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ABSTRACT

Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of
the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two
planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the
resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an
analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV
terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The
resonant TTV period is proportional (m/M*)

−2/3, where m and M* are the planetary and stellar masses. For
m = 10−4M*, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The
amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes
of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships
discussed in the main text can be used to aid the interpretation of TTV observations.
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1. INTRODUCTION

Photometric observation of transits is one of the most
powerful methods of planet detection. This method relies on a
possibility that, if the planet’s orbit is viewed nearly edge-on,
the planet may repeatedly transit over the disk of its host star
and periodically block a small fraction of the starlight. Thus, by
monitoring the host star’s brightness, the planet’s presence can
be revealed by a small dip in the photometric light curve. The
main properties of the planet, such as its physical radius and
orbital period, can be inferred from transit observations.

The spacing of transit light curves would be exactly the same
over the course of observations if a planet moved on a strictly
Keplerian orbit. Several dynamical effects, however, can
produce deviations from the Keplerian case and induce transit
timing variations (TTVs). TTVs were originally proposed as a
nontransiting planet detection method (Miralda-Escudé 2002;
Agol et al. 2005; Holman & Murray 2005), but they have found
more use in validating the transiting planet candidates from
NASA’s Kepler mission (e.g., Holman et al. 2010; Lissauer
et al. 2011). Only a handful of nontransiting planets so far have
been detected and characterized from TTVs (e.g., Nesvorný
et al. 2012, 2013).

Significant progress has been made in the theoretical
understanding of the various dynamical causes of TTVs. These
efforts were pioneered by Agol et al. (2005). Heyl & Gladman
(2007) focused on a long-period interaction between planets
and showed that the apsidal precession of their orbits can be
detected only with a long TTV baseline. Nesvorný &
Morbidelli (2008), on the other hand, developed a general
analytic model for short-period TTVs and showed that they can
be used, under ideal circumstances, to uniquely determine the
mass and orbital parameters of the interacting planets.

Explicit analytic formulas for short-period TTVs are now
available for zeroth- (Agol et al. 2005; Nesvorný &
Vokrouhlický 2014; Deck & Agol 2015) and first-order terms
(Agol & Deck 2016) in planetary eccentricities. The important
case of near-resonant TTVs was highlighted in Lithwick et al.
(2012) for the first-order resonances and in Deck & Agol

(2016) and Hadden & Lithwick (2016) for the second-order
resonances. The near-resonant TTV signal is a special case of
the short-periodic variations when one harmonic becomes
amplified because of a proximity of the system to a mean
motion resonance. Vokrouhlický & Nesvorný (2014) consid-
ered a case of co-orbital planets and showed that co-orbital
TTVs are expected to have a characteristic sawtooth profile (for
horseshoe orbits).
While the analytic works cited above cover a wide range of

dynamically plausible planetary configurations, none of them
(except for Agol et al. 2005) considered the case of a fully
resonant planetary system, where two (or more) orbits are
inside a mean motion resonance (e.g., 2:1, 3:2). This case is
important because planetary migration in a protoplanetary gas
disk should bring early planets into resonances (e.g., Masset &
Snellgrove 2001). Indeed, many known planetary systems are
consistent with having resonant orbits (e.g., Winn & Fab-
rycky 2015). This motivates us to consider the resonant case.
Our main goal is to understand how resonant TTVs arise and
how their period and amplitude scale with planetary
parameters.
The resonant case has not received much attention in the

TTV literature so far, at least in part because the resonant
interaction of planets is complex and not easily amenable to
analytic calculations. The short-periodic or near-resonant TTV
signals, for example, can be computed with the standard
methods of perturbation theory, where the unperturbed
(Keplerian) motion is inserted in the right-hand side of the
dynamical equations, and a linear variation of the orbital
elements is obtained by quadrature. This method fails for the
fully resonant orbits mainly because the resonant dynamics is
nonlinear.
Here, we take advantage of recent advances in the theoretical

understanding of resonant dynamics (e.g., Batygin &
Morbidelli 2013a; hereafter BM13) and derive approximate
formulas for TTVs of a resonant pair of exoplanets. In
Section 2, we first give a summary of resonant TTVs. The goal
of this section is to highlight the main results of this work.
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Sections 3 and 4 explain how we obtained these results. We
first show how a fully analytic solution can be obtained for a
first-order resonance (Section 3). We then proceed to expand
the exact solution in the Fourier series and explicitly derive the
periods and amplitudes of the leading TTV terms (Section 4).
The application of these results to real planetary systems is left
for future work.

2. SUMMARY OF RESONANT TTVS

Consider a planar system of two planets with masses m1 and
m2 orbiting a central star with mass M*. The two planets
gravitationally interact to produce TTVs. The TTV signals of
the two planets, δt1 and δt2, can be approximated by

( ) ( ) ( )d dl d= - + +t
n

h e
1

2 , 1j
j

j j j

where nj is the mean orbital frequency of planet j,
v=h e sinj j j, λj is the mean longitude, ej is the eccentricity,

and ϖj is the longitude of periapsis. The observer is assumed to
see the system edge-on and measures angles λj and ϖj relative
to the line of sight. Expression (1) is valid for small orbital
eccentricities and small variations of the orbital elements δλj
and δhj (Nesvorný 2009).

Here we consider a case with two planets in a first-order
mean motion resonance (such that ( )-n n k k 11 2 with
integer k) and proceed by calculating the variations of orbital
elements that are due to the resonant interaction (Sections 3 and
4). The final expressions are given as the Fourier series with
harmonics of two basic frequencies. As for δλj we have
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*L = m GM aj j j , aj is the semimajor axis, G is the gravita-
tional constant, Pτ is the period of resonant librations in scaled
time units (Pτ ∼ 2–4 in most cases of interest; Section 3.7), AΨ

is the amplitude of the resonant oscillations of action Ψ

(ranging from zero for an exact resonance to >1, where the
approximation used to derive Equation (2) starts to break
down), f is the frequency of resonant librations, and 0 � ò < 1
encapsulates the emergence of higher-order harmonics of f.3

The resonant frequency f is given by
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where f1 and f2 are the resonant coefficients of the Laplacian
expansion of the perturbing function (Table 1). The scaling of

the resonant period, P = 2π/f, with different planetary
parameters is discussed in Section 3.7. For practical reasons,
Equation (2) has been truncated at the first order in ò. Higher
orders in ò and higher harmonics of the libration frequency can
be computed using the methods described in Section 4.
The second term in Equation (1) is related to the variation of

eccentricities and apsidal longitudes of the two planets. In the
most basic approximation (Section 4.3), it can be written as
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where Pj = 2π/nj are the orbital periods, θ0 is the initial value
of ( )q l l= - -k k 12 1, and fθ is the frequency of θ defined in
Equation (65). In the libration regime, fθ = f. The resonant
TTVs can therefore be understood as a sum of the librational
variations given in Equation (2) and a slower modulation of the
TTV signal given in Equation (5). In Equation (5), Cu,0 is a
coefficient of the order of unity (Equation (67) in Section 4.3).
For small libration amplitudes, YY A C 2u,0 0 , where Ψ0 is
the initial value of the resonant action Ψ defined in
Equations (21) and (24). This means that, unlike in
Equation (2), TTVs from the variation of eccentricities and
apsidal longitudes do not vanish when AΨ = 0. The dependence
of the TTV amplitude on planetary masses arises from A, B,
and η1 in Equation (5), where = LA f1 1 , = LB f2 2 , and
η1 = ν/C.
Two main approximations were adopted to derive Equa-

tions (2) and (5). In the first approximation, we retained the
lowest-order eccentricity terms in the resonant interaction of
planets. In the second approximation, we assumed that the
libration amplitudes are not very large and expanded the exact
solution in the Fourier series. Both these approximations are
tested in Section 5. Here we just illustrate the validity of the
Fourier expansion for small libration amplitudes (Figures 1
and 2).
Let us briefly consider an application of our results to the

TTV analysis. We assume that the photometric transits are
detected for planets 1 and 2 and that the orbital periods inferred
from the transit ephemeris are such that the orbital period ratio

( )-P P k k 12 1 with small integer k (indicating near-
resonant or resonant orbits). Furthermore, TTVs are assumed
to be detected for both planets. To be specific, let us consider a

Table 1
Coefficients f1 and f2 for Different Resonances

Res. αres f1 f2

2:1 0.630 −1.190 0.428
3:2 0.763 −2.025 2.484
4:3 0.825 −2.840 3.283
5:4 0.862 −3.650 4.084
6:5 0.886 −4.456 4.885
7:6 0.902 −5.261 5.686

Note. In the second column, we report the semimajor axis ratio for an exact
resonance. The coefficient values are given for α = a1/a2 = αres.

3 Ideally, it would be useful to give the resonant TTV formulas in terms of the
orbital elements, but these expressions are excessively complex. Here we
therefore opt for expressing TTVs in terms of the orbital elements, AΨ and Pτ.
The dependence on AΨ is linear, and Pτ admits only a narrow range of values in
the libration zone.
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realistic case with the available TTV data spanning several
years of observations, which is not long enough to resolve the
frequencies related to the apsidal precession of orbits.

The first step of the TTV analysis is to apply the Fourier
analysis to the TTV data. This may reveal that the TTV signal
contains a basic period. In principle, this period can be one of
the following two periods: (1) the superperiod defined as

( ( ) )= - - -P k P k P1s 2 1
1 (e.g., Lithwick et al. 2012) or (2)

the resonant libration period P = 2π/f with f defined in
Equation (3). In the first case, the system is not in the libration
regime of the resonance, and TTVs can therefore be interpreted
using the expressions appropriate for the near-resonant
dynamics (Lithwick et al. 2012; Agol & Deck 2016). The
results described in this work apply in the second case.
Section 3.7 explains how the libration period can be used to
constrain planetary masses. Specifically, P ∝ (m/M*)

−2/3

(Agol et al. 2005; Holman et al. 2010), and therefore larger
planetary masses imply shorter TTV periods. For the 2:1
resonance with =P 101 days and m1 ; m2 = 10−4M*, for
example, the libration period is P ; 4.5 years (Section 3.7).

In the next step, it can be useful to check if the Fourier
analysis of the TTV data provides evidence for harmonics of
the basic period. If that is the case, this can indicate that the
libration amplitude is relatively large. A comparison of the
amplitudes of different harmonics can then be used to constrain
the parameter ò in Equation (2), which is related to the libration
amplitude via the equations reported in Appendix A.

We then proceed by comparing the TTV amplitudes of the
two planets. From Equation (2) we have that

[( ) ]dl dl - - k k m m11 2
2 3

2 1. The TTV amplitude ratio
therefore constrains the ratio of planetary masses (Agol et al.
2005). Figure 3 shows how the TTV amplitudes depend on
planetary masses. For m1 = m2, we obtain from Equation (2)
that the TTV amplitudes of the inner and outer planets, A1 and
A2, are

( )

p p

p p
a

=
-

=
-

t

t

Y

Y

A
P P A

k

A
P P A

k

m

m

2 1
,

2 1
, 6

1
1

2
2 1

2

where we denoted α = a1/a2. This means that the TTV
amplitude of the inner planet is independent of the masses,
while that of the outer planet constrains m1/m2. For
P1 = 10 days, Pτ = 3, and AΨ = 1, ( )= -A k1.52 11 days
for a k:( -k 1) resonance. A similar analysis can be performed
for m1 ? m2.
In addition to the dependence on masses, the TTV

amplitudes (linearly) depend on the libration amplitude AΨ.
We therefore expect that some degeneracy should exist
between the planetary mass and libration amplitude, with large
TTV amplitudes being produced either by large masses or large
libration amplitudes. This degeneracy can be broken if the
libration frequency harmonics are detected, providing

Figure 1. Demonstration of the validity of the analytic TTV formulas obtained in this work. Here we set *= = -m m M101 2
5 with M* = MSun. The initial orbital

elements were =a 0.1 au1 , a2 = 0.13115 au, e1 = e2 = 0.02, λ1 = π, λ2 = 0,ϖ1 = 0, andϖ2 = π. This orbital configuration corresponds to the libration regime in the
3:2 resonance (k = 3). The upper (lower) panel shows the results for the inner (outer) planet. The green and blue lines were computed by numerically integrating the
differential equations corresponding to the resonant Hamiltonian (9) and (10). The black lines were obtained from the analytic TTV expressions (1) and (2) and a
generalization of (5) derived in Section 4.3. From left to right, the panels show TTVs from δλj and δhj and their sum from Equation (1). The validity of the analytic
model is excellent in this case because the resonant amplitude is relatively small (AΨ ; 0.65 with δ = 2.36 and Ψ0 = 3.01; see Section 3).
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constraints on the libration amplitude, or if the measured TTV
signal also contains short-period (chopping) terms (e.g.,
Nesvorný et al. 2013). A detailed analysis of this problem is
left for future work.

3. ANALYTIC MODEL OF RESONANT DYNAMICS

Here we discuss a Hamiltonian model of the resonant
dynamics. Our approach closely follows the work of BM13.
We take several shortcuts to simplify the reduction of the
Hamiltonian to an integrable system. Then, in Section 3.6, we
present an exact analytic solution. This solution is used in
Section 4 to derive Equations (2) and (5).

3.1. Hamiltonian Formulation of the Problem

The Poincaré canonical variables of two planets orbiting
their host star are denoted by (r r r p p p, , ; , ,0 1 2 0 1 2). The
coordinate vector r0 defines the host star’s position with
respect to the system’s barycenter. Vectors r1 and r2 are the
position vectors of the two planets relative to their host star.
The momentum p0 is the total linear momentum of the system
( =p 00 in the barycentric inertial frame). Momenta p1 and p2
are the linear momenta of the two planets in the barycentric
inertial frame. The Poincaré variables are canonical, which can
be demonstrated by calculating their Poisson brackets.

Using the Poincaré variables, the differential equations
governing the dynamics of the two planets can be conveniently
written in a Hamiltonian form, where the total Hamiltonian is a
sum of the Keplerian and perturbation parts,   = +K per,

with
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Here we denoted *= +M m Mj j and the reduced masses

*m = m M Mj j j, where j = 1 and 2 stand for the inner and outer
planet, respectively.
We assume that the planets are near or in a first-order mean

motion resonance such that the ratio of their orbital periods is
( )-P P k k 12 1 for some integer k � 2. In terms of the

osculating orbital elements, we have
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where e1 and e2 are the orbital eccentricities, λ1 and λ2 are the
mean longitudes, and ϖ1 and ϖ2 are the longitudes of
pericenter. In Equation (10) we only retained the two most

Figure 2. Same as Figure 1 but with m1 = m2 = 3 × 10−4 M*, M* = MSun, a1 = 0.1 au, a2 = 0.132 au, e1 = e2 = 0.05, λ1 = π, λ2 = 0, ϖ1 = 0, and ϖ2 = π. This
corresponds to AΨ ; −0.65, δ ; 1.38, and Ψ0 ; 1.96 (Section 3). The periods are shorter in this plot than in Figure 1 because the two planets were given larger
masses.

4
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important resonant terms and the lowest (first-order) eccen-
tricity power. This expression is thus valid only near a specific
resonance and for low orbital eccentricities of both planets. The
planetary orbits are assumed to be in the same plane such that
all inclination-dependent terms vanish.

The coefficients f1 and f2 are functions of the semimajor axis
ratio α = a1/a2 < 1 and can be written as

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

a
a

a

a
a

a
d
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where ( )( ) ab k
1 2 are the Laplace coefficients, D = d/dα, and dk,2

is the Kronecker symbol (e.g., Brouwer & Clemence 1961).
The last term in the expression for f2 only appears if k = 2 (2:1
resonance). The Laplace coefficients were computed using the
recurrences described in Brouwer & Clemence (1961, Sections
15.7 and 15.8). Their values are reported in Table 1.

3.2. Resonant Variables

The resonant Hamiltonian discussed in the previous section
needs to be written in canonical variables. The standard choice
is the Delaunay elements

( ) ( )

m l

g v

L =

G = L - - = -
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e
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j j j j j
2

Note that ( )G L e1 2j j j
2 for small ej. The elements (Λj, Γj) are

the canonical momenta, and (λj, γj) are the conjugated
canonical coordinates.

The resonant Hamiltonian  written in terms of the
Delaunay elements has four degrees of freedom (dof). Using
canonical transformations, we will reduce it to an integrable
one-dof system. We first perform a canonical transformation to

the resonant canonical variables defined as
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When the new variables are inserted in Equations (9) and (10), it
becomes clear that the resonant Hamiltonian depends on σ1 and
σ2, but not on λ1 and λ2. Therefore,  l= -¶ ¶ =dK dt 0j j ,
and both momenta K1 and K2 are the new constants of motion.
By summing them, we find that + = L + L - G - GK K1 2 1 2 1 2

is the total angular momentum of the system. Also,
( ) ( )+ - = L + - L =kK k K k k1 1 const.1 2 1 2 implies that

any small changes of the semimajor axes, δa1 and δa2, must
be anticorrelated and have relative amplitudes such that

( )d d a- -a a k m km11 2 res
1 2

2 1, where we denoted
[( ) ]a = -k k1res

2 3.

3.3. Approximation for Small Semimajor Axis Changes

The transformation to the resonant canonical variables
produced a two-dof Hamiltonian ( )  s s= G G, ; ,1 2 1 2 . In
the next step, we assume that any changes of the semimajor
axes of planets are small. Specifically, we write * d= +a a aj j j,
where *aj is some reference value and *d a aj j , insert this
expression into the Keplerian part of the Hamiltonian
(Equation (9)), and expand it in powers of δaj. The first- and
second-order terms in δaj are retained. We then use

* *d d= L La a 2j j j j and rewrite all expressions in terms of *Lj

and δΛj.
4 Finally, we substitute *dL  L - Lj j j and drop all

(dynamically unimportant) constant terms. This substitution is
useful because it allows us to work with Λ1 and Λ2 instead of
their variations δΛ1 and δΛ2. Finally, we express K in terms
of the canonical variables defined in Equation (13). This leads

Figure 3. TTV amplitude from δλj (Equation (2)) as a function of m2/M*. Here we assumed that P1 = 10 days, Pτ = 3, and AΨ = 1, and we computed the TTV
amplitude for several different values of m1/M*: 10

−6 (solid lines), 10−5 (dashed lines), 10−4 (dot-dashed lines), 10−3 (dotted lines). Panels (a) and (b) show the
results for the 2:1 and 3:2 resonances, respectively. The green (blue) lines show the amplitude of δt1 (δt2).

4 A general result can also be obtained by directly performing the Taylor
expansion in * dL = L + Lj j j.
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Here we denoted *=n GM aj j j
3 and * *mL = GM aj j j j . The

quantities nj, ns, and ν are constant parameters. Note that ns is
related to the so-called super frequency, which is the expected
frequency of the TTV signal for a pair of near-resonant planets
(e.g., Lithwick et al. 2012). In addition to the usual term,

( )- -kn k n12 1, here ns also includes a correction that is a
second order in the eccentricity (through its dependence on K1

and K2).
As for per in Equation (10), we have that = G Le 2j j j for

small eccentricity. In addition, because per is already small,
we do not need to retain terms proportional to δaj (thus

*L  Lj j ). The perturbation function then admits the following
form:
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1 2

2
1 1 2 2

where we introduced constants *= LA f1 1 and *= LB f2 2 .

3.4. Reducing Transformation

The Hamiltonian in Equations (14) and (16) has two degrees
of freedom. It can be reduced to one dof by the following
canonical transformations (Sessin & Ferraz-Mello 1984;
Henrard et al. 1986; Wisdom 1986). First, we move from
variables (σ1, σ2; Γ1, Γ2) to (y1, y2; x1, x2) such that
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Second, we perform a reducing transformation to the new
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A B
v

Ay By

A B

u
Bx Ax

A B
v

By Ay

A B

, ,

, . 18

1
1 2

2 2
1

1 2

2 2

2
1 2

2 2
2

1 2

2 2

And last, we introduce new polar variables (f1, f2; Φ1, Φ2)
such that

( )
f f

f f

= F = F

= F = F

u v

u v

2 cos , 2 sin ,

2 cos , 2 sin . 19

1 1 1 1 1 1

2 2 2 2 2 2

It can be shown that G + G = F + F1 2 1 2. Therefore, after
dropping the first constant term in Equation (14) and rewriting

Equation (16) in the new variables, the Hamiltonian becomes

( ) ( ) ( ) n f= F + F - F + F - Fn C 2 cos , 20s 1 2 1 2
2

1 1

where we denoted *= +C Gm m A B a1 2
2 2

2 . Notably, the
new Hamiltonian (20) is independent of f2, and the canonical
momentum Φ2 is therefore a new constant of motion. That is
the magic of the reducing transformation.
The momenta Φ1 and Φ2 defined by the transformations

discussed above can be expressed in a compact form:

∣ ∣

∣ ∣ ( )

F =
+
+

F =
-
+

Az Bz

A B
Bz Az

A B

1

2
,

1

2
, 21

1
1 2

2

2 2

2
1 2

2

2 2

where s= + = Gz x ıy ı2 expj j j j j. Condition Φ2 = const.
thus defines a circle in the plane of complex variables z1 and z2
and requires that -Bz Az1 2 lies on the circle at any time. Also,

( )f = +Az Bzarg1 1 2 and ( )f = -Bz Azarg2 1 2 , where arg(z)
denotes the argument of z.

3.5. Final Scaling

The Hamiltonian (20) depends on parameters ns, ν, and C.
We rescale Φ1 and time to bring the Hamiltonian to a simple
form:

( ) ( ) d y= - Y - - Y2 cos , 222

where the parametric dependence is expressed by a single
parameter:

( )d h
n

= - F
⎡
⎣⎢

⎤
⎦⎥

n

2
231

2 3 s
2

with h n= C1 . Here, ψ = f1, and

( )hY = F . 241
2 3

1

The Hamiltonian equations are

( ) ( )y
t

d y=
¶
¶Y

= - Y - -
Y

d

d
2

1

2
cos , 25

( )
t y

y
Y

= -
¶
¶

= - Y
d

d
2 sin , 26

where τ relates to normal time t by

( )t h= t 272
1 3

with η2 = νC2. When a solution of Equations (25) and (26) is
found, the scaling parameters η1 and η2 can be used to map the
solution back to the original variables.
The Hamiltonian (22) and the corresponding Equations (25)

and (26) have been extensively studied in the past. They are
equivalent to the second fundamental model of resonance
(Henrard & Lemaître 1983) and to the Andoyer model
discussed in Ferraz-Mello (2007). Here we first consider the
dynamical flow arising from this Hamiltonian and its
dependence on δ. In the next section, we show that
Equations (25) and (26) have an exact analytic solution in
terms of the Weierstrass elliptic functions.
The equilibrium points of Equations (25) and (26) control

the general structure of the dynamical flow. Since dΨ/dτ = 0
implies that y =sin 0 in (26), the equilibrium points occur for
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ψ = 0 or π. The equilibrium values of Ψ are obtained from dψ/
dτ = 0, which leads to a problem of finding the roots of a cubic
equation d dY - Y + Y - =2 1 8 03 2 2 . There is only one
(stable) equilibrium point for ( )*d d = 27 32 0.9451 3 .
This equilibrium point is located at ψ = π and 0 < Ψ < 1.26
(Figure 4). The dynamical flow around the equilibrium point is
simple. When projected to the ( )y yY Ycos , sin plane,5 the
trajectories are concentric, slightly deformed circles centered
on the equilibrium point (Figure 5(a)). Here, Ψ changes only
slightly during each cycle, and ψ circulates in the clockwise
direction for most initial conditions except for the ones located
very close to the equilibrium point, where ψ oscillates
around π.

For δ = δ*, the stable equilibrium point is already
substantially displaced from the origin. The dynamical
transition is heralded by the appearance of a cusp trajectory
(shown by a thin line in Figure 5(b)). Three equilibrium points
appear for δ > δ*, two of which are stable and one is unstable.
The unstable equilibrium point is traversed by a separatrix
(shown by thick lines in Figures 5(c) and (d)), which surrounds
the truly resonant trajectories for which ψ librates around π.
The stable equilibrium point in the center of the resonant island
is a smooth extension of the equilibrium point from δ < δ* to
δ > δ*. It is located at ψ = π and Ψ = Ψeq, where Ψeq increases
with δ (Figure 4). For large δ, Ψeq ; δ (Henrard &
Lemaître 1983).

3.6. Exact Analytic Solution

A rearrangement of Equations (25) and (26) shows that the
momentum Ψ satisfies

( ) ( )
t
Y

= Y⎜ ⎟⎛
⎝

⎞
⎠

d

d
f , 28

2

with the right-hand side being a quartic polynomial:

( ) ( )Y = Y + Y + Y + Y +f a a a a a4 6 4 . 290
4

1
3

2
2

3 4

The coefficients are

[ ]

[ ( )]

[ ] ( )

d

d

d d

d

=-
=

=- +

= + +

=- +

a
a

a h

a h

a h

1,
,
1

3
3 ,

1

2
1 2 ,

, 30

0

1

2 0
2

3 0
2

4 0
2 2

where ( ) yY = h,0 0 0 is the conserved energy, and (Ψ0, ψ0)
is the initial condition. Equation (28) admits a general
analytic solution (see Whittaker & Watson 1920, Section
20.4):

( )

( ) ( )

( )

( )



t

t t t t

t t

Y = Y

+
Ã¢ - + Ã - - +

Ã - - -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

f
C C C

f

C C
f

2 24 24

2
24 48

,

31

0

0 0
1

0
2 3

0

0
2

2
4

0

where Ψ(τ0) = Ψ0, f0 = f(Ψ0), ( )( )= YC fk
n

0 is the nth
derivative of f at Ψ = Ψ0 (n = 1, K, 4), and [ ] y= sgn sin 0 is
the sign function (1 for y >sin 00 and −1 for y <sin 00 ). The
time dependence of the solution is given in terms of the
Weierstrass elliptic function ( )Ã z and ( ) ( )Ã¢ = Ãz d z dz, whose
invariants are

( )
= - +

= + - - -

g a a a a a

g a a a a a a a a a a a

4 3 ,

2 . 32
2 0 4 1 3 2

2

3 0 2 4 1 2 3 2
3

0 3
2

1
2

4

Interestingly, as far as we know, the general solution (31) has
not been discussed in the literature. Ferraz-Mello (2007)
mentioned a particular solution valid for y =sin 00 , which
implies that f0 = 0 (see also Shinkin 1995).
The solution (31) is most conveniently evaluated using the

relation of the Weierstrass functions to the Jacobi elliptic
functions sn and cn. The form of the solution depends on the
roots of the cubic equation - - =z g z g4 03

2 3 , whose
discriminant is D = -g g272

3
3
2. There are three real roots

e1 > e2 > e3 for Δ > 0. If Δ < 0, there is one real root e2 and a
pair of complex roots a b= +e ı1 and a b= -e ı3 (Figure 6).
In the first case (Δ > 0), we have

( )
( )

( )t tÃ - = +
-

e
e e

u ksn ,
, 330 3

1 3
2

Figure 4. Equilibrium points and different dynamical regimes of the resonant
Hamiltonian (22). The solid line denoted “stable 1” is the first stable
equilibrium that exists for any value of δ. The second stable equilibrium,
denoted by “stable 2,” appears only for δ > δ* ; 0.945. The dashed line is the
unstable equilibrium. The gray area is the place where the resonant librations
occur. The dynamical regime where the two orbits are just wide (narrow) of the
resonance is labeled by α < αres (α > αres). The dotted line is an
approximation of the first equilibrium point, Ψeq = δ, that becomes
progressively better with increasing δ.

5 It is more common in this context to use ( )y yY Y2 cos , 2 sin because
these variables are canonical.
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with ( )t t= - -u e e1 3 0 and modulus = -
-

k e e

e e
2 3

1 3
. In the

second case (Δ < 0), we have

( ) ( )
( )

( )t t gÃ - = +
+
-

e
u k

u k

1 cn ,

1 cn ,
, 340 2

with ( )g t t= -u 2 0 , g a b= +9 2 2 , and = -
g

k e1

2

3

4
2 .

The Jacobi elliptic functions are computed following the
numerical recipe from Press et al. (2007). The derivative Ã¢ is
obtained from the derivatives of the Jacobi functions.

3.7. Resonant Period

The solution (31) is periodic with a period

( ) ( )
=

-
tP

k

e e

2
, 35

1 3

for Δ > 0, and

( ) ( )
g

=tP
k2

, 36

for Δ < 0. Here, ( ) k is the complete elliptic integral of the
first kind.
Figure 7 shows the period of small-amplitude librations around

the stable equilibrium points. Away from the resonance and if the
eccentricities are small, ns/(2ν) ? Φ2, and the first bracketed
term in Equation (23) outweighs the second. In this case, δ is
related to the superfrequency and increases, in the absolute value,
when the system moves away from the resonance. In this sense, δ
is a measure of the distance from the resonance.6

Figure 5. Dynamical portraits for four different values of parameter δ: (a) δ = −1, (b) δ = δ*, (c) δ = 2, and (d) δ = 4. The two stable equilibria are labeled “1” and
“2.” The cusp trajectory is shown by a thin line in panel (b). The separatrices are shown by bold lines in panels (c) and (d).

6 Inside the resonant island, ns is small and δ is controlled by the contribution
from Φ2. Since F µ e2

2, δ is a measure of the orbital eccentricities inside the
libration island.
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Negative values of δ imply that the planetary orbits are
spaced more widely than the actual resonance
( ( )> -P P k k 12 1 ), while δ > 0 means that the orbits are
packed more tightly ( ( )< -P P k k 12 1 ). Also,
d h- n 22

1 3
s away from the resonance, and therefore the

scaled period ∣ ∣p dt P . This represents a very good
approximation of the period if δ < −2 or δ > 3 (see Figure 7).

Inside the libration island for *d d> , the period of small-
amplitude librations decreases with δ (i.e., toward larger
eccentricities). It can be approximated by Pτ = π(2/Ψeq)

1/4,
where Ψeq is the equilibrium value of Ψ (Figure 4). For large

values of δ, Ψeq ; δ, and

( )p
d

t ⎜ ⎟⎛
⎝

⎞
⎠P

2
. 37

1 4

Figure 7 shows that this approximation works very well
for δ > 3.
The period Pτ for different libration amplitudes is plotted in

Figure 8. The period is the shortest near the equilibrium point
and increases with the libration amplitude. It becomes infinite
on the separatrices. This corresponds to a situation when the
amplitude of angle ψ becomes full π, and it takes infinitely long
to reach the unstable equilibrium point at ψ = 0. Except for
trajectories near the separatrix, the period values inside the
libration island are Pτ ; 2.5–4. They become shorter for δ > 5
(i.e., for higher eccentricities).
When rescaled according to Equation (27), h= t

-P Pt 2
1 3 is

the period of resonant librations in the normal time units (e.g.,
Julian days). It has the same dependence of Pτ on δ and
amplitude that we discussed above and, in addition, contains an
explicit dependence on the orbital period and planetary masses
through the scaling parameter η2 = νC2. If m1 = m2, then

( ) ( )
*p

a-t
- -⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥P P

P m

M
k f

2

3

2
1 . 38t 1

2
2 3

2
1
2 2

1 3

If, on the other hand, m m1 2, then

( )
*p

t
- -⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥P P

P m

M
k f

2

3

2
. 39t 2

1
2 3

2
2
2

1 3

The multiplication coefficients in the square brackets are ;1
for k = 2 (2:1 resonance) and decrease with increasing k. This
expresses a stronger interaction of orbits that are more tightly
packed for larger values of k. According to Equations (38) and
(39), the orbital periods P1 and P2 set the basic time unit for Pt.
The libration period scales with the mass of the more

massive planet as (m/M*)
−2/3 and is therefore shorter for a

larger mass. It is insensitive to the mass of the lighter planet. If
the masses of the two planets are comparable, then Pt will
depend on their combination via the scaling parameter η2.

Figure 6. Range in parameters δ and yY cos where Equation (31) admits
different functional dependence on the Jacobi elliptic functions. In the void
domain, the discriminant Δ > 0, and Equation (33) applies. In the dotted
domain, Δ < 0, and Equation (34) applies. The lines show the location of the
equilibrium points. See the caption of Figure 4 for more information.

Figure 7. Period of small-amplitude librations around the stable equilibrium
points. The solid and dashed lines show the periods in the libration (“stable 1”
in Figure 4) and circulation domains (“stable 2” in Figure 4), respectively. The
dotted lines are various approximations. The dotted line denoted by “a” is the
superperiod approximation with ∣ ∣p d=tP . The one denoted by “b” is an
oscillator approximation ( )p= YtP 2 eq

1 4, where Ψeq of the libration point is
computed exactly for each δ. The dotted line “c” shows ( )p d=tP 2 1 4.

Figure 8. Period Pτ for different libration amplitudes. Here we set y =sin 00

and compute the period for different Ψ0 from Equations (35) and (36). The
different colors correspond to different δ values: δ = 0 (black), δ = δ* (red),
δ = 2 (green), and δ = 4 (blue). This figure can be compared to Figure 5, where
the dynamical portraits are shown for the same values of δ.
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Figure 9 shows the contour plots of Pt as a function of m1/M*
and m2/M*. In the a  1 limit, the period is proportional to
[( ) ]*+ -m m M1 2

2 3. A reasonable approximation of the period
is then

( )∣ ∣

( )
*p

+ +
-t

- -⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥P

P P P m m

M
k k f f

2 2

3

2
1 .

40

t
1 2 1 2

2 3

1 2

1 3

These considerations have important implications for the
TTV period and its scaling with various parameters. For
example, for two planets in the 2:1 resonance with m2/
M* = 10−4 and m1 = m2, the expected TTV period is Pt ∼
78P1Pτ. Thus, if P1 = 10 days, and assuming that Pτ ∼ 3 in the
libration regime, the TTV period will be Pt ∼ 6.4 years. We can
therefore very roughly write in this case

( ) ( )*~ ´ t
-

-
⎜ ⎟⎛
⎝

⎞
⎠P

P P m M
2:1 6.4 years

10 days 3 10
. 41t

1 2
4

2 3

If, on the other hand, m1/M* = 10−4 and m1 ? m2, then the
period will be approximately twice as long because of having
P2 in Equation (39) (instead of P1 in Equation (38)). Finally, if
m1/M* = m2/M* = 10−4, then ( ) ~P 2: 1 4.5 yearst . The
periods in the k > 2 resonances are expected to be shorter
(Figure 9(b)).

3.8. Approximation of Near-resonant Orbits

Lithwick et al. (2012; hereafter L12) derived elegant TTV
expressions for two planets near (but not in) the first-order
resonance. Here we discuss the relationship of these expres-
sions to the results obtained here. Let us consider the
Hamiltonian in Equations (14) and (16)

( ) ( )
( )

 n b s

b s

= G + G - G + G + G

+ G

n 2 cos

2 cos , 42

s 1 2 1 2
2

1 1 1

2 2 2

where we denote *b = -Gm m A a1 1 2 2 and
*b = -Gm m B a2 1 2 2 . We assume that the orbital eccentricities

are small and that the two orbits are far enough from the
resonance such that the term ( )n G + G1 2

2 can be neglected.
Introducing xj and yj from Equation (17) into Equation (42), we
find that

[ ] ( ) b b= + + + + +
n

x y x y x x
2

. 43s
1
2

1
2

2
2

2
2

1 1 2 2

This Hamiltonian has a simple solution (e.g., Batygin &
Morbidelli 2013b). Defining complex variables = +z x ıyj j j,
the solution can be written as

( ) ( )
b

= - +z
n

C ın texp , 44j
j

j
s

s

where Cj are integration constants related to the initial
conditions. Now, since s q v= -j j, we can define L12ʼs
“complex eccentricities” ( )v=w e ıexpj j j and recast the
approximate solution (44) as

¯
( )

* *
q

b
q=

L
-

L
w

C
ı

n
ıexp exp , 45j

j j

1

0

s 1

where C̄j is the complex conjugate of Cj. Here we assumed
that q q= + n t0 s and replaced *L  Lj j . These assumptions
are equivalent to those of L12, where the unperturbed
(Keplerian) solution was inserted into the right-hand sides
of the Lagrange equations, and the linearized solution was
found by quadrature.
Equation (45) can be compared to Equation (A15) in L12.

The first term in Equation (45) is constant and corresponds to
the “free” term in Equation (A15). The second term in
Equation (45) is identical to the second term in Equation
(A15) (this can be trivially shown by resolving notation
differences). L12 proceeded by using the constants K1 and K2

(Equation (13)) to derive expressions for aj(t), which were

Figure 9. Libration period Pt as a function of scaled planetary masses m1/M* and m2/M* (solid lines). Here we assumed that P1 = 10 days and Pτ = 3 and computed
( )n= t

-P C Pt
2 1 3 . Panels (a) and (b) show the results for the 2:1 and 3:2 resonances, respectively. This is the expected TTV period produced by the resonant librations

in these resonances. The dashed lines show the approximation from Equation (40), which becomes better for larger values of k (i.e., for a  1).
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then used to obtain l = n tj j with ( )*=n GM a tj j
3 .7

Finally, L12 used a formula equivalent to Equation (1) to
compute TTVs. None of these steps requires a special
clarification.

The main assumption of L12 was therefore to (effectively)
neglect the term ( )n G + G1 2

2 in Equation (42). For this to be
valid, ∣ ∣ ( )n G + Gns 1 2 . Assuming that the masses and
eccentricities of the two planets are comparable, and neglecting
all factors of the order of unity, this condition can be written as

∣ ( )∣- -e P P k k 1j
2

2 1 . This shows that the eccentricities
cannot exceed a certain threshold for the L12 formulas to be
valid. This threshold is not excessively restrictive. For example,
for planetary orbits just outside the 2:1 resonance with

- =P P 2 0.052 1 , the eccentricities need to
be =e 0.05 0.22j .

In addition to the above eccentricity condition, the
planetary orbits cannot be too close to a resonance where
the nonlinear effects become important, even for negligible
eccentricities. We tested this condition assuming initial orbits
with small eccentricities and found that the L12 model is
perfectly valid for δ < −4. A small, ∼10% discrepancy in
both the amplitude and frequency of wj appears for δ ; −2. A
further increase of δ leads to a situation where Equation (45)
is no longer an adequate representation of the resonant
dynamics. According to our tests with e1 ; e2  0.01, the L12
model cannot usually be trusted for δ > −1. Figure 10 shows
these thresholds as a function of the planetary mass and orbit
period ratio.

4. TRANSIT TIMING VARIATIONS

If the variation of orbital elements is small, the TTVs of two
planets, δt1 and δt2, can be computed from

( ) ( ) ( )* * d dl d l d l- = + - +n t k h e2 sin cos 46j j j j j j j

(see, for example, Nesvorný & Morbidelli 2008). Here,
v=k e cosj j j, v=h e sinj j j, and *l l dl= +j j j, where

( )*l = -n t tj j 0 with constant nj. If the reference frame is
chosen such that the orbital angles are measured with respect
to the line of sight, transits occur when *l  0j (assuming
small eccentricities). We therefore have

( )d dl d- = - +n t h e2j j j j . The first-order eccentricity
terms, which can be used to improve the validity for higher
eccentricities, were given in Nesvorný (2009).
TTVs will thus have a contribution from the mean longitude

variation, δλj, and another contribution from the variation of
eccentricity and apsidal longitude, ( )d d v=h e sinj j j . Defining

v= - GY 2 sinj j j, we have for small eccentricities that

G L e
1

2
j j j

2 and = - Lh Yj j j . We then write

* dL = L + Lj j j with constant *Lj and obtain

( ) ( )
*

d dl d- = +
L

+n t Y e
2

, 47j j j

j

j

where we retained only the first-order terms in small
variations.
It remains to compute δλj and δYj. As for δλj, we have

l = ¶ ¶d dt Kj jK , whereK is given in Equation (14) (note
that Kj appears in the ns term in (15)). Substituting
G + G  F + F1 2 1 2 in Equation (14), taking the derivative
with respect to Kj, and integrating with respect to t, we

Figure 10. Validity domain of the L12 model. Here we assumed m1 ; m2 = m and small orbital eccentricities and plotted the isolines of δ from Equation (23) as a
function of planetary mass and ( )- -P P k k 12 1 . According to the discussion in the main text, the L12 model is valid for δ  −2. This condition represents a
combined constraint on the orbital period ratio and planetary masses. The parameter region below and to the right of the δ = −2 line is where L12ʼs TTV formula is
strictly valid. This region covers most of the period range shown here for planetary masses below that of Saturn.

7 The method of L12 ignores the contribution to λj from the derivatives of the
Laplace coefficients. This is a correct assumption for the near-resonant orbits
because these terms have ns in the denominator, while the terms from nj(t) have
ns

2 in the denominator. The latter terms are thus amplified near a resonance
where ns is small.
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obtain

( ( ) ) ( )

( )

( ) ( )

( )

*

*

* *

ò

ò

l

l

= -
L

- - F -

+ -
L

F

= -
L

+ F - -
L

F

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

K k n t t

k
n

dt

K k n t t k
n

dt

4
3

1

3 1 ,

4
3

3 .

48

t

t

t

t

1
1

1 2 1 0

1

1
1

2
2

2 2 2 0
2

2
1

0

0

Using the scaling relationship from Equations (24) and (27), we
have that

( ) ( ) ( )ò òn
t tF = Y

t

t
t dt d

1
, 49

t

t

1
0 0

where Ψ(τ) is given in Equation (31). The first terms in (48)
describe a uniform circulation of angles λ1 and λ2 (note that

( )*- L =n K n n4 3j j j j j for ej = 0, as expected). They will not
contribute to TTVs. Instead, TTVs will arise from the integral
term. As the sign in front of the integral term is positive for λ1
and negative for λ2, the TTVs of the two planets are
anticorrelated. The amplitudes of δt1 and δt2, denoted here by
lA ,1 and lA ,2, satisfy

( )
*

*
=

- L
L

-l

l

⎜ ⎟⎛
⎝

⎞
⎠

A

A

k

k

k

k

m

m

1 1
. 50,1

,2

2

1

2 3
2

1

Thus, apart from a coefficient of the order of unity, the ratio of
the TTV amplitudes from the λ terms is expected to be equal to
the inverse of the planetary mass ratio.

As for δYj, we have

[ ( ) ]

[ ( ) ] ( )

q q

q q

=
+

- +

=
+

- -

Y
A B

A v u BV

Y
A B

B v u AV

1
cos sin ,

1
cos sin , 51

1
2 2

1 1 2

2
2 2

1 1 2

where u1 and v1 were defined in Equation (18). They are related
to the Φ1 and f1 variables via Equation (19). Expressions (51)
are derived in Appendix B. As we show in Appendix B, V2 is a
constant of motion, does not contribute to variations, and does
not need to be computed.

Since the coefficients f1 and f2 have opposite signs (Table 1),
A and B in Equation (51) will also have opposite signs, and the
TTVs of the two planets will be anticorrelated. TTVs arising
from the terms in (51) will have amplitudes Ah,1 and Ah,2 such
that
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The ratio of TTV amplitudes from the h terms is inversely
proportional to the ratio of planetary masses. This is the same
mass dependence as in Equation (50). Thus, while the resonant
TTV period discussed in Section 3.7 can be used to constrain
m1/M* or m2/M*, the TTV amplitude ratio is sensitive to
m2/m1.

Above we reduced the problem at hand to the evaluation of
q q-v ucos sin1 1 . The θ terms are simple. From Equation (48)

we have that

[ ]( ) ( )òq n n= - F - - Fn t t dt2 2 . 53
t

t

s 2 0 1
0

As for the u1 and v1 terms, we obtain
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u h

v
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This is all we need for the computation of TTVs. To
summarize, Ψ(τ) from Equation (31) needs to be inserted into
(49) and (54). The integral in (49) needs to be computed and
substituted into Equations (48) and (53). Then, θ, u1, and v1
obtained from Equations (53) and (54) are substituted into (51).
The constant terms in λj and Yj can be neglected because they
do not contribute to TTVs. Finally, Equation (47) is used to
compute the TTVs.
In principle, the method outlined above can be used to derive

fully analytic expressions for δt1 and δt2, which would have the
same general validity for low eccentricities as the analytic
solution (31). For that, however, we would need to compute the
derivative (needed for v1) and integral (needed for λj and θ) of
Ψ(τ) from (31). The integral ends up producing complex
expressions (Appendix C). Here we therefore opt for a different
approach, where we seek to find an expression for resonant
TTVs in terms of the Fourier series.

4.1. Fourier Series Expansion

The solution (31) is valid for any initial condition (ψ0, Ψ0).
Here we are not primarily interested in finding a general TTV
expression for any (ψ0, Ψ0). Instead, our primary goal is to
understand the general scaling of TTVs with planetary masses,
resonant amplitude, and so on. We therefore opt for setting

y =sin 00 . This simplifies (31) considerably. Specifically,
y =sin 00 implies that f0 = 0, and (31) becomes

( ) ( )
( )

( )tY = Y +
-
+

C u k

a b u k4

1 cn ,

cn ,
, 550

1

where we denoted g= + -a e C 242 2 ,

g= - +b e C 242 2 , and g a b= +9 2 2 . This equation is
valid in the domain Δ < 0 shown in Figure 6, which includes
the whole resonant libration zone. We used Equation (34) to
relate the Weierstrass functions in (31) to the Jacobi functions.
At the equilibrium point, Δ = 0, b = 0, and

( )d= Y - + Ya 2 2eq
2

eq (Appendix A). For librations
around the equilibrium point, we have that a ? b (Figure 11).
We therefore identify a small parameter ò = b/a = 1 and
expand Equation (55) in the Taylor series in ò.
Retaining only the first-order terms in ò (approximation of

low-amplitude librations), we obtain

( ) [ ( ) ( ) ( )]

( )
( )

 



tY = Y + - + +

+

C

a
u k u k

4
1 1 cn , cn ,

.
56

0
1 2

2

Including higher-order terms in ò would improve the validity of
the approximation for large libration amplitudes. Next, we
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express cn and cn2 in the Fourier series:
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and
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Here we have ¢ = -k k1 2 and ( ) p= - ¢q exp with
( ) ¢ = ¢k . Here, ( ) k is the complete elliptic integral of the

second kind. General expressions for cnm(u, k), which can
become useful when higher-order terms in (56) are accounted
for, can be found in Kiper (1984).

Both of these Fourier series converge very rapidly, and we
can therefore afford to use the lowest harmonics. In practice,
given that the evaluation of u1 from Equation (54) will require a
multiplication of the Fourier series, here we consider only the
first and second harmonics of ( )g t t= -u 2 0 . After
substituting these terms into Equation (56), we obtain

( )

( )

  t tY = Y + + - + +t t⎜ ⎟⎛
⎝

⎞
⎠D D f D f1

2
1 cos

1

2
cos 2 .

59

0

Here we denoted the frequency p p g= =t tf P2 and
=D C a41 . To simplify things, we set τ0 = 0 and drop all

multiplication terms appearing from Equations (57) and (58)
that are ;1.8

Note that D is a proxy for the libration amplitude of Ψ
(Figure 11). Equation (59) can be used to trivially compute the
integral ò tYd appearing in Equation (49), which is then
inserted into Equations (48) and (53). In the following text, the
two TTV contributions, δλj and δYj, will be considered
separately.

4.2. Contribution from Mean Longitude Variations

The calculation of δλj is simple. Retaining the periodic terms
in Equation (48), we obtain

( ) [ ]
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2
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with the coefficients = +lC 1,1 and = -lC 4,2 and
frequency h h p g= =tf f2

1 3
2
1 3 (Section 3.7).

These equations are the source of Equation (2) in Section 2,
where we give the final expressions for TTVs arising from the
variation of λ1 and λ2. In Equation (2), we have taken the
liberty to drop the star from *Lj , but it is understood that nj, Λj,
and other quantities depending on these parameters in
Equation (2) are considered to be constant. Also, since D is a
good proxy for the amplitude AΨ, we replaced  YD A in
Equation (2). Note that AΨ is positive for Ψ0 > Ψeq and
negative for Ψ0 < Ψeq.

4.3. Contribution from Eccentricity and Apsidal Longitude

We need to compute q q-v ucos sin1 1 and insert it in
Equation (51). As for the terms including θ, we obtain from
Equations (49), (53), and (59)

( )q q= + + +q q qf t C ft C ftsin sin 2 , 610 ,1 ,2
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We then use the following expansions to obtain qcos and qsin :
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where Jn(x) are the Bessel functions. Both these Fourier series
converge rapidly for x = 1. We therefore retain only the
lowest-order harmonics. This leads to
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Here we neglected the coefficients qC ,2 that are of the order of ò
(note that ò = D; Figure 11).
The harmonics with f in Equation (64) appear from the

resonant librations (Section 3.7). Since q f z= -1 1
(Appendix B) and f1 oscillates around π in the libration
island, θ has the same circulation frequency as ζ1. Now, given

Figure 11. Dependence of various parameters of the analytic model on initial
conditions. Here we set δ = 3 and ψ0 = π and vary Ψ0. The solid line shows the
small parameter ò = b/a. It is zero at the equilibrium point Ψ0 = Ψeq (labeled
by the arrow) and increases to ò ; 0.2 near the separatrices. The dotted line
shows the amplitude = Y - YYA 0 eq. The parameter =D C a41 (Section 4.1),
shown by the dashed line, is an excellent approximation of AΨ for small-
amplitude librations.

8 Specifically, except for k very close to 1, we have
( ) ( )  - ¢ k k 1 22 2 , [ ( )]p +q k q2 1 ; 1, and

[ ( )]p -q k q2 12 2 2 2 ; 1/2.
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that ζ1 is defined from the apsidal longitudes ϖ1 and ϖ2

(Appendix B), the interpretation of fθ is that it is the mean
precession frequency of the longitudes of periapsis. Neglecting
terms ( ) and using the definition of δ in Equation (23), we
find from (62) that

( ) ( )h d= - Yqf 2 , 652
1 3

eq

where Y +  YD0 eq is substituted (see Figure 11). The fθ
frequency therefore scales in the same manner with planetary
parameters as h= tf f2

1 3 (as expressed by the h2
1 3 factor).

Unlike f, which derives from fτ = 2π/Pτ ∼ 3 in the libration
island, fθ contains the factor ( )d - Y2 eq . This factor is =1
(compare the dotted and solid “stable 1” lines in Figure 4).
Therefore, fθ is substantially smaller than f, which shows that
the variations from θ are expected to occur on a long timescale.

Specifically, the period ( )p p d= = - Yq qP f2 eq is equal
to 10.1 for δ = 1, 13.3 for δ = 2, and 18.1 for δ = 4. The longer
periods for larger δ values are a consequence of Ψeq

approaching δ for increasing values of δ (Section 3.5). Note
that Pθ, at least in the approximation adopted here, is
independent of the libration amplitude. Also, given that
d - Y < 0eq in the libration island, the fθ frequency is negative
as well, meaning that the circulation of θ is retrograde
(implying retrograde rotation of ϖ1 and ϖ2).

The terms in Equation (64) containing frequencies fθ and f
could be combined to produce harmonics with frequencies fθ ±
f and fθ ± 2f. Given that, as we discussed above, the
characteristic periods of these terms are largely different, we
prefer to leave them multiplying each other in Equation (64).
Accordingly, Equation (64) is interpreted as the resonant
variations around the mean value that is slowly modulated with
frequency fθ.

The expressions for u1 and v1 are derived from Equation (54)
after substituting Ψ from Equation (59). After some algebra we
obtain
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In the above expression for the coefficient Cu,0, u0 denotes the
initial value:

( ) ( )d= Y = - - Y -u h2 . 680 0 0 0
2

Figure 12 compares Equation (66) with the exact solution of
Equations (25) and (26). It shows that the approximation (66) is
excellent for small libration amplitudes but loses precision for
large libration amplitudes. This happens mainly because the

terms ( ) 2 were neglected in Equation (56). In principle, it
should be possible to include these and higher-order terms and
improve the validity of the Fourier approximation by producing
more general expressions. We leave this for future work.
Now we should combine Equations (64) and (66).

Unfortunately, this generates a very long expression for δYj.
We do not explicitly give this equation here. The full
expression was coded in a program and used to generate
Figures 1 and 2. We find that the TTV terms from

q q-v ucos sin1 1 with the frequency f have amplitudes that
are generally much smaller than the TTV amplitudes arising
from the δλj terms (Equation (60)). Here we therefore explicitly
report only the most important harmonic with frequency fθ.
These terms do not have a counterpart in Equation (60). They
are important for the long-term modulation of the TTV signal.
Specifically, we find that

( ) ( )

( ) ( ) ( )

d h q

d h q

=-
+

+
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+

+

q q
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Y
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1 3
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This is the source of Equation (5). Since ( ) ~qJ C 10 ,1 , we do
not list this term in Equation (5), where we also substi-
tute  YD A .

5. THE DOMAIN OF VALIDITY

We adopted several approximations in this work:

I. The Laplacian expansion of the perturbing function used
in Section 3.1 is convergent only if the planetary
eccentricities are small enough (Sundman 1912). For a
planet on a circular orbit, this limits the validity of the
expansion to e < 0.25 (e < 0.2) for orbits near its inner

Figure 12. This plot illustrates the approximation (66). The bold black lines are
the exact solution of the resonant Hamiltonian for δ = 2 and three libration
amplitudes. The red lines are the approximation given in Equation (66). The
approximation is good for small libration amplitudes (inner curves) and
degrades when the amplitude increases (outer curve).
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(outer) 2:1 resonance, and to e < 0.15 (e < 0.12) for
orbits near its inner (outer) 3:2 resonance. The analytic
results derived here are not valid above these limits. See
Nesvorný & Morbidelli (2008) for a discussion of
Sundman’s criterion.

II. All nonresonant terms were neglected in Section 3.1. The
short-periodic terms with nonresonant frequencies pro-
duce short-periodic TTVs that can be calculated by the
method described in Nesvorný & Morbidelli (2008).
These terms can be linearly added to the expressions
obtained here for resonant TTVs. The secular terms are
second and higher orders in planetary eccentricities and
contribute by only a small correction to the precession of
orbits if the eccentricities are small.

III. The second- and higher-order resonant terms in planetary
eccentricities were neglected in the perturbing function.
This is an important approximation that limits the validity
of the results to small eccentricities. The same assumption
was adopted when writing δtj as a variation of orbital
elements.

IV. The amplitude of the semimajor axis variations was
assumed to be small (this allowed us to simplify the
Keplerian Hamiltonian in Section 3.3). The same
assumption was adopted to compute δtj from Equation (1),
where we also neglected all second- and higher-order
terms in small variations of the orbital elements. We find
that these approximations are generally valid and do not
impose any meaningful limits on the range of planetary
parameters where our analytic results are valid.

V. The exact solution of the second fundamental model of
resonance was expanded in the Taylor series in ò, and
only the terms ( ) were retained (Section 4.1). In
addition, the Jacobi elliptic functions were written as the
Fourier series, and only the lowest harmonics were
retained. Both these approximations limit the validity of
our analytic TTV model to relatively small libration
amplitudes. (In principle, the methods described in
Section 4 can be used to obtain more general
expressions.)

Here we perform tests of these assumptions to establish the
domain of validity of our analytic model. To this end, we
developed several codes that compute the resonant TTV signal
at various stages of approximation. They are as follows:

A. A full N-body integrator of Equations (7) and (8), where
the gravitational interaction of planets is taken into
account exactly. We used the symplectic code known as
Swift (Levison & Duncan 1994) with routines for an
efficient and precise determination of TTVs (Nesvorný
et al. 2013; see also Deck et al. 2014).

B. A numerical integrator in orbital elements that uses the
Laplacian expansion of the perturbing function. Various
terms can be included or excluded in this integrator. In
the most basic approximation, the code includes only the
first-order resonant terms from Equation (10). Optionally,
it also accounts for the second-order secular or resonant
terms. This code is used to test the approximations II and
III listed above

C. A code that maps the initial orbital elements onto (22)
and numerically integrates the corresponding Equa-
tions (25) and (26). Another code uses the exact analytic
solution (31). As expected, these two codes give exactly

the same result, which shows that our implementation of
Equation (31) is working correctly.

D. A TTV code based on the analytic formulas derived in
Section 4. This code is subject to all approximations
discussed above. It cannot produce accurate results if the
orbital eccentricities or libration amplitudes exceed
certain limits.

We first test the approximation V. To this end we compare
the results obtained with code B with the analytic results from
method D. In B, we include the two first-order resonant terms
and neglect terms that are second or higher order in planetary
eccentricities.9 The masses and initial orbits are chosen such
that δ = 2 (Figure 13) or δ = 4 (Figure 14). The initial orbits
are then varied to survey different libration amplitudes. These
tests show that the analytic method produces very reliable
results for AΨ  1 (top panels in Figures 13 and 14). For the
libration amplitudes much larger than that, our analytic
expressions for u1 and v1 in Equation (66) become inaccurate
(see Figure 12). As a consequence, the analytic approximation
of the TTV terms from δhj fails (bottom panels in Figures 13
and 14).
Interestingly, however, the analytic approximation of the full

TTV signal is reasonable even if AΨ > 1. This happens because
the TTV terms from δλj increase with AΨ and become dominant
for large AΨ. We are able to reproduce these terms correctly
because the analytic formula in Equation (2) has a more general
validity than the one that requires a correct approximation of
the boomerang-shaped trajectories in the (u1, v1) plane
(Equation (66)). We therefore conclude that the analytic TTV
model can be used, with some caution, even if the libration
amplitudes are relatively large.
We now turn our attention to the approximations I, II, and

III. We find that the omission of the higher-order resonant
terms in III is the most restrictive assumption. To illustrate this,
Figures 15 (inner planet) and 16 (outer planet) show a
comparison of the analytic model with TTVs computed from
the N-body code (method A above). Here we set different
planetary eccentricities ranging from = =e e 0.0011 2 (left
panels in both figures) to e1 = e2 = 0.05 (right panels). We find
that the analytic model works well for e1 = e2 = 0.001.
Already for = =e e 0.011 2 , a significant discrepancy

appears (see middle panels in Figures 15 and 16). An important
part of the discrepancy, however, is not due to assumption III,
but is rather related to the choice of initial conditions. Recall
that, in addition to the resonant terms, the exact computation of
TTVs with method A also contains the short-periodic
harmonics, while the analytic method D does not account for
these terms. This presents a difficulty when choosing the initial
conditions in A and D that are consistent with each other. If the
same values are adopted in A and D, the initial semimajor axes
in A generate slightly different values of the mean orbital
frequencies than the same initial semimajor axes in D. This
effect then propagates into a difference in the libration
frequency f. To demostrate this, we surveyed a small
neighborhood of the initial conditions and found that it is
always possible, if the eccentricities are sufficiently small, to
apply a small adjustment such that the difference between the
analytical and numerical results vanishes (left and middle
bottom panels in Figures 15 and 16). Note that this initial value

9 The same comparison method was used to produce Figures 1 and 2 in
Section 2.
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problem does not seriously limit the application of the analytic
model to the real data because it requires only a very small
adjustment of a1 or a2 (or equivalently n1 and n2), which can
easily be absorbed by other parameters.

Another more fundamental discrepancy appears for
e1 = e2 = 0.05. In this case, the TTV frequency computed
from the analytic model is nearly 40% higher than the actual
frequency, and the TTV amplitudes are ;25% smaller than
their actual values (right panels in Figures 15 and 16). In this
case, it is not possible to adjust the initial conditions to cancel
the difference. This shows that the assumption III starts to fail.
We confirm this by method B, where it becomes apparent that
including the second-order resonant terms improves the

model’s precision. Still, for = =e e 0.051 2 , the amplitude
discrepancy is relatively minor and can be compensated for, for
example, by a relatively small correction of planetary masses.
We therefore find that the analytic model is still useful in this
case. Our additional tests show that the analytic expressions for
TTVs are not reliable for eccentricities exceeding ∼0.1. (The
validity domain in e should be slightly larger for distant
resonances such as 2:1 and smaller for k � 4.)
The analytic model was developed under the assumption of

exactly coplanar planetary orbits. This assumption was used in
Section 3.1 to neglect all terms in the Laplacian expansion of
the perturbing function that depend on inclinations. The model
is therefore not expected to be valid if the mutual inclination

Figure 13. Tests of the validity of the analytic model for different libration amplitudes. The planetary masses and orbital parameters were chosen such that δ = 2 in all
cases shown here. We fixed m1 = m2 = 3 × 10−4 M*, M* = 1 MSun, and a1 = 0.1 au and varied a2 near the external 3:2 resonance with the inner planet (a2 ;
0.131 au). The eccentricities were adjusted to give δ = 2 and a desired initial value Ψ0. From top to bottom, the panels show the results for Ψ0 = 2, Ψ0 = 2.5, and
Ψ0 = 3.5. The stable equilibrium point is located at Ψeq = 2.24 for δ = 2. The different cases shown here thus correspond to the libration amplitudes AΨ = 0.25, 1.24,
and 1.74 (from top to bottom). The plots show the TTVs of the inner planet (the results for the outer planet are similar). The green dots were obtained by numerically
integrating the differential equations corresponding to the resonant Hamiltonian (9) and (10). The black lines were obtained from the analytic TTV expressions (1) and
(2) and a generalization of (5) derived in Section 4.3. From left to right, the different panels show the TTVs from δλj and δhj and their sum from Equation (1).
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between orbits, Imutual, is large. We performed various tests of
this assumption and found that the analytic model is reasonably
accurate for Imutual < 10° but fails to produce reliable results for
Imutual  10°. This should not be a severe limitation of the
applicability of the analytic results to the multitransiting
planetary systems because the orbits in these systems are
expected to be nearly coplanar (e.g., Fang & Margot 2012).

6. CONCLUSIONS

In this work we developed an analytic model for TTVs of a
pair of resonant planets and discussed how the TTV period and
amplitude constrain the masses and orbits of the two planets.
The model is strictly valid only for small orbital eccentricities
(e < 0.1). It was developed under the assumption of coplanar
orbits, but our tests show that it is valid even if the mutual
inclination of orbits is not large (<10°).

The resonant TTV signal is expected to contain the
harmonics of two basic periods: the period of resonant
librations and the period of apsidal precession of orbits. The
latter is expected to be ∼5 times longer than the former and
may be difficult to detect with a short baseline of the TTV
measurements. The libration period is relatively insensitive
to the exact location of the system parameters in the resonant
island and scales with (m/M*)

−2/3. Its determination from
the TTV measurements can therefore help to constrain the
planetary masses. This is an important difference with
respect to the near-resonant case (Lithwick et al. 2012),
where the TTV period is the superperiod, which is
independent of mass.
The TTV amplitudes, on the other hand, can be used to

constrain the ratio of planetary masses m m1 2. Since both the
TTV period and amplitude depend on the resonant amplitude
AΨ, some mild degeneracies between the mass and orbital

Figure 14. Same as Figure 13 but for δ = 4. In this case, the stable equilibrium point is at Ψeq = 4.14. From top to bottom, the different panels correspond to Ψ0 = 3.5
(AΨ = 0.67), Ψ0 = 2.5 (AΨ = 1.17), and Ψ0 = 2 (AΨ = 1.57).
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parameters are expected, but these degeneracies can be broken
by a detection of higher-order resonant harmonics, which
constrain AΨ, or short-periodic (chopping) effects. A detailed
analysis of this problem and the application of our analytic
model to the resonant exoplanets (Winn & Fabrycky 2015) is
left for future work.
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APPENDIX A
PARAMETER ò = b/a

The coefficients Cn in Equation (31) are obtained from the
derivatives of f(Ψ) with Ψ = Ψ0:

[ ( ) ]
[ ( ) ] ( )

d

d
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The expressions for C3 and C4 are not needed if we set ψ0 = π

and thus f0 = 0. The invariants in Equation (32) can be written

as
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where we denoted ( )d= - Y - + Yh 20 0
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0 . The determi-
nant Δ becomes
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then the three roots of the cubic equation can be obtained from
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In the equilibrium point, Ψ0 = Ψeq, we have that Δ = 0, and
thus =F g 23

1 3 . It follows that β = 0 and

Figure 15. Comparison of TTVs obtained with the analytic model (black lines) and the precise N-body integrator (green lines). From left to right, the orbital
eccentricities of planets were increased to test the validity of the analytic model. We fixed *= = -m m M101 2

5 , M* = 1 MSun, a1 = 0.1 au, and a2 near the external
3:2 resonance with the inner planet (a2 = 0.13095 au). The TTVs of the inner planet are shown here. The case with e1 = e2 = 0.001 (left panels) corresponds to
δ = 0.51 and Ψ0 = 0.007. The case with e1 = e2 = 0.01 (middle panels) corresponds to δ = 1.25 and Ψ0 = 0.75. The case with e1 = e2 = 0.05 corresponds to δ = 19.3
and Ψ0 = 18.8. In the two bottom panels on the left, we illustrate how a small adjustment of the initial conditions improves the results (see the main text for a
discussion). In the bottom-right panel, we rescaled time to show that a modest adjustment of the frequency can resolve the discrepancy when eccentricities are larger.
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a = - = - = <F g C2 24 03
1 3

2 . Therefore, b = 0 and
a = −C2/4, where a and b are defined in the main text.
Figure 11 shows ò = b/a for δ = 3. It is zero at the equilibrium
point and increases to ò ; 0.2 at the separatrix. Higher values
of δ lead to smaller values of ò. For δ ; 1, on the other hand, ò
can be as large as 0.6 near the separatrix.

APPENDIX B
EXPRESSIONS FOR Yj

In Section 3 we omitted explaining one important issue that
becomes apparent if the degree of freedom related to

( )q l l= - -k k 12 1 is treated separately from those related
to ϖ1 and ϖ2 (as was done in BM13). To explain this issue, we
first define in direct correspondence to Equation (17)

( )
g g

g g

= G = G
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X Y
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1 1 1 1 1 1
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where γj = −ϖj. Second, we perform a transformation (see
Section 3.4) to the new variables (V1, V2; U1, U2):
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And last, we introduce new polar variables (ζ1, ζ2; Φ1, Φ2) such
that

( )
z z

z z

= F = F

= F = F

U V

U V

2 cos , 2 sin ,

2 cos , 2 sin . 77

1 1 1 1 1 1

2 2 2 2 2 2

The inverse transformation to (76) is
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With these definitions, it is straightforward to show that
fj = θ+ ζj, where fj are the original angles defined in (19),

( )z = +AZ BZarg1 1 2 , and ( )z = -BZ AZarg2 1 2 , where
g= + = GZ X ıY ı2 expj j j j j. We thus find that

q q= -V v ucos sin1 1 1 . When substituted into (78), we obtain
Equation (51) in the main text. In addition, it can be shown that
z f q= - =d dt d dt d dt 02 2 . The angle ζ2 is therefore
constant. Consequently, since Φ2 = const. as well, both U2

and V2 are constants of motion. This result is used in Section 4,
where V2 in Equation (51) does not contribute to TTVs.

APPENDIX C
INTEGRAL ò tYd

The integral in Equation (49) with Ψ(τ) from Equation (55)
admits the following exact solution:
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Figure 16. Same as Figure 15 but for TTVs of the outer planet.
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where ò = b/a and γ are defined in Section 4.1. From Byrd &
Friedman (1971) (BF 341.03) we have
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atan
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, 80

2

where ( )jP n k, , is the Legendre elliptic integral of the third
kind, j = am u is the Jacobi amplitude, and sd(u, k) = sn(u, k)/
dn(u, k). The constants n and C are
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n
1

, 81
2

2
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k k

1
. 82

2

2 2 2

Note that Byrd & Friedman (1971) use a different notation for
the coefficient n than Press et al. (2007). To use the numerical
subroutines from Press et al. (2007), ( ) = -n 12 2 .
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