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Abstract. The diurnal Yarkovsky effect, a perturbing force orfFujiwara et al. 1978, 1989; Catullo et al. 1984; Giblin et al.
meter-sized orbiting bodies caused by anisotropic heating &tfib4); (ii) asteroid lightcurve photometry, radar observations
emission of thermal radiation from small spinning solar systeamd spacecraft reconnaissance, all show that asteroids in the
bodies, is computed for spheroidal-shaped bodies with an adize range betweer 1 km and a few hundred km have ir-
trary flattening. The solution is derived in analytical form for aegular fragment-like shapes (see e.g. Binzel et al. 1989, Ostro
body which rotates around its axis of symmetry. A numericat al. 1995; Zappal & Farinella 1997); (iii) meteorites recov-
solution is presented for the more general case of a preces&rgd on the ground have irregular shapes, including the largest
body, where the symmetry axis tumbles around a fixed anguteres (a few m across), such as Hoba and Willamette. Note that
momentum vector. In both cases, the obtained Yarkovsky fortte size range for which these data are relevant (froincm to
is compared with the corresponding thermal force acting or=al km) brackets the size range for which Yarkovsky effects are
spherical body of the same mass. Differences of up to a faignificant (from abou®.1 to 100 m, see Farinella et al. 1998).
tor of 3 are fognd, dependmg on the geometric parameters of All of this casts doubt on the current thermal models from
the body and its rotational state. However, the agreement b%-. )
. ; . which Yarkovsky effects are estimated, as they are based on
tween the derived force values in the two cases is much better . T :
: . . testionable simplifying assumptions as far as the shape of the
when an average over all possible pole orientations of a tuEh— . . .
bling spheroidal body and the solar position over its revolutionoOly is concerned. Actually, complete models including ther-
aroSndpthe Sunis co):lsidered This r%sult suggests that the Srpa_l conduction across the body have been developed only for
o . S 99 s%eres (Vokrouhlick1998 - hereafter also called paper I; see
plified formulation of the diurnal Yarkovsky force based on a ) .
. . . . . also Afonso et al. 1995 and Rubincam 1998). The reason is that
spherical geometry can be used, without introducing major miz- . L )
: : . : ?\e view has prevailed that a generalization for different shapes
takes, for long-term integrations of the orbits of small asteroida . ; . .
. would require a much more involved mathematical technique
fragments in the Solar System.

and the results would be algebraically very complicated.

Key words: celestial mechanics, stellar dynamics —minor plan- Luckily, there is an important circumstance which helps re-
ets, asteroids ducing the complexity of models for the diurnal Yarkovsky ef-
fect. In most relevant situations the thermal penetration depth,
characterizing approximately the thickness of the surface layer
undergoing temperature variations due to external heating, is
very small. For instance, thermal parameters appropriate for a
Thermal forces due to anisotropic heating and re-emissionrafn-porous basalt surface would correspond to a thermal pene-
thermal radiation from small, spinning Solar System bodigsation depth of about.4v/P mm (hereP is the spin period of
(usually called “Yarkovsky effects”) have been recently found the body in seconds), whereas an insulating regolith cover would
provide an efficient transport mechanism for meter-sized astirrther decrease this figure (Farinellaetal. 1998, Hartmann et al.
oidal fragments into resonant channels which deliver them to th@98). This implies that the thermal conduction across the body
near-Earth space (Farinella et al. 1998, Hartmann et al. 1998)extremely weak and each surface element can be seen as
Although so far most models for these effects have assunteving its own thermal history disconnected from the other ele-
spherically shaped bodies, real asteroidal fragments probaitignts. In these conditions, thermal conduction can be modelled
have very irregular shapes. There are several arguments for #sisa one-dimensional problem for each individual surface ele-
conclusion: (i) fragments from asteroidal catastrophic collisiomsent. Clearly, the body’s shape does not play an important role
probably have shapes similar to fragments obtained in laboiathis formulation. Taking into account only the thermal his-
tory hypervelocity impact experiments, which typically showory of individual surface elements, as outlined above, one may
approximatelly2 : 1 ratio between the longest and shortest axdéisus succeed in modelling Yarkovsky thermal effects for an ar-

1. Introduction
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bitrary shape. Of course, when the shape has some symmetyyatorial thermal force components become much smaller than
the required algebra becomes much less complicated. for the comparison sphere.
It should be noted that this approach based on individual |s this result representative enough? Is the “equatorial”

surface elements was already used by Radzievskii in his pi9-209 error estimate valid for bodies with different shapes?
neering 1952 paper about the thermal force on a spherical bqhese are the questions which will be addressed in this paper.
(Radzievskii 1952). Later on, Peterson (1976) adopted a simiggf course, we will study a specific class of non-spherical bodies,
formulation when developing a theory for the thermal force onmely a sequence of axisymmetric ellipsoids (spheroids) with
cylinder and the same was done by Rubincam (1995) in modgk arbitrary flattening. Both oblate and prolate spheroids will
ing the seasonal Yarkovsky force on a sphere. Vokroufil&k pe considered. For the sake of simplicity, we shall first assume
Farinella (1998) included the nonlinear re-radiation effects *Q$ect. 2.2) that the rotation axis is aligned with the axis of sym-
developing a suitable numerical model. However, apart from thestry. In this particular case, the solution can be obtained in a
papers of Peterson (1976) and VokrouhjiékFarinella (1998), closed analytical form. However, real asteroidal fragments may
in all the other studies the body was assumed to be spheriggkvive for relatively long times in a tumbling rotational state,
Thus, relatively little is known about the role of non-sphericitgharacterized by a misalignment between the rotation axis and
effects in the Yarkovsky force theory. the symmetry axis (e.g., Burns & Safronov 1973, Harris 1994,

The aim of this paper is to explore the role of the bodyiplin & Farinella 1997). For this reason, we will also com-
shape on the resulting diurnal Yarkovsky force. In particular, Wgte the diurnal Yarkovsky force on a body with an arbitrarily
shall investigate how much the exact results for non-spheriggjented spin axis. Due to the algebraic complexity, these latter
bodies are mismodelled when one adopts a simplified formpgsulits will be given numerically. A linear approximation for
lation assuming a spherical geometry. Such formulations 3@ grey-body thermal re-emission will be assumed throughout
common in the studies of the long-term dynamics of the astggig paper (see Vokrouhli§k1998).
oidal fragments (e.g. Afonso et al. 1995; Bottke et al. 1998).
In order to assess the validity of the corresponding results, we
need to understand the limitations of the thermal models from
which the Yarkovsky force is derived. 2. Theory

In order to get a first estimate on the problem, we may u : :
Peterson’s (1976) results. Peterson computed the thermal for(ta:lé Spherical bodies

components fx, fy) perpendicular to the axis of a cylinder\we start our discussion of the diurnal Yarkovsky effect by re-
Rewriting them into the notations introduced in this series @fjling the results for a spherical body. Although this case was

papers we obtain dealt with in paper |, a summary is useful for two different rea-
T &R (1+A)+iA sons: (i) we intend to introduce the computation method used
fx +ify = —gasinty oo (1) later on in this paper by illustrating it in the algebraically sim-

pler case of a spherical body, and (ii) the corresponding results

with will be used for a comparison with the more general results to be

o x \34 derived later. Interestingly, we shall also demonstrate that our

A= m (sm@) (2) method overcomes an intricate and laborious feature of Peter-
0

son’s (1976) approach, namely the use theeRgumproximation
The parameters and constants are as follgWis: the radius of for his infinite series (25). By a more direct and simpler com-
the cylinder/ its length,m its mass£, the external radiation putation we will obtain a more precise result, because thé Pad
flux, c the velocity of light andx the optical absorption coef- approximant method does not yield the required coefficients
ficient of the surface. The thermal parameterto be defined with a very high precision.

below, is used here instead of Peterson’s paranietéve have
slightly generalized Peterson’s result [Egs. (17) in his pape&], )

allowing for an arbitrary anglé, between the cylinder's axis 2-1-1. Formulation of the problem
and the direction toward the Sun (Peterson assuined90°).
Assuming a values- 1 for the _thermal paramete&d, we can itsdescribed by the parabolic equation
comparel(ll) to the corresponding thermal force components for

a spherical body (23). Considering a cylinder of radius equal to

the radius of the sphere and a length such that the two bodiesdT . 9°T

have equal mass, we obtain that both components frbm (1) Grear — T 922

a factor2v/2(sin 6, /7)>/* larger than the corresponding com-

ponents from Eq[{23) below. Whelg = 90°, with the solar yielding the distribution of temperatufg at depthz and time
direction perpendicular to the spin axis of the body, this meahdNVe assume that increases toward the centre and isn the

that the force acting on a cylinder is abAlt % greater than surface.K is the thermal conductivity’ the specific heat and
that on a sphere with the same mass. Wihgmecomes smaller, p the density of the material. As in paper |, we shall assume that
the solar direction gets aligned with the cylinder’s axis, and bo#ll these parameters are constant.

The one-dimensional heat conduction process in a solid medium

3)
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The solution of[(B) is constrained by a regularity conditiodifference between our method and that of Peterson (1976) is
at “infinite depth” in the body £ — o0), and by the energy our choice of a single mean temperaturedtrthe surface el-

conservation equation ements on the sphere. Peterson, following the original method
of Radzievskii (1952), decided to define the mean temperature

oT :
ecT* —K|(=— | =a€&, (4) separately at each latitude on the sphere. However, we shall
9z ) demonstrate below that this choice turns out to be algebraically

at the surfacei( = 0). We use a grey-body approximation, withvery _Iabprious and unnecessary..Third,_the only parameter ap-
an emissivitye for the body’s thermal re-radiation of the abPearing in our transformed equations will be:
sorbed energyq is the absorption coefficieng the external I/

radiation flux on the chosen surface element arile Stefan- © = =

Boltzmann constant. The second term on the left-hand side cor- col;

responds to the thermal energy conducted into the body.  \\herel = /pCK is the thermal inertia. In agreement with

The linearization of the emission term [0 (4) is necessapy 4| terminology we shall ca® just “thermal parameter”.
to obtain a sufficiently simple analytical result. In addition tQgte that Peterson’s paramefeis related t® by a numerical
the assumption about the “large” size of the body discussggior of order unity (e.g. Vokrouhligk1998).

above, this linearization provides the second fundamental sim- Adopting this new set of variables, the heat conduction equa-
plification of our method. Mathematically, it means splitting;y, (@) takes the following form

the temperaturé’ into a properly chosen mean valiig and a
variationAT: T =T, + AT.

(8)

9 o
Z.C('T( AT'(2"0,¢;C) = @AT/(IIQQNZS? 9) ©)

2.1.2. A suitable choice of variables whereas the linearized boundary constrdiht (4) reads

Before working out the solution of the problem, a careful choice AT

of variables is necessary. Following previous work in this fielf 2AT’ — © ( - ) =a A& . (20)
(Spencer et al. 1989, Vokrouhligk& Farinella 1998, Vokrouh- 9z" /

licky 1998), we adopt the following set of non-dimension
quantities:

allhe energy-source functioh&’ is defined by A&’ = & — 1.
The 1/4 term here compensates for the definition of the mean
_ the linear coordinate will be scaled by the diurnal thermaltemperatureT;, = 1/v/2.

lengthl, given by

% 2.1.3. Radiation source term
ls = \/ pCw’ (5) Before we derive a solution of the systefd (9) ahdl (10), we

comment on a suitable expansion of the source t&&h This
wherew is the angular velocity of rotation, and will be dedissue is related to a definition of the reference system to be used

noted byz’ = /I, hereafter.

— the timet will be replaced by the complex varialjegiven Considering a spherical shape of the body, we shall
by parametrize the individual surface elements by the spherical co-

) ordinated) and¢ (the colatituded is measured from the body’s

¢ = exp(iwt) (6) spin axis). The reference system used for the solution of the heat
(i = /=T is the imaginary unit); f:on(_JIuction problem i_s rigi_dly rotating with th_e bpdy. Hsaxis

— the temperatur@ will be scaled by an auxiliary parameterS 2ligned with the spin axis and the equatosiaixis is chosen
T, defined by so that the direction toward the radiation source (the Sun) lies

in the xz-plane at an arbitrary time = 0 (for a diagram see

eocT? = o, , (7) Fig. 1 in Vokrouhlicky 1998). Then, the unit position vector of

. L . the Sun reads
where&, is the solar radiation flux at the distance of the

fragment. The resulting non-dimensional variable will be %Sin oC
denoted byl" = T'/T,, and similarlyAT’ = AT /T; nyo = | gsinfp¢ | +C.C., (11)
— the energy source terghin the right-hand side of{4) will cos b

be scaled by the reference fléix, thus defining’ = £ /€,. , i
whered, is the solar colatitude and C.C. stands for a complex

Before formulating the basic equations in the new set of vadenjugate quantity. The scaled solar radiation flux onto a chosen
ables, some comments are in order. First, the mean temperasurace element with a position unit veciofd, ¢) is
T, defined previously is not to be confused with the auxiliary/ )
valueT,. On the contrary, we shall note below that for a spherical = (6, ¢) - no (6o, ¢) if (n-ng) >0,
body a natural choice 8!, = T,,/T, = 1/+/2. Second, amajor = 0 otherwise. (12)
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This function can be expanded into a Fourier series 2.1.5. Thermal force and related quantities

Having determined the surface temperature for each of the ele-

! . n

&= Z en(t, :60) C" (13) ments we can now compute the thermal recoil force. We shall
ez assume Lambert’s isotropic thermal emission geometry, as be-

(hereZ denotes the integer numbers), with coefficients givéfre. and linearize the fourth-power emission law. Calfirige
by thermal force per unit of the body masswe obtain

2v2
en(0, 6:00) = %an(e;oo) (cosng + isinng) . aa) f=-75_—00 /dQ AT'n, (22)
where® = (£,7R?)/(mc) is the usual radiation force factor.
The integration is performed on the whole sphere dfidd=
sin 8dfd¢. Finally, the resulting force is expressed into a non-
rotating reference fram&'Y Z, whoseZ-axis coincides with
the body’s spin axis and th€-axis coincides with the-axis of

The first twoa functions read
2

ag(0;6p) = = (¢px cosBcosby + sin g, sinfsinby) , (15)
T

1
a1(0;6p) = — |2sin ¢, coscos by

i the rotating frame at time = 0. The force components in this
4 (¢ +sing, cos¢,)sinfsinby| . (16) New systemread
. 4 ) (T+ M) +iN
. . . = ——ads _— 2
The auxiliary angley, is defined by fx +ify g @®sm 0o 1120, 4202 (23)
cos ¢.(0,00) = —1 forg < 6- fz = —%a@ cos by . (24)
= —ctgfctgly  fore (6_,0,)  (17)

This solution can be directly compared with Egs. (33,34) in

Vokrouhlicky (1998). As expected, the two solutions coincide

with 4+ = Z =+ 6,. Similar expressions can also be found fo'lrn I|n_1|t of Iarge qules @ —rooin _Vokrouhllcky 1998)'

. 2 . n this approximation the spin-axis aligned compongntis

higher-order terms, but these will not be needed further on. . e ; :
simply caused by diffusion of sunlight from the body, without
any influence of heat conduction. On the contrary, the equatorial

2.1.4. Regular solution satisfying the boundary constraint componentgy andfy are influenced by heat conduction in the

. . ._body. Our solution also matches well the solution of Peterson
After having discussed the source term, we are ready to fin X

. ) ) @76). However, we did not need to compute the involvedPad
solution of the probleni{9) with the surface constrdint (10). Fir épresentation of the final force. As mentioned earlier, the global

we determine a general form of the solution which is regu'%oice of the mean temperatufe on the sphere is the main

throughqut thg body. ) ) source of this simplification.
The linearity of the heat conduction equatiéh (7) allows a

convenient separation of the variables. We may write

=1 for > 60,

2.2. Spheroidal bodies rotating around their axis of symmetry

AT (210, 6:0) = > ta(a;0,0) (" . (18)  Inwhat follows, we discuss generalization of the previous solu-
nez tion to the case of bodies with a more complex shape. Notably,

Substituting this Fourier representation intd (9), we obtainV\ée consider a class of the spheroids with equatorial radlius
. . ; nd polar radiuge R). The parametet may be both smaller
system of decoupled second-order differential equations for the : g
. . C L and larger than unity allowing us to treat both oblate and prolate
amplitudeg,,. The general solution, which is regular inside the . .
: , Spheroids. We relegate some basic results on the geometry of
body (i.e. forz’ — o0), reads

guadratic surfaces to the Appendix.

- !/
bn = e oxp ( V—inz ) ’ (19) 2.2.1. Heat conduction problem in a spheroid
with the constants,, to be determined by the boundary cont et us first describe the body’s rotation. Contrary to the uniform
straint [10). Easy algebra leads to rotation around a fixed axis which can be assumed for a spher-
ical body, the free rotation of an axisymmetric object is more
co = 1 (50 _ 1) (20) complicated. Generally, it consists of a proper rotation around
V2 4 the axis of symmetry which, in turn, precesses around a constant

UE ) = B on e (i) 1)

En direction in space. The thermal effects on a body whose axis of
V2 1420, 4202 2

symmetry precesses in space will be discussed in Sect. 2.3, and
for the moment we shall deal with the simpler case of a uni-
where),, = ©/n/2. form rotation around the axis of symmetry. This will allow us

Cn =
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to solve the problem analytically. In fact, most of the previous that the integration constants now must satisfy[{28), which
calculations remain unchanged. We shall just comment on a feields

differences. 1 1
First, we have the definition of the mean temperafiyeAs ., = —= <50 - M4> (33)
before, this quantity follows from the balance of the absorbed V2p 4
and re-radiated energy over one rotation cycle of the body en (14 X)) —idn _ &n ,
n = = n 5n ) 34
e ) T T 2n, 1202 s exp (i0n) , - (34)
—al, —P(0y) = SeaT,, . 25 _
“ /C—l ¢ (6o) “ (25) with \,, = ©/n/(2u?).

HereP(6,) is the geometric cross-section of the body when seen ] )
from a direction at an angk, from the axis of symmetry and 2-2-2- Diurnal Yarkovsky force on a spheroid

S is its surface area. Scalirig, by the reference temperaturegijyen the solution for the surface temperature derived above,

T’ we obtain we can now compute the total thermal recoil acceleration. Inte-
s (60) 1/4 . grating over the surface of the spheroid (Wit = sin 6 dfd¢

T — [ 2170 ] = — ufose) , (26) as before), we have

CV2 L s(e) V2

where s(e) is the surface-area scaling function given by thg= 7237\7/5 ad ey /dQ jiig; AT'n, , (35)

Eq. [A2) in the Appendix, and,,(z) (n = 1,2, 3,...) are aux- 2

iliary functions: wheren | is a unit normal vector to the surface of the body [see

Eq. [(Ad) of the Appendix]. Interestingly, this two-dimensional
Jo(z) = Vensin?z + cos?x . (27) integration can be worked out analytically as in the case of a

. h . for th spherical body. The thermal acceleration, projected onto the
Given t e expressmrﬂ]ZG) or the mean temperature, we Ngig; ectors of the non-rotating Y Z system, has components:
that the linearized boundary constralntl(10) for the temperature

L ’ 4 1 .
variationAT’ reads Py tify = —2ad sima, (I+X)+ z)\21 b (e) . (36)
AT’ 9 142\ + 2)\1

V2uRAT — © () =a A&, (28) 4
or' ), fz = —§a<I> cos by z(e) . (37)

vyith the source term\&’ = &’ - 1u*. The Fourier representa-\ye recall that
tion (13) of this source term is unchanged, but the coefficients

. 3/4
are now given by A = O [ s(e) ’ (38)
1 4, (6: 0) 2 12(0)
en(0,¢:00) = 5 74(0) (cosn +isinng) . (29) " and the two functions of in the right-hand sides of(86) and
read

Notice that we keep parametrization of the surface elementsq%)
the surface of the spheroid by the spherical anglésolatitude) Uxy(e) = §i 1+ 7? In L+nY\ 1 (39)
and¢ (longitude). The first two functions(6; 6o) of @) now >\~ — 4n2 | 2y 1—n ’
read 2

, Vi) = 5o [1 “n Gj”ﬂ . (40)
ag(0;6p) = — ((é* cos 6 cos By + e sin ¢, sin f sin 90) , (30) " " "

71T The two functiong) have been plotted in Figl 1. The equato-
a1(0;6p) = - {2 sin ¢, cos 6 cos O rial X andY force components are reduced by the correspond-

ing v xy factors in the case of oblate spheroids &ite versa
+¢” (¢s + sin ¢, cos ¢,) sin f'sin 90} - (1) This result is consistent with the intuitive idea that the normal
. ) ) unitvectors ; to the polar surface elements of oblate spheroids
and the auxiliary angle, is defined by are more aligned with th&-axis than the corresponding nor-
cos 6, (6,00) = —1 for < 6. mal vectorg on a sphere. On the contrary, ithe vectors_ to
L the equatorial surface elements lean toward the equatorial plane
= —e “ctgfctgfy  ford e (0-,604) (32) for prolate spheroids, and therefore contribute to enhancing the

=1 for6 > 6, equatorial components of the thermal force.
. ) However, when we try to decide whether the thermal force
with ctgf = Fe“tgbo. componentd(36) an@ (B7) are smaller or greater than those on

Because the heat conduction equatdn (9) is independent,afyhere. we should take into account two more factors:
the particular geometry of the body, the Fourier expansiah (18)
with coefficients given by[(19) is still valid. The only difference — the appearance of thg0g; e) factor in the\; parameter;
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Fig. 1.Non-sphericity factorg xy andy 2 vs. the flattening parameter

. Fig. 2. Curves corresponding to a constdgnty factor projected on

the plane defined by the solar tilt angle (smaller thart5°) and the
body’s flattening parameter. The values of xy label the different

— the equatorial radiug? of the spheroid appearing in thecUrves:{xy > 1 means that the thermal equatorial components are
definition of the® radiation force factor. larger than for a spherical body with the same massvaralversa

The latter item is related to the problem of the choice of tr O o= =T T -
sphere whose thermal effects should be compared with thc
for the spheroid. Of course, different such choices are possit
Hereinafter, bodies having the same mass willbe compared. F
vided the mean density is factorized, equal masses imply tt
the radius of the comparison sphere has téb€ R). Suppos- 3r
ing that the thermal parametér is sufficiently large, we can
approximate the rational function af in @8) by 1 (1 +i)/A;.  o°
Then, we conclude that the equatorial thermal force compone 65
fx andfy from (38) can be written as the corresponding forc
components on a sphefel23) multiplied by a numerical fact
Exvy. Ina similar way, we define a factgg for the third force 55
componentf;. Putting together the previous results, we have

3/4
] L T

€z = e 3Ygz(e). (42)

80
8T

60

Fig. 3. The same as in Fig. 2 but fép greater tham5°.

Figs.[2 and_B show contour plots of thgy factor in the

parameter plang, vs. the flattening parameter We note that to be a natural rotational mode for meter-sized asteroidal frag-
the maximum differences in the equatorial force componemtents, since the internal dissipation of energy is not efficient
occur forfy = 90°, when the diurnal effect itself is maximumenough to align the spin axis with the angular momentum vec-
[because ofin 0, factor in Eq.[(3B)]. The greatest mismodellingor in a short time. According to the theory of Burns & Safronov
(by a factor2 to 3) is observed wheareaches values as low ag1973) the typical time scale for such a dissipation process is
0.3 or as high as8. The&, factor has the same dependence aabout2 Byr (considering rather conservative values of the dissi-

e as the previously discussed functigg — see Figl}. pation parameter), whereas in the main asteroid belt collisions
transferring relatively large amounts of angular momentum typ-
ically occur every few Myr only, and for stony bodies shattering
impacts occur every few tens of Myr (Farinella et al. 1998). A

In this section we shall generalize the previous results to theneralization of the previous results to the tumbling rotation
case when the symmetry axis of the spheroid tumbles arowabe appears also important for another reason: as the spin axis
a fixed direction in space. Such a free-precessional state seemseps the precession cone, different parts of the surface are

2.3. Spheroidal bodies rotating around an arbitrary axis
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radiation flux through this element (scaleddyy) is

8/(97 ¢a 903 C) = R72— RiE(C) l'lJ_(a, ¢) . n0(907 C)
if not negative,
=0 otherwise, (44)

oblate i prolate spheroids
spheroids

which generalizes EJ._(12), valid for a spherical bday.
and Rf;E are the usual orthonormal rotation matrixes around
the y— and z-axes (the angle is specified by the index). The
simplicity of the solution for thermal effects from the previous
Sects. 2.1 and 2.2 is mainly based on the linearity of the heat
conduction equatior{9) and the boundary constrainis (10) or

™
N
LI S B I R A

ol v v v v by by e I (28). However, the exact periodicity of the solution, expressed

0.5 1.0 1.5 2.0 2.5 3.0 by the Fourier expansions of all the important variables [in par-
e ticular the temperaturg’ in Eq. (I8)] was an equally important
assumption. The ortonormality of the Fourier modes allowed us
to decouple the differential equations for thgamplitudes of
the temperature terms in Ef. {18). This second key property of
more efficiently illuminated by the radiation flux. One mighthe diurnal thermal effect solution is violated in the case of a
expect that a more uniform distribution of surface temperaturggnbling spin axis, because the precession frequeéngcy:= w
will be established, decreasing the amplitude of the thermal agrd the proper rotation frequengy; = —%772 cosTw - in gen-
celeration. eral are not commensurable with each other.
The orientation in Space of the reference frame rlgldly rotat- |n orderto keep our solution Simp|e enough' we shall adopt
ing with the body (whose-axis coincides with the symmetrya two-step simplifying approach:
axis) will be described by three Euler angles:

Fig. 4. &z vs. the flattening parameter

is th _ e ibing th ) 7 first, we shall neglect the proper rotation of the body, as-
— ¥ = wt Is the precession angle describing the motion o suming%nQ cos T < 1: then the rotation matriRiE(C) can

the projection of the symmetry axis on they” equatori_al be approximated by a unit, time independent matrix;
plane of the non-rotating reference frame, whasexis  _ ga00nd, we shall verify the validity of the above-mentioned

coincides with the a'ngEIar momentumlvector; A solution on resonance “slices” defined bys/vp —
— 0r = 7 = constant is the nutation angle between the sym- —Ly?cosT = —1/n, wheren is an integer number 1.

metry axis £) and theZ-axis of the non-rotating system;
— g is the angle of proper rotation. In the latter case the periodicity of the diurnal effect solution
that of the proper rotatiom(times the precession period).
tgough we shall not solve the problem in the most general
se, we believe that our results are rich enough to give an idea
out the role of non-sphericity effects for tumbling fragments.

To be consistent with the previous notations, we shall descri
the transformation between the two frames by a 3-2-3 seque
of individual rotations, meaning that the second rotation (
the constant nutation angle) is performed around thg-axis.
The Euler angles used in this paper thus differ slightly from the
classical set of Euler angles given in the 3-1-3 sequence. 2.3.1. Proper rotation neglected
Since the precession frequencyuistaking( = exp(iwt)

as before, the proper rotation velocity is In the first step of our approximation we disregard the proper

rotation of the body around its symmetry axis. We can then
ldog _ _C —A n? expand the insolation functioA&’ of the boundary condition

w dt c T T Ty T (43) (28) in the Fourier serie§ (13), with coefficients computed

(see e.g. Landau & Lifschitz 1960), whe€& and A are the numerically (forn # 0) by
principal moments of inertia around the axis of symmetry and 1 / d¢
I¢]=1

an equatorial axis, respectively, and for homogeneous spheraigd, ¢; 6p) = — &0, ¢;00,Q) . (45)

2mi (ntl

we have(C' — A)/C = 3 n*.
The general scheme outlined in Sect. 2.1 is unchanged, §fg (,, — () coefficient constrains, like in the previous discus-

cause it concerns the individual thermal histories of differegfy, the value of the mean temperatiife= u(6o; e, 7)/v/2.

surface elements of the body. What becomes more complicaigfl hajance between the total energy absorbed by the body over

is mainly the definition of the mean temperatdfand the ra- one nrecessional cycle and the amount of thermally re-radiated
diation flux termA¢&’. We shall now discuss these quantities iBnergy over the same period is expressed by

some detail.
Consider a surface elemeifi specified by spherical angles
f andg in the system rigidly rotating with the body. The external

d(cos 8)do

Ji(e) 80(93 ¢7 90) =0 ) (46)
2

J5(0)
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with the integration performed over the whole surface of tr 90T
body and:=y (0, ¢; 6y) given by

' 1 ac T, ' 1y

50(97¢790) - 2’/TZ cl=1 C |:5 (07¢7905C) 4:u
(47) 60
Egs. [46) and[47) provide thefactor appearing in the mean
temperature in the form =
. 1/4
1 (bose,7) = {W} ; (48) 30
s(e)

where the integrdl is given by

1+ va?
Z(t,00;¢€) / dx\/ @—c)e —a)° (49) 8

Here, we denoted = e?)/e? andcy = cos(fy + 7).
In general, the right- hand Slde 6f{49) should be computed rg. 5. Contour plot of thet xy function in the plane defined by the
merically, but in some particular cases it is integrable analytipin axis tilt~ from the axis of symmetry and the flattening parameter.
cally. For later use, we note that in the case of the configuratiBach contour line is labelled by the corresponding valugxaf. The

6y = 90° (solar direction normal to the rotation axis) we obtaifolar direction is assumed to be normal to the spin aijs{ 90°).
In the shaded area the proper rotation frequepgyis greater than

- 92 wE
I(r,m/25e) = %V1+VSiH2TE % 10
™ vsm- T
for e<1,  (50) {e?cos T [MReEyx — (1+ 1) ImEy ]
= 2 - F (\/ —vsin® 7') for e>1. (51) +sin7 [MReE; 7z — (14 A1) ImE; #]
™

2
Here E is the complete elliptic integral of the second kind. Fem [T+ M) ReBy + )‘IImEl’Y]} » (54)

Expressionsfor < 1ande > 1canbe obtained from each other

024
by means of the complex argument transformation of elllptréz a<I>e (cos TEp,z — ¢ sinTEp,x) (55)

functions: for the three thermal force components. The auxiliary vector
E (Zk) __E®) (52) Ouantitiests, are defined by
ie) Ve o
(see e.g. Byrd & Friedman 1971). Having pre-computed numé¥» (fo) = /d(COS 0) Ji(é)) en(0,¢;00)n (56)
2

ically all the previous functions, we can determine the thermal
force averaged over one precessional cycle in the non-rotatargl the thermal parameter coefficientreads
inertial system. The temperature of each surface element can be
expanded in the Fourier seri€s|18), with the amplitude functio s(e) 3/4
given by [19). The surface boundary constraint then yields tf?é { )]

integration constantg (B3) aid{34). Finally, the thermal force is
obtained by numerical integration BF{35) over the whole surfaQpviously, Egs.[(38) {(35) become equal ffol (36) (37) for

of the spheroid, with the unit normal vectar. of @&4) trans- 7 = 0 (so that the symmetry axis of the body coincides with the
formed into the non-rotating system using the rotation matfgtation axis). This property can be easily verified since in this

R3_R?2. After performing all the necessary algebra we obtallinit Re(E1 x) = Im(E) y) andRe(E1y) = Im(E; x).
Adopting the methodology of Sect. 2.1 to compare the ther-
2

2 e mal force component§ (53)[=_(b5) with the corresponding ther-
fX = ——ad T oy o2 X . _
3 142X\ +2)2 mal force acting on a sphere, we define the “correction fac
tors” Exy andéz by: Exy = fx/f¥"C = fy/f"" and
€2 = fz/ 3", A sufficiently large value of the thermal pa-
+sin7 [(1 4+ A1) ReEq,z + MImE; z] rametel© is assumed and bodies having the same total mass are
9 compared. Fid.]5 shows contour curveg of- in the planer vs.
—¢" aReELy = (14 A1) ImEl’Y}} 03 asan example, we have assumed the special configuration
e? 6o = 90° in which the thermal equatorial force components are
fr = _50@ m X maximum. The results for = 0 match those fof, = 90° in

’7' 90, (57)

{62 cosT [(1+ A1) ReEy x + M ImE; x|
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Fig.[3. A reversal in the magnitude of the equatorial forcecon 20 T T T T T[T T T T[T T T T T T T T[T T
. X oblate rolate spheroids
ponents compared to those acting on a sphere at large value A spheroids 2 P P
7 has to be noted. For small valuesofind oblate spheroids
(e < 1), for instance, the surface normal vectars in the
integral [3%) are preferentially directed along theaxis, thus 1.5
decreasing the amplitude of the equatorial force componerE"
The corresponding value of tifg y factor is smaller than unity.  xY s i
The opposite occurs for valuesot~ 90° (symmetry axis per- 10 \ i
pendicular to the rotation axis): in this case the surface normr 1.0 N R
vectorsn are preferentially tilted toward the equatorial plane r \10 i
thus contributing efficiently to théfx, fy ) force components. 5
The correspondingxy factor is larger than unity. Obviously,
the situation is just opposite in the case of prolate spheroi g5l v v v Lo v Lo Lo by |
(e > 1). 0.5 1.0 1.5 2.0 2.5 3.0

The shaded areas in Fig. 5 correspond to the configuratic e
where the ratio betwgen .the pro;l)er rotatiqn freque_ncy and Yﬂ& 6. &%y vs. the flattening parameterfor somen : 1 “resonance
precession frequencyx /1p = —57* cosT is larger in abso- gjices The degree of the resonance labels the curves. The dashed
lute magnitude thag’s. In this region our simplified solution, jines correspond to the simple approximation when the proper rotation
neglecting the proper rotation of the body, may not be justfthe body around its symmetry axis is neglected (results from Fig. 5),
fied. The large value of the thermal paraméaneans that the while the solid lines account for the proper rotation.
thermal memory time scale is much longer than the rotation pe-
riod. In this situation, one might expect that the proper rotatic ;. 75 11—
could contribute to smearing the surface temperature, decre T
ing the amplitude of the thermal effects. In the next paragrap
we assess briefly the importance of such phenomena.

1.50

2.3.2. The influence of the proper rotation

In the most general case, when the proper rotation apgles 1.25

variable, we note that the scaled radiation fluX (46) may not b
periodic function. This would violate the basic assumptions I
our solution, as discussed above. In order to k&eperiodic, 1.00 E—o—i —————— % i T
we shall investigate the thermal effects in the “resonant” cas: l l
¢p/Yr = —1/n, wheren is an integer. We believe that these
cases are representative enough to draw generalconclusiorp ;g Lo Lo v b b B n b
In the resonant situations the periodicity &f and of the 0.5 1.0 1.5 2.0 2.5 3.0
whole solution is recovered. The basic time scale is now giw e
by the proper rotation cycle, over which the body undergoeﬁ:i . 7.Mean value of the xy -factor over a random sampling of the
precessional cycles. All the ”?Cessary formulee for Compuuﬂliation angle and the solar tilt anglé, (500 values considered), as a
the thermal force have been given above. However, as the alg@ztion of the flattening parameterThe proper rotation of the body
bra is rather lengthy, we shall not give here the final results f@ieglected. Error bars correspond to the Gaussian standard deviation.
the thermal force components explicitly.
Fig[8 shows the:, factor vs. the flattening parametefor
three resonance conditions:= 2, 5, 10. The dashed lines are
replotted from Fid b to allow a comparison with the case whén3.3. Results averaged over the orientation of the spin axis in
the proper rotation is neglected, while the solid lines correspond  space

to the complete solution. At thie: 10 resonance there is a very . . . :
in the previous discussion we have compared the exact solution

good agreement between the two results. At the next “slice”, . . ;
corresponding to thé : 5 resonance, the agreement is still ac>" the diumal Yarkovsky force on spheroids with the corre-

ceptable, whereas in the case of the2 resonance (precessionSpondlng solution for a sphere using a special configuration,

frequency twice as large as the proper rotation frequency) tisto ?]ay, V\I'e hd?‘d f|>_<ed a %arr?a:)la(rjv'alue_of ﬂa_eang(lje/ f
observe a significant difference. Interestingly, in the exact gtween the solar direction and the body’s spin axis and/or o

lution the force components are larger than the correspondf QT angle between the symmetry and the Spin axes. In ,reallty,
components from the simplified solution. these geometric parameters change owing to the body’s revo-

lution around the radiation source (the Sun) and the collisions
with other asteroid fragments. In both cases the corresponding
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time scale is typically much shorter than the period over which The analysis of this paper suggests that non-sphericity ef-
the orbital evolution is studied by numerical integrations. Theréects should not be seen as a very serious concern in modelling
fore, we might be interested in averaging kg~ factor over all the diurnal Yarkovsky perturbations. Therefore, in a forthcom-
the possible configurations of tfi@, andr) angles. The mean ing paper we plan to apply the thermal model for the diurnal
values of the xy factor over a sample &00 random values of Yarkovsky effect on a sphere as derived in paper | to a long-
the angles together with the corresponding Gaussian standard integration of fragment orbits. Several important issues
deviations are shown in Fig. 7. In contrast to the previous resultslated to the delivery of meteorites and asteroidal fragments to
we get a much better agreement between the diurnal Yarkovshg inner Solar System will be considered.

force computed for spheroids and for a sphere. The peak differ-

ences are of the order 8%, but in most cases are smaller tharcknowledgementsThe author thanks M. Biofor his help in draw-
20%. As expected, the dispersion of the results — indicated Ing Fig. 5, W.F. Bottke and P. Farinella for helpful discussions and

the standard deviations — is larger for more elongated bodies:A. Lebofsky for his suggestions that improved the final version of
the paper. Partial support from the Czech Grant Agency under contract

_ No. 205/96/K119 is also acknowledged.
3. Conclusions

The main results of this paper may be summarized as fOHOW,ﬁbpendix A: basics of spheroidal geometry

— The diurnal Yarkovsky recoil force has been computed @ the appendix we summarize some basic geometrical relations
bodies whose shape lacks a spherical symmetry, that is ffaded in the main text. We consider an ellipsoid of rotation
amsymmetncal s.,phe.ro!ds with an qrbnrary flattening. Thfcalled a spheroid above) with equatorial radiiand polar ra-
only important simplifying assumption of our approach igjs (. ). The parameter represents the geometric flattening
that the average size of the body must be much larger thanhe bodye € (0, 1) for oblate spheroids and> 1 for pro-
the penetration depth of the thermal diurnal wave. The 1akte spheroids. We need not introduce ellipsoidal coordinates.
ter spans millimeter to centimeter interval in the typicakather, we keep the parametrization of the surface elements by
astonomical applications (basalt meteoroids, lunar rockge cojatitude) (measured from the axis of symmetry) and the
regolith-covered fragments of the asteroids, etc.). longitude angley (measured in the equatorial plane from an ar-

— Theresults are derived in a closed analytical formif the bo trary origin). The surface elemed§ on the spheroid is given
rotates around its axis of symmetry. In the more general ¢

of afree-precessing object, the results are given numerically.

— Our main goal has been that of comparing the diurna}g _ 22 J4(0)
Yarkovsky force acting on an irregularly shaped body with® = € J(0)
that acting on a sphere, since this shape corresponds to a
commonly used approximation in the long-term numericaith the auxiliary functions/,, () given by Eq.[(2I7) above.
integration schemes for asteroidal fragment orbits. Our re- The total surface area of the spheroid is then givers by
sults can be used to assess the corresponding mismodeHing? s(e), where
of the Yarkovsky perturbations found from these integra-

sin 0d0d , (A1)

. 2 1
tions. s . ) s(e) [1 +Sm (+ 77)} .
— Ourresultsindicate that, depending on the geometric param- 2 2n 1—-n

eters (degree of flattening, nutation angle etc.), the simple . .

spherical-shape approximation for the diurnal YarkovsKyere, we defineg = /1 — e2. Note that in the case of prolate

force provides results mismodelled up to a factoz of 3. SPheroids ¢ > 1), n becomes imaginary; in this case we can
— However, when an average over all possible pole orientése the following identity, holding for any complex number

tions of a tumbling body and all possible solar directio 1

during its revolution around the Sun is performed, there {sln[(1 + z)/(1 — 2z)] = —arctg(iz) . (A3)

a much better agreement between the thermal force actihg !

on a sphere and our results for spheroids. This suggests #hainit vector normal to the surface element at colatitddad

neglecting the influence of non-sphericity effects may naingitude¢ can be written as

degrade significantly the results of long-term orbital inte-

grations including the diurnal Yarkovsky effect. e sin 6 cos ¢

(0,9) = e2sinfsing | . (A4)

J1(0) cos

(A2)

n

Of course, there is the possibility that the resulting thermalL
force may be significantly different for bodies of much more
irregular shape than those studied in this paper. This issue isbigally, the geometric cross-sectidn of the spheroid when
yond the scopes of the current study and may be require furtseen from a direction at an anglgfrom the axis of symmetry.
work in the future. However, it seems very likely that the resulsimple algebra yields
will not differ too much in the most general case of a tumbling
spin axis, as discussed above. P(0) = wR? Jx(o) - (A5)
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