree albedo parameter A2 appear in evaluation of the
Yarkovsky force. However, out of these two parameters,
the A2 plays a more important role.

The linearized theories of the Yarkovsky force
(Rubincam 1995, 1998; Vokrouhlický 1998a,b, 1999) have
the same underlying structure (though the proper no-
tation may slightly differ): (i) define the scaled, non–
dimensional quantities of the problem, (ii) deal with devel-
opment of the surface irradiation function (4), (iii) solve
the linearized heat–diffusion problem, and (iv) compute
the thermal (Yarkovsky) force from the dipole tempera-
ture distribution on the body. We shall not repeat these
steps but only comment where albedo definition plays a
role in the theory.

First, the albedo concept contributes to the definition
of the scaling temperature (e.g. the subsolar temperature
T? in the notation of Vokrouhlický 1998a, 1999). From (5)
we observe that the first–degree moment (Bond) albedo
A1 is to be used here, so that: εσT 4

? = (1 − A1)J (ε
is the IR emissivity and σ the Stefan–Boltzmann con-
stant) is a more precise form of Eq. (5) in Vokrouhlický
(1998a). Similarly, Eq. (4) of Rubincam (1995) should
read: 4εσT 4

0 = (1−A1)F 0
S . The subsolar temperature T?,

or the mean temperature T0, then provide the important
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factor, tuning the magnitude of the Yarkovsky force, no-
tably the thermal parameter Θ (or Φ in the Rubincam’s
notation; see, e.g., Eq. (6) in Vokrouhlický 1998a, Eq. (4)
in Vokrouhlický 1999 or Eq. (11) in Rubincam 1995).

Second, we have seen that the higher–degree albedo
coefficients appear in the dipole part of the irradiation
function development (4). After including these terms in
the boundary conditions of the heat diffusion problem,
solving properly the temperature field in the body and
evaluating the Yarkovsky force – steps (iii) and (iv) above
– we realize that results obtained previously by Rubincam
(1995, 1998) and those by Vokrouhlický (1998a,b, 1999),
Vokrouhlický & Brož (1999) hold, provided the absorptiv-
ity factor that scales all components of the thermal force is
interpreted as 1−A2 (e.g. in the Vokrouhlický’s notation
α = 1−A2 and in Rubincam’s notation A = A2).

To summarize the results of this section, we note that
the previous linearized solutions for the Yarkovsky force
are valid provided the “albedo” factor is properly used.
Specifically:

– the Bond albedo A1 is used for definition of the scal-
ing temperature and, thus, in evaluating the thermal
parameter, and

– the higher–degree albedo A2 is used in the scaling fac-
tor “(1−A)” in the components of the Yarkovsky force.

Both values A1 and A2 are numerically close to each other,
so that in a very rough zero-order approximation the Bond
albedo A1 may replace A2 in the formulae for the ther-
mal force components. Their difference is briefly discussed
below.

3. Examples and discussion

Vokrouhlický (1998a,b, 1999) used Lambert reflection law
for the incident sunlight. In this highly simplified case, we
have r = aµ0/π, and one easily shows that AH = A1 =
A2 = a. The surfaces of small bodies in the solar system
(e.g., asteroids, satellites), however, do not provide a good
fit to Lambert’s reflection law.

A more involved representation of the reflection mech-
anism is that by isotropic scatterers, each charaterized by
the single–scattering albedo w. If mutual shadowing of the
particles is neglected and the surface is assumed perfectly
flat, Chandrasekhar (1960) obtained

r(µ, µ0) =
w

4π
µ0

µ+ µ0
H(µ)H(µ0), (9)

where the H–functions satisfy an integral equation. As has
been pointed out by Hapke (1981), a good approximation
of its solution is given by H(x) = (1 + 2x)/(1 + 2γx)
with γ =

√
1− w (see also Ahmad & Deering 1992). The

hemispheric albedo is then given by

AH(µ0) = 1− γ H(µ0) (10)

and its moments then read

An = 1− (n+ 1)γ
∫ 1

0

dµµnH(µ). (11)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

al
be

do

w

S
-types

C
-types

1

2

Fig. 1. The first two moment–integrals A1 (curve 1) and A2

(curve 2) of the hemispheric albedo vs. the single–scattering
albedo w. The body’s surface is represented by the isotropic
scatterers. The shaded areas show the characteristic interval of
the w parameter for the S– and C–type asteroids

In the particular case of the isotropic scatterers,
Chandrasekhar (1960) has shown an exact relation (see
Eq. (18) of Chap. 5 in Chandrasekhar 1960)

A2 =
3
16

w

γ2
(1−A1)2

. (12)

Assuming the above–mentioned Hapke’s approximation
for the Chandrasekhar’s H–functions one obtains

A1 =
1− γ
γ

[
1− ln (1 + 2γ)

2γ

]
· (13)

Equations (12) and (13) then yield the necessary informa-
tion for the Yarkovsky–force evaluation.

Figure 1 shows both albedo–coefficients as a function
of the single–scattering albedo w. The typical range of this
parameter for the S– and C–type asteroids is shown by the
shaded area. We may notice that A2 is always a smaller
than A1, but generally the difference of the two quantities
seems very small (quantitatively it is about 17% of the
Bond albedo value for small w and decreases to about
12 % for w ' 0.5).

In a still more complex approximation one may in-
clude the effect of anisotropy of the individual scatterers of
the surface. Assuming the Henyey–Greenstein phase func-
tion with the asymmetry parameter g (see Helfenstein &
Veverka 1989), we may evaluate A1 and A2 numerically.
We have neglected the contribution of backscattering phe-
nomena since they have little effect on the integral quan-
tities such as the hemispheric albedo (e.g. Hapke 1981).
Taking into account the asymmetry factor g in the typical
interval (−0.4, 0), we have numerically computed the first
two moments A1 and A2 of the hemispheric albedo. The
results are shown in Fig. 2. We may again conclude a good
correspondance between the two albedo–moments (so that
A2 ' A1 is still a good zero order approximation), though
the A2 value is systematically smaller than A1. We have
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Fig. 2. The first two moment–integrals A1 (dashed curves)
and A2 (solid curves) of the hemispheric albedo vs the single–
scattering albedo w. Surface represented by the individual
scattering particles with a phase function given by the Henyey–
Greenstein formula. Four typical values of the asymmetry–
parameter g assumed: (i) g = 0 (curves 1), (ii) g = −0.1
(curves 2), (iii) g = −0.2 (curves 3), (iv) g = −0.3 (curves 4),
and (v) g = −0.4 (curves 5)

checked that adding the effects of the surface roughness
does not change the conclusions derived from the above
examples.

Finally, let us also comment on the correct usage of
the albedo parameter in the non–linearized theories of
the Yarkovsky effect (e.g. Vokrouhlický & Farinella 1998,
1999; Spitale & Greenberg 2001). Such theories solve the
heat diffusion problem numerically, typically on a grid
that covers spherical coordinates on the body and time.
When formulating the (non–linearized) boundary condi-
tion of the heat–diffusion problem for the individual sur-
face elements, one should use the hemispheric albedo AH

defined in (3) above. Note in particular that this quantity
depends on the zenith angle (ϑ0) of the incident sunlight.
To our knowledge, none of the numerical approaches have
included this effect so far (since they typically assumed
AH ' const.), so that investigation of the hemispheric
albedo variability with the zenith angle for the numerical
evaluation of the Yarkovsky force is left for future work
(the hemispheric albedo may change by a factor of ' 2
between the zenith and horizontal incindent angle of the
sunlight).

In this paper, we relaxed constraining assumptions
about the surface reflectivity from some previous analyses.
Despite this, we have still assumed Lambert (isotropic)
emission in the infrared (IR) band. Note that this assump-
tion was implicitly used for formulating the Yarkovsky
force. Observations and theory suggest that the directional
characteristics of the IR emission are anisotropic to some
degree (e.g. Lebofsky & Spencer 1989; Spencer 1990), but
the quantitative modeling of this phenomenon is not as
advanced as, say, those in the optical band. We believe
the inclusion of anisotropic IR emission into our model
might be an interesting (though complicated) project for
the future, as might be a study of the possible variation of
the reflectance pattern (i.e., the r–function) on the body’s
surface.
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