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ABSTRACT

Aims. We extend our previous analysis of thermal stresses in small, spherical and homogeneous meteoroids by taking into account
the effects of a surface insulating layer.
Methods. Using analytical computations, we determine the temperature distribution in a spherical inhomogeneous body smaller than
∼10 cm with a high-conductivity core and a low-conductivity surface layer. Our main approximation consists in (i) linearization of the
surface energy-conservation constraint and (ii) omission of the seasonal effects in the Fourier spectrum of the incident solar radiation
flux. Using the temperature solution, we analytically compute the mechanical (thermal) stress field in the core, neglecting its effects
in the particulate surface layer. Conditions for material failure in the whole volume of the body are analyzed. In particular, we pay
attention to whether the surface layer depth evolves toward an equilibrium situation.
Results. As the meteoroid approaches the Sun, the thermal stress first exceeds the material strength at the surface of meteoroid. If
the fractured material is able to stay on meteoroid, a particulate shell begins to form. After one revolution about the Sun, this process
is roughly completed. We determine the dependence of its thickness on perihelion distance, spin axis orientation with respect to the
Sun, and the size of meteoroid. We estimate the distribution of the final depths of the surface layer for eight major meteoroid showers
with perihelion distances smaller than 1 AU.
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1. Introduction

In a previous paper Čapek & Vokrouhlický (2010, CV1), we de-
veloped an analytic approach to determining the thermal stress
field in a small, spherical, and homogeneous meteoroid. Since
the coupling between the thermal and mechanical state of the
body was only “unidirectional” in our approach, namely temper-
ature gradients produce mechanical stress but the stresses them-
selves do not act as a source of thermal energy, we proceeded in
two separate steps: (i) we first solved the temperature distribu-
tion in the whole volume of the body; and (ii) we then used this
information to determine the mechanical stresses in the body,
including those caused by thermal gradients and the related dif-
ferential volume expansion effects. Both problems are solved as
a continuum model with appropriate boundary conditions.

In CV1, we identified several restrictive assumptions, which
represent the limitations of our theory when attempting to com-
pare its predictions with the observations. For instance, we in-
cluded the diurnal (rotational) variations of the solar flux for a
given surface element, but neglected the seasonal effects caused
by the heliocentric orbital motion. This makes the theory ap-
plicable to bodies smaller than several meters in size (see dis-
cussion in CV1 for details). Another important approximation
of CV1 was that of the homogeneity of the body. Nevertheless,
it was noted that the thermal stresses may first overcome the
material failure threshold in the subsurface region and result in
the formation of a damaged zone. This might have a regulatory,
feedback effect on the whole process of mechanical damage be-
cause of the thermal stresses. The granular, particulate surface
layer, which is characterized by a lower value of the thermal

conductivity, may start to thermally shield the interior regions in
the body, halting thus further propagation of the thermal damage.

In an attempt to understand these processes in more detail,
we develop here a theory of thermal stresses in a small (size
≤10 cm), spherical but inhomogeneous body. To conserve the
advantages of the analytical approach of CV1, we restrict our
analysis to a simple model for the inhomogeneity, namely as-
suming two layers consisting of a core covered with a surface
layer of spherical symmetry.

In Sect. 2, we first generalize our analytical model of the
temperature field in a spherical body to the case of a core cov-
ered with a surface layer of different thermal properties. We also
discuss how the results in CV1 might be straightforwardly used
to determine the associated stress field. A description of our nu-
merical experiments is given in Sect. 4 and our conclusions are
summarized in Sect. 5.

2. Theory

2.1. Formulation of the problem

As in CV1, we assume that the body (meteoroid) has a simple
spherical shape of radius R. We use spherical coordinates (r, θ, φ)
with an origin at the center of the body and an angle θ measured
from the rotation axis. The latter is assumed to be fixed in the in-
ertial space and the body rotates with constant angular frequency
ω = 2π f (where f is the spin frequency in Hz).

Unlike in CV1, we do not assume that the body is homoge-
neous, but that it is a compound of two homogeneous, but un-
equal parts: (i) a surface layer of a thickness h; and (ii) a core
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with radius RB = R − h. The particulate, granular surface layer
is assumed to have different mechanical and thermal properties
than the monolitic core. As we later show (Sect. 2.2), the funda-
mental parameter in our solution is

ξ =
K1

K2
, (1)

where K1 and K2 is the thermal conductivity in the surface layer
and the core. Owing to the nature of the composition assump-
tions, we always assume that ξ ≤ 1, with typical values between
0.1 and 1. At a given position on the heliocentric orbit, h is as-
sumed to be constant, but overall its value may change as the
body moves along the orbit responding to a mechanical damage
of the subsurface region by thermal stresses. The characteristic
timescale over which h grows is thus assumed to be longer than
the rotation period of the body, but much shorter than the revo-
lution period about the Sun.

Since we assume that the surface layer consists of particulate
material, we neglect the effects of mechanical stresses in this part
of the body. Two extreme approaches can then be adopted: (i)
the surface layer is never removed from the body, assuming that
the electrostatic and molecular sticking of its particles is able
to resist either centrifugal or tidal effects (e.g., Scheeres et al.
2010), and it only increases in size; or (ii) the surface layer, or
its part, could be removed under some conditions by centrifugal
or tidal accelerations. We deal with the first case and the second
one is postponed to a forthcoming paper. Despite the mechanical
stress field not beeing solved in the surface layer in our approach,
we still need to solve the temperature field in this part of the
body. This is because it can have an insulating influence and
affect the temperature distribution, and thus the thermal stress
field, in the core. The growth of the surface layer can thus play
a very important regulatory effect on the mechanical integrity of
the whole body.

In the same way as the depth h of the surface layer is as-
sumed to be constant in our solution, the solar position with re-
spect to the rotation axis of the body is also assumed to be con-
stant. In other words, we neglect the orbital motion of the body
about the Sun and solve its thermal, and mechanical, state at a
given heliocentric position. This assumption has a subtle conse-
quence related to the time variation in the solar flux at the sur-
face of the body that means our theory is valid only for objects
of a size smaller than several meters (more details are given in
CV1). In the present study, we assume that bodies have dimen-
sions ≤10 cm. As the body moves along a given orbit about the
Sun, its mutual geometric configuration with respect to the spin
axis of the body changes. However, we model this effect in a
quasi-static way, assuming that diurnal thermal relaxation at a
given point on the orbit is faster than the orbital drift to a con-
secutive point.

In the first step of our approach, we develop a general so-
lution of the temperature distribution in both the core and the
surface layer. The general concepts and the solution for the core
are discussed in Sect. 2.2, while details and the solution for the
surface layer are described in Appendix A. We then use the tem-
perature field solution in the core to derive the associated me-
chanical stress in Sect. 2.3.

2.2. Temperature distribution

Neglecting volumic sources of energy, the distribution of tem-
perature T (r, t) in the continuum is determined by the heat

diffusion (Fourier) equation

ρc
∂

∂t
T = ∇ · (K ∇T ) , (2)

complemented with appropriate boundary conditions. In our
case of the two-layer body, we have a simpler form

ρc
∂

∂t
T = K ∇2T, (3)

in each of the volume parts where the thermal parameters, the
conductivity K, the specific heat capacity c, and the bulk den-
sity ρ are all constant. The generic boundary conditions are (i)
the regularity of the solution throughout the volume of the body
(including the center); and (ii) the energy conservation at the
surface. The latter can be expressed as

εσSBT 4 + K en · ∇T = (1 − A)E, (4)

where ε is the thermal emissivity, σSB = 5.67× 10−8 W m−2 K−4

is the Stefan-Boltzmann constant, en is the unit outer normal to
the surface, A represents the albedo value, and E is the solar ra-
diation flux. At the boundary layer B between the two parts with
different values of thermal parameters in the body, the solution
must satisfy continuity of the temperature T and the heat flux
eb · K∇T , where eb is the normal vector to B. Denoting with [ ]±
the respective limits from the two sides of B, we have

[T ]− = [T ]+, (5)

[Keb · ∇T ]− = [Keb · ∇T ]+. (6)

Since we assume that the surface layer is a spherical shell with
thickness h, B is simply a sphere with radius RB. In this case,
both vectors en and eb are equal to the radial unit vector er =
∂r/∂r, and er · ∇T = ∂T/∂r for the boundary conditions given in
Eqs. (4) and (6) above.

As in CV1, we assume that the temperature T is always close
to a properly chosen average value Tav, namely T = Tav + ΔT
with ΔT � Tav. This justifies the linearization of the trou-
blesome fourth-order term T 4 � T 4

av + 4T 3
avΔT in the bound-

ary condition given in Eq. (4) and enables an analytic solution
of the problem. The average temperature is determined from
4εσSBT 4

av = (1 − A)E�, where E� is the solar flux at a given
heliocentric distance (e.g., Vokrouhlický 1998).

Adopting a parametrization of the surface elements using
spherical angles (θ, φ), we have

E = E�
∞∑

n=0

n∑
k=−n

bnk(θ0) exp(ikωt) Ynk(θ, φ), (7)

where θ0 is the colatitude of the solar direction in the body-frame
system (assumed constant in our model) and i =

√−1. The func-
tions bnk(θ0) were given in CV1 and read (see also Vokrouhlický
2006)

b00 =
√
π/2 , (8)

b10 =
√
π/3 cos θ0, (9)

b1±1 = ∓
√
π/6 sin θ0, (10)

bnk = (−1)k+1

√
π(2n + 1)

(n − k)!
(n + k)!

Pn(0)Pk
n(cos θ0)

(n − 1)(n + 2)
, (11)

where the last row applies for n ≥ 2, and Pn and Pk
n are Legendre

polynomials and the associated Legendre functions respectively.
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We note that Pn(0) = 0 for n odd such that only even-degree
terms appear in the insolation given in Eq. (7) for n ≥ 2.

Similarly to the insolation term in Eq. (7), the temperature
field can also be expressed using a mixed Fourier and spherical-
harmonics expansion

ΔT (r, θ, φ, t) =
∞∑

n=1

n∑
k=−n

tnk(r, t) Ynk(θ, φ), (12)

where the Fourier part in the amplitude functions tnk(r, t) ∝
exp(ikωt). Some details of the solution are given in the
Appendix A, while here we provide a solution for the temper-
ature distribution in the solid core (i.e., for r < RB = R − h) that
is relevant to determination of the thermal stress field.

First, we discuss the zonal (axisymmetric) part of the solu-
tion with k = 0 (Vokrouhlický & Brož 1999). Since the isolation
terms are time-independent in this case, the Fourier equation in
Eq. (3) simplifies to the Laplace equation with the characteristic
regular solution

tn0(r, t) = Cn0 rn, (13)

(where we note that the time dependence is in fact a dummy
here). The constants Cn0 are to be determined from the boundary
conditions (see Appendix A). We obtain

Cn0 =
Tav

RnΨn

bn0(θ0)
1 + Λ1n

[
1 − n (1 − ξ)

n + (n + 1) ξ

]
, (14)

where Λ1 = Θ1�d1/(
√

2R) and Θ1 =
√
ρ1c1K1ω/(εσSBT 3

�)
is the thermal parameter derived from the physical quantities
(ρ1, c1,K1) of the surface layer and T� =

√
2 Tav is the sub-

solar temperature. The scaling parameter �d1 =
√

K1/(ρ1c1) is
called the penetration depth of the surface thermal wave, and the
auxiliary function Ψn is defined to be

Ψn = 1 − n (1 − ξ)
n + (n + 1) ξ

(RB

R

)2n+1 1 − (n + 1)Λ1

1 + nΛ1
· (15)

The solution for the tesseral (non-axisymmetric) modes with k �
0 is given by (see also CV1)

tnk(r, t) = Cnk jn(zk) exp(ikωt), (16)

jn(z) denoting the spherical Bessel function of the first kind
with a complex argument zk =

√−ik r/�d2. We note, in par-
ticular, the scaling of the radial coordinate r by the penetration
depth �d2 =

√
K2/(ρ2c2) determined by the physical parame-

ters (ρ2, c2,K2) of the core. The constants Cnk are again to be
determined from the boundary conditions. A somewhat lengthy
computation yields

Cnk =
Tav

Ψnk

bnk(θ0)

jn(ZB
k )
ξ
ψn

(
Z′Bk

)
− φn

(
Z′Bk

)
ψn

(
ZB

k

)
− ξφn

(
Z′Bk

) , (17)

where

ψn(z) =
z

jn(z)
d jn(z)

dz
, (18)

φn(z) =
z

yn(z)
d yn(z)

dz
, (19)

with yn(z) the spherical Bessel function of the second kind
(sometimes also called the spherical Neumann function). Their
arguments are computed at the boundary distance RB and scaled

either by the thermal penetration depth �d1 in the surface layer,
Z′Bk =

√−ik RB/�d1, or the thermal penetration depth �d2 in the

core, ZB
k =
√−ik RB/�d2

1. The Ψnk functions are then given by

Ψnk =
jn

(
Z′k

)
jn

(
Z′Bk

) [
1 + Λ1ψn

(
Z′k

)]

−
yn

(
Z′k

)
yn

(
Z′Bk

) ψn

(
ZB

k

)
− ξψn

(
Z′Bk

)
ψn

(
ZB

k

)
− ξφn

(
Z′Bk

) [
1 + Λ1φn

(
Z′k

)]
, (20)

where Z′k =
√−ik R/�d1.

One can easily check the various limits of our general solu-
tion for the temperature distribution in the core, thus justifying
its validity. For instance, with the same thermal parameters of
the surface layer and the core we recover results from CV1 that
are valid for a homogeneous body2. The same is true when tak-
ing the limit h → 0, namely shrinking the surface layer to zero.
While this can be computed analytically3, the case of a small,
but nonzero h/R value requires special attention in numerical
applications. Another interesting limit is that of ξ → 0, namely
of a very low conductivity surface layer. In this case, we note
that both Cn0 and Cnk are proportional to ξ, thus the tempera-
ture field in the core vanishes or is significantly reduced. This
confirms our intuition that the perfectly insulating surface layer
should entirely shield the core region from temperature varia-
tions driven by solar irradiation. In this case both, the thermal
gradients and the related mechanical stress field, would also be
diminished.

2.3. Thermal stress field in the core

After developing an analytical solution to the temperature dis-
tribution in the core, we may now directly apply our results
from Sects. 2.3 and 3.1 of CV1 to derive the associated ther-
mal stress field, as described below. We recall that we assume a
granular, particulate character for the surface layer that does not
support mechanical stress and thus we may still use the bound-
ary condition for a free, unloaded surface of the core (Eq. (19)
in CV1). The analytical solution from CV1 is thus modified by
taking (i) different expression for Cn0(θ0) and Cnk(θ0); and (ii)
the boundary (surface) condition at different distance from the
center, namely r = RB.

2.3.1. Time-independent part of the thermal stress tensor

First we provide explicit formulae for the stationary (zonal)
part of the thermal stress. We use the auxiliary functions
Fn(λ, μ) and Gn(r) from Eqs. (34) and (35) in CV1, and
Cn0(θ0) from (14) above. Introducing the scaled radial coordinate

1 In what follows, the “prime” of the complex arguments means that
the radial coordinate has been scaled by �d1, while the “unprimed” quan-
tities are scaled by �d2.
2 We note that K1 = K2, thus ξ = 1, the condition of which alone
implies that the zonal (axisymmetric) part of the solution is also identi-
cal to that in CV1, but the non-axisymmetric part is generally different
when the heat capacity c and/or density values in the surface layer and
the core are not identical.
3 We note that the Λ parameter in Eq. (13) of CV1 is equivalent to
Λ2 = Θ2�d2/(

√
2R) = Λ1/ξ where Θ2 =

√
ρ2c2K2ω/(εσSBT 3

�).

A25, page 3 of 10



A&A 539, A25 (2012)

x = r/R ≤ RB/R, the only non-zero components of the station-
ary stress tensor are

τrr =

[(RB

R

)2

− x2

] ∞∑
n=2

n(n − 1) Gn(r) Yn0(θ, φ), (21)

τrθ =

[(RB

R

)2

− x2

] ∞∑
n=2

(n − 1) Gn(r)
∂

∂θ
Yn0(θ, φ), (22)

τθθ =

∞∑
n=2

Gn(r)

{
n

[(RB

R

)2

− (2n + 1) x2

]
Yn0(θ, φ)

+

[(RB

R

)2

− 3x2

]
∂2

∂θ2
Yn0(θ, φ)

}
, (23)

τφφ =

∞∑
n=2

Gn(r)

{
n

[
(n + 2) x2 − n

(RB

R

)2]
Yn0(θ, φ)

−
[(RB

R

)2

− 3x2

]
∂2

∂θ2
Yn0(θ, φ)

}
. (24)

For zero depth of the surface layer, we thus have RB = R, and
these expressions become Eqs. (36)–(39) in CV1.

2.3.2. Time-dependent part of the thermal stress tensor

The time-dependent (tesseral) part of the stress tensor cannot be
expressed in a compact form similar to the time-independent part
above. However, it can be obtained from a system of Eqs. (42)
and (43) in CV1 (k � 0)

τ =
∞∑

n=1

n∑
k=−n

(
Q1

nkτ
S1
nk + Q2

nkτ
S2
nk + τ

P
nk + τ

T
nk

)
exp(ikωt), (25)

where two independent spheroidal modes τS1
nk and τS2

nk are given
by Eqs. (44)–(55) in CV1. The stress corresponding to the par-
ticular solution τP

nk, and stress caused by volumetric expan-
sion in the generalized Hook’s law τT

nk, can be computed from
Eqs. (56)–(64) in CV1, where only the coefficient Cnk(θ0) is now
given by Eq. (17) above. The coefficients Q1

nk and Q2
nk can be ex-

pressed using Eqs. (65)–(67) in CV1, but we have to substitute
ZB

nk for Znk and RB for R.

3. Summary of model parameters

To apply our theory either to specific bodies or their populations,
such as known meteoroid streams, we must use specific values
for a number of free parameters in the formulae outlined above.
Since we do not aim to provide a complete analysis of this pa-
rameter space in this paper, we fixed values for many of them,
thus testing the dependence of the results on a very restricted set
of parameters. Interested readers may wish to change our fixed-
parameter values and recompute our results for their particular
applications.

We assume that the monolithic core has a composition of car-
bonaceous or ordinary chondrite materials with the same thermal
properties (bulk density ρ, thermal conductivity K, heat capac-
ity c) and mechanical properties (Lamé’s parameters λ and μ,
linear coefficient of thermal expansion α an uniaxial tensile
strength σt) as summarized in CV1, Sect. 2.5. While these pa-
rameters depend on temperature (Eqs. (22)–(32) in CV1), here
we only recall their values for 300 K: ρ = 3560 kg m−3, K =
3.05 W m−1 K−1, c = 847 J K−1 m−1, λ = 36.2 GPa, μ = 29.1
GPa, α = 9.69 × 10−6 K−1and σt = −32 MPa for ordinary
chondrite. Similarly, values of these parameters for carbona-
ceous chondrite are: ρ = 2260 kg m−3, K = 0.75 W m−1 K−1,

Fig. 1. Geometric parameters of our model: the orbital plane of mete-
oroid’s heliocentric motion defines the xy plane of our reference system
with x-axis oriented toward the perihelion Π. Instantaneous position of
the body along its orbit is given by the true anomaly v. The orientation
of the spin axis eω is specified by longitude λ and latitude β; the solar
colatitude in the body-frame, with the z′-axis along eω, is denoted θ0.

λ = 17.2 GPa, μ = 17.6 GPa, σt = −2 MPa. Values of c and α
are assumed to be the same as for the ordinary chondrites.

As described above, the particulate (granular) nature of the
surface layer, makes it insensitive to the mechanical stress. To re-
duce the number of free parameters, we assume that the thermal
parameters c and ρ in the core and the surface layer are identi-
cal. This assumption is partly justified because the thermal stress
tensor is less sensitive to these parameters (which appear only in
terms of the penetration depths �d1 and �d2), while the principal
parameter is the ratio of the thermal conductivity in the surface
layer to that in the core ξ = K1/K2 (Eq. (1)). We consider three
test cases: (i) ξ = 1, which permits a comparison with the results
in CV1 and thus a reference solution where effects studied in this
paper are not included; (ii) ξ = 0.5; and (iii) ξ = 0.1, which cor-
respond to an increasing level of thermal shielding of the core,
presumably by a finer-grain surface layer. We find that these ra-
tios are plausible, given the various laboratory measurements of
granular and monolithic meteoritic samples (e.g., Yomogida &
Matsui 1983; Beech et al. 2009; Opeil et al. 2010).

Parameters related to the heliocentric motion of the body and
orientation of its spin axes are shown in Fig. 1. For the sake
of simplicity, we assume that the orbital plane coincides with
the xy plane of the reference system and that the x axis is ori-
ented toward the perihelion (Π) direction. The z axis is aligned
along the orbital angular momentum and no restrictions on the
semimajor axis and eccentricity are made. The direction of the
spin axis eω is defined in our reference system by longitude
λ ∈ 〈0◦, 360◦) and latitude β ∈ 〈90◦,−90◦〉. The solar colatitude
θ0 ∈ 〈0◦, 180◦〉 is the angle between spin axis and the direction
to the Sun. Defining the true anomaly, v, as the polar angle of
the position vector of the body in the xy plane, we thus have a
simple relation

cos θ0 = − cos β cos (λ − v). (26)

The spin frequency f for all cases studied below is assumed to
be inversely proportional to the size D, such that

f � 3 D−1, (27)

where D is the diameter of the body in meters and f is the
frequency in Hertz (see Eq. (68) in CV1). This relationship

A25, page 4 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117697&pdf_id=1
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between f and D roughly matches the observations of centime-
ter to decimeter sized meteoroids reported by Beech & Brown
(2000). With this value of f for D ≤ 10 cm meteoroids, the
time-dependent part of the temperature and thermal stress ten-
sor fields are pushed to a very narrow slab near the surface. The
static parts of the fields thus approximate the total fields very
well in most of the volume of the body. We nevertheless use the
complete formulation in what follows.

4. Results

In CV1, we assumed that the destruction of meteoroids caused
by thermal stresses takes place when the Griffith criterion of the
brittle fracture is fulfilled at the center of a homogeneous spher-
ical meteoroid. For the given material parameters, we sought the
heliocentric distance, meteoroid size, spin axis orientation, and
rotation frequency for which a homogeneous and isotropic body
cannot exist unfractured. However, the real process of destruc-
tion of the meteoroid by thermal stresses is more complicated.
As the meteoroid approaches the Sun, thermal stresses first ex-
ceed the material strength near the surface. One may then con-
sider two possible end-state situations:

– The fractured material at the surface is immediately removed
by the transformation of elastic energy into kinetic energy
during the crack formation (e.g., Jewitt & Li 2010), or ow-
ing to centrifugal forces. In this case, the thermal stress re-
sults in erosion of the meteoroid, reducing its size. We plan
to consider this possibility in more detail in a forthcoming
paper.

– The fractured material remains at the surface, possibly ow-
ing to either molecular sticking (Scheeres et al. 2010) or an
insufficiently interconnected system of fractures. This pro-
cess leads to a gradual growth of the fractured volume near
the surface, the physical and mechanical properties of which
may be different from those of the core (interestingly, recent
laboratory experiments have demonstrated that the thermal
fatigue is able to disintegrate the surface of NEAs, produc-
ing a low-conductivity regolith layer, Delbo et al. 2011). The
fractured part of a meteoroid propagates deeper into the body
as it approaches the Sun. The meteoroid is no longer a ho-
mogeneous body and description of thermal stresses by the
theory from CV1 is not self-consistent.

In this paper, we adopt the second possibility and explore its
consequences by using the two-layer thermo-mechanical theory
developed in Sect. 2. The assumption of an exactly spherical
surface shell is obviously only a simplification given the non-
spherical heating of the surface by solar radiation. As an exam-
ple, Fig. 2 shows four snapshots of the thermal stress field in the
meridional plane of a spherical, 10 cm size Geminid meteoroid
during its approach to the perihelion. Unlike below, in this ex-
ample we only use the theory of CV1 assuming a homogeneous
body. The dashed regions denote areas where the brittle fracture
criterion has been satisfied and fractures are being built. The top
two panels show how the surface layer gradually grows. Neither
of these cases are exactly spherical, but taking their deepest point
near the rotational poles for h would provide a reasonable ap-
proximation. Closer to perihelion, as represented in bottom pan-
els, the fractured domain is of a more complex shape. However,
in the real situation the previously formed insulating surface
layer may prevent the damage propagating to close to the center
of the body. We adopt this more precise modeling in the fol-
lowing sections, thus taking a record of the thermo-mechanical

Fig. 2. Propagation of a damaged volume, where the thermal stress ex-
ceeds the material strength (dashed areas), inside a meteoroid approach-
ing the Sun. We show here the situation in the meridional plane with the
spin pole (λ = 0◦, β = 45◦) pointing up and use the homogeneous-body
model from CV1 for simplicity (because the time-dependent part of the
stress field is pushed to a very small surface shell, not seen in this res-
olution, the global stress field in the body is roughly axisymmetric and
accurately approximated by the zonal part of the stress field). The 10-
cm size meteoroid was placed on a Geminid-stream orbit and assumed
to have the thermal and mechanical parameters of carbonaceous chon-
drites. At large heliocentric distance, the damaged zone first takes a
shape of polar caps (top and left panel a)), which then propagate more
deeply into the body. At a distance of 0.35 AU from the Sun, the frac-
tured volume has a shape of a near-spherical shell, which is thicker at
the poles (top and right panel b)). Closer to the perihelion, bottom pan-
els, the damaged zone takes a more complex shape. However, when the
previously developed surface insulating layer begins to thermally shield
the core (used in Sects. 4.1 to 4.3), the damaged zone will stop propa-
gating deeper to the center. The arrows indicate the direction toward the
Sun.

state of the body along its approach to the pericenter. Performing
a number of experiments, we found that our spherical-shell ap-
proximation only fails when θ0 is close to its extreme values of
0◦ or 180◦, i.e. when the spin axis of the body is directly oriented
toward the Sun. In this case, the brittle failure quickly propagates
towards the center along the equatorial zone of the body and is
not accurately represented by a spherical shell. Fortunately, these
configurations represent only a minority of our studied cases.

4.1. Surface layer depth for β = 90◦

To obtain an indication of the protection role of the surface insu-
lating layer, we first perform a simple numerical experiment. We
consider meteoroids of different size D approaching the Sun at
distance d along an elliptic orbit, but fixing their spin axis to be
perpendicular to the orbital plane (thus β = 90◦, implying also
θ0 = 90◦). During the solar approach, we study the depth h(D, d)
of the surface layer to prevent any brittle fracture deeper in the
core.
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The method for determining h(D, d) is as follows. Selecting
D in the range from 1 mm to 10 m4, we proceed from a large
enough d value, such that the body does not suffer any ther-
mal damage, to its smallest value 0.1 AU (as if the body was
approaching the Sun). We start with a homogeneous model of
CV1 and verify whether the thermal stresses in the whole vol-
ume of the body are smaller that the condition for brittle frac-
ture. Proceeding toward smaller d values, we note the onset of
the damage zone near the surface. From this value of d, we use
our two-layer model from Sect. 2 and iteratively solve for a depth
h, such that the core remains undamaged. We perform three dif-
ferent runs for three different values of the ξ = K1/K2 parameter
discussed above. We then proceed toward the minimum value of
d and record all of the h(d,D) values. For the sake of simplicity,
we evaluate the ratio h(d,D)/R, i.e. scale the necessary surface
layer depth by the radius of the body.

Our results are shown in Fig. 3. The onset of the surface layer
formation, which is independent on the ξ value, is shown by the
curve labeled “0.0”. The surface layer depth increases with (i)
increasing size of the meteoroid, and (ii) decreasing heliocentric
distance, owing to the stronger solar radiation flux. Most im-
portantly, however, h(d,D)/R also depends on ξ. As expected,
the lower the value of ξ, the smaller h(D, d) value is needed to
protect the core from damage. In other words, less conductive
surface layer results in smaller temperature gradients in the core
and thus smaller thermal stress field. For instance, only a ∼20%
surface layer is able to protect meteoroids of all considered sizes
down to ∼0.15 AU heliocentric distance for ξ = 0.1, while a
∼25−50% surface layer, depending on D, is needed for ξ = 0.5.
We can also compare our results with Fig. 5c in CV1, which
shows the value of the thermal stress and destruction at the cen-
ter of a homogeneous meteoroid with the same spin axis orienta-
tion and the same material properties. We find that the formation
of the surface layer starts when the value of the thermal stress
at the center of the homogeneous body is still below 1 MPa.
The destruction of the center of homogeneous meteoroid starts
when the present model of two-layer body reaches h � 0.36R
for ξ = 1, h � 0.3R for ξ = 0.5, and h � 0.1R for ξ = 0.1,
all three of these cases preventing material failure in the cen-
ter. This implies that the ratio of the fractured volume to the
whole volume Vdest/V in these cases is �74%,�66%, and �27%,
respectively.

If the meteoroid material were ordinary chondritic, the for-
mation of surface layer would occur only for bodies larger than
∼1 cm at heliocentric distances smaller than ∼0.1 AU.

4.2. Surface layer depth for general spin axis orientation

For a general spin axis orientation, the solar colatitude θ0
changes in accordance with orbital motion of the meteoroid
(Eq. (26)). As a result, the required depth h of the surface layer
protecting the core from damage is no longer be a function of
only D and d (and, obviously, ξ), but depends also on the pa-
rameters of the spin axis orientation, namely longitude λ and
latitude β. We thus explore the dependence of the surface layer
depth h on these two parameters. In particular, we determine the
h(λ, β; D) that would develop for Geminid-orbit meteoroids, thus
allowing d to decrease to a perihelion distance of 0.14 AU, for a

4 Given possibly a low thermal conductivity value in the surface layer,
our model is acceptable only for sizes smaller than ∼10 cm, such that
the estimate depth of the seasonal thermal wave is much larger than the
size of the body. We, however, use a somewhat larger range to compare
our results with those in CV1.

Fig. 3. Depth of fractured surface layer h (isolines), expressed as a frac-
tion of meteoroid’s radius R, which prevents propagation of the damage
deeper into the core in the plane of heliocentric distance d (abscissa) and
size D of the body (ordinate). The core has the thermal and mechanical
properties of a carbonaceous chondrite and the spin axis is perpendicu-
lar to the orbital plane (β = 90◦, implying also θ0 = 90◦). Three values
of the ratio ξ of the thermal conductivity in the surface layer K1 to that
in the core K2 are tested: ξ = 1 (top panel), ξ = 0.5 (middle panel), and
ξ = 0.1 (bottom panel).

different size D after one revolution about the Sun. To illustrate
our results, we consider three sizes of D = 1 mm, D = 1 cm, and
D = 10 cm, and three values of the ξ parameter, namely ξ = 1,
ξ = 0.5, and ξ = 0.1 as before.
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Fig. 4. Depth of fractured surface layer h (isolines), expressed as a fraction of meteoroid’s radius R, which prevents propagation of the damage
deeper into the core shown here as a function of the spin axis orientation parameters, longitude λ (abscissa) and latitude β (ordinate). Three
different size values, D = 10 cm (upper row), D = 1 cm (middle row), and D = 1 mm (bottom row), and three different values of the ξ parameter,
ξ = 1 (left column), ξ = 0.5 (middle column), and ξ = 0.1 (right column) are considered. The core has the thermal and mechanical parameters of a
carbonaceous chondrite, and minimum considered heliocentric distance along the orbit is 0.14 AU (that of the Geminid meteoroid stream).

In practice, our procedure is as follows. For a given spin
axis parameters and a pair D and ξ values from our matrix, we
consider heliocentric distance starting from the aphelion of the
Geminids’ orbit and decreasing with a small stepsize to the peri-
center. At each step of this algorithm, we determine the surface
layer depth h necessary to shield the core from damage by ther-
mal stresses. This value is a seed for the iteration of the h value
at the next step, namely a smaller heliocentric distance.

The results are shown in Fig. 4; the consecutive panels are
for different sizes D and different values of the ξ parameter. As
in Fig. 3, the labels of different isolines denote the surface layer
depth at perihelion scaled by the radius of the meteoroid, h/R.
We show the values only up to a maximum h/R = 0.5, since
larger values of this parameter would perhaps be unrealistic (we
note that for h/R = 0.5 approximately 88% of the body volume
is represented by the damaged, surface layer). The results may
be summarized in several conclusions:

– While there is some dependence on spin axis longitude λ, the
value of the spin axis latitude β is far more important. The
greatest damage to the body occurs when |β| ≤ 45◦ and, in
particular, when the spin axis is in the orbital plane β = 0◦. In
contrast, values |β| ≥ 45◦ imply that there will be minimum
damage to the body.

– As expected, the smaller the ξ value, the smaller the damage
to the meteoroids even for the largest meteoroid size (upper

Table 1. Basic orbital data of the major meteoroid showers used in
our study: semimajor axis a and perihelion distance q (e.g., Jenniskens
2006).

Meteor shower name a (AU) q (AU)

Southern δ-Aquariids 1.971 0.067
Geminids 1.357 0.141
(Dec.) Monocerotids 50.7 0.193
Northern Taurids 2.12 0.350
α-Monocerotids (30) 0.448
η-Aquariids 11.6 0.545
α-Capricornids 2.618 0.602
(Oct.) Draconids 3.572 0.997

right panel). The ξ ≤ 0.5 value ensures that centimeter to
decimeter size bodies survive the whole revolution about the
Sun with reasonable thickness of the surface layer. For small
enough bodies, such as the millimeter case in the bottom row
of Fig. 4, meteoroids tend to survive for a wider range of
ξ values.

– As suggested by the analysis of β = 90◦ in Sect. 4.1, the
largest bodies are more susceptible to thermal damage than
small objects.
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Fig. 5. Cumulative number of meteoroids (ordinate) with a surface layer depth equal to or greater than h/R (abscissa), where R is the radius of
the body. The data on the ordinate are given in percents of the total population initially released along the orbit of the stream. The spin axes were
assumed to be isotropic and three sizes of meteoroids were used: (i) D = 10 cm (solid line); (ii) D = 1 cm (dotted line); and (iii) D = 1 mm
(dashed line). When the dotted or dashed lines are not plotted, no insulating surface layer develops; ten-centimetre size meteoroids of the Southern
δ-Aquariids stream (top and left panels) are all destroyed by the thermal stresses. Meteoroid showers, denoted by the IAU three-letter code, are
SDA for Southern δ-Aquariids, GEM for Geminids, MON for Monocerotids, NTA for Northern Taurids, AMO for α-Monocerotids, ETA for
η-Aquariids, CAP for α-Capricornids and DRA for (Oct.) Draconids. The panels from top to down and left to right are ordered according to the
increasing perihelion distance, i.e., smallest for the Southern δ-Aquariids (top and left panel) and largest for the (Oct.) Draconids (bottom and
right panel).

4.3. Distribution of surface layer depths for various meteoroid
streams

In Sects. 4.1 and 4.2, we tested the dependence of our results
for our new theory on various subset of parameters such as he-
liocentric distance, size, or spin axis orientation. Here, we at-
tempt to use these parameters on a population scale, namely to
evaluate the typical degree of the surface damage for meteoroids
in several streams with perihelion distance smaller than 1 AU
(Table 1). For the sake of simplicity, we assume an isotropic
distribution of fixed spin axes, that the thermal and mechani-
cal parameters of the core are those of carbonaceous chondrites,
and fix the ratio of the surface layer to core conductivities to
be ξ = 0.5. The association of these streams to either active
or dormant comets (e.g., Jenniskens 2006) makes our choice
of material parameters plausible. In a more detailed approach,
one should however analyze the observational data of meteoroid
strength for different streams and use it to refine these calcula-
tions. We leave this in-depth analysis to a forthcoming paper,
giving here only an outline of the approach. We also use three
representative meteoroid sizes, 1 mm, 1 cm, and 10 cm, while a
more detailed study would need to consider a more finely sam-
pled range of sizes.

Our procedure is as follows. We release 171 meteoroids of a
given size and material parameters at the aphelion of the mete-
oroid stream orbit. Initially, all meteoroids are assumed to be ho-
mogeneous without a particulate surface layer. We give them the
random orientation of spin axes in space, and use the techniques
developed in the previous Sections to allow them approach the
Sun along their orbit to the pericenter of their orbit. At each step,
we consider the mechanical state of each of the bodies from the
previous step and determine the thermal stress field in their vol-
ume. We observe whether the condition of brittle fracture has
been satisfied anywhere in the homogeneous core, and if so, we
iterate a new depth of the surface layer to prevent any further
core damage. When particles return to the aphelion of their or-
bit, each of them has a certain depth of the surface layer, de-
pending on the history of damage propagation. We then use this

information to compute a cumulative distribution of meteoroids
with surface layer depth larger than h/R (where R is the initial
radius of the bodies and the distribution is normalized by the
number of initially released particles). As above, we do not take
into account any material loss from the surface.

Our results for all streams listed in Table 1 are shown in
Fig. 5. We give the h/R value up to a 0.5 limit, because – as
noted above – cases with larger values of this ratio should be
effectively considered as disintegrated meteoroids. As expected,
particles in streams with the smallest of perihelia distances are
much more damaged than particles in streams with the largest
perihelia distances. For instance, the formation of thick surface
layer is the most important for southern δ-Aquariids, for which
most of the centimeter- to decimeter- sized meteoroids would
have been destroyed (or have h/R > 0.5). Even all 1 mm size
meteoroids in this stream would have h/R > 0.2 and about∼60%
of them would have h/R > 0.5. For Geminids, the second clos-
est approaching stream, our results would predict the formation
of significantly thick surface layer. All 10 cm meteoroids would
have h/R > 0.35 and ∼60% of them would have h/R > 0.5.
These fraction values would decrease toward smaller particles,
with none of 1 mm meteoroids having h/r > 0.4 and ∼60% of
them having h/R < 0.05. Small, 1 mm size particles in other
streams would not suffer any damage by thermal stresses, and
the 1 cm particles would be partly damaged for Monocerotids
and Northern Taurids. The population of 10 cm sized meteoroids
suffers partial damage for streams with more distant perihelion
distances, but October Draconids with q � 1 AU are basically
intact.

Our results depend on the assumed ratio of the surface-layer
to core thermal conductivity ξ. A smaller value of ξ would in-
crease the survival rate of the meteoroids and vice versa.

5. Discussion and conclusions

We have developed an analytical theory for thermal stress in
small (≤10 cm), spherical, and uniformly rotating meteoroid
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with a monolithic core and particulate surface layer. The thermal
stress is caused by inhomogeneous temperature field induced by
solar heating. This theory was used to provide a more realistic
description of thermal stress influence on meteoroids in the so-
lar vicinity. As the meteoroid approaches the Sun, these stresses
first exceed the material strength at the surface and create a frac-
tured layer. In this paper, we adopted a simplifying assumption
that inter-molecular forces are able to retain the surface layer,
despite the competing effects of thermal lifting and centrifugal
forces. As a result, in one or a few revolutions, a particulate sur-
face layer develops and is able to thermally shield the core, pre-
venting any further damage by thermal stresses.

The depth of a particulate layer depends on body size, per-
ihelion distance, spin axis orientation with respect to the Sun,
and the material properties of the meteoroid. The dependence on
material properties had never been studied in detail. We found
that the depth of fractured surface layer increases with increas-
ing body size, it increases with decreasing angle between the
spin axis and the orbital plane, and decreases with decreasing ξ
(ratio of thermal conductivity of the surface layer to the core).
The surface layer depth also increases with decreasing perihe-
lion distance. For example, the formation of fractured surface
layer starts at ∼0.12 AU for a 1 mm body, at ∼0.27 AU for a 1
cm body and at ∼0.6 AU for a 10 cm body with a spin axis per-
pendicular to the orbital plane.

In Sect. 4.3, we presented the expected population-averaged
results for several major, low-perihelion streams. The most af-
fected meteoroid streams seem to be δ-Aquariids, Geminids, and
Monocerotids. More work is indeed needed to apply these results
to observations.

The quantitative results given above are valid for carbona-
ceous chondrites with tensile strength 2 MPa at 300 K (see
Sect. 3). The tensile strength of ordinary chondrite material can
however be one order of magnitude higher (Medvedev et al.
1985), which would decrease the significance of the destruction
of the surface by the thermal stress and shift its action closer to
the Sun. However, the tensile strength of the parent material of
cometary meteoroids is probably at least one order of magnitude
smaller (e.g. Borovička 2006). The thermal stress is therefore
more important for these bodies than for chondrites5. The ther-
mal conductivity also affects our results – the higher the value,
the smaller the temperature differences inside the meteoroid and
therefore the smaller the thermal stresses. On the other hand,
the value of the heat capacity does not affect our results signif-
icantly, at least when it remains in a reasonable range about the
considered value (say within an order of magnitude).

The thermal stress weathering (which is caused by cyclic
temperature variation) affects not only the surface of the Earth’s
dry deserts, Mercury, or NEAs (Hall 1999; Molaro & Byrne
2011; Dombard et al. 2010). Despite the dependency of our
quantitative results on poorly known material properties, our re-
sults indicate that thermal stresses generated by inhomogeneous
temperature field are also able to damage the surface of small
meteoroids6 at sufficiently small perihelion distances.

Here we list a number of problems that warrant closer in-
spection and a more extensive analysis in the future:

– Our assumptions about the rotation state of meteoroids have
been very simplified and need to be revisited. An isotropic
distribution of fixed spin axes is an idealized one since their

5 For example, the fractured surface layer develops even on 1-mm me-
teoroids at 1 AU, if their tensile strength is 0.2 MPa and thermal con-
ductivity is 0.2 W m−1 K−1 (at 300 K).
6 At least in the size range of 1 mm–10 cm.

orientation may evolve in time, for instance by means of ra-
diation torques (e.g., Breiter et al. 2010). The same effects
may also decelerate the rotation of a fraction of meteoroids
in the stream. Many of our results do not directly depend
on the adopted rotation rate, but since the time-independent
zonal part of the thermal stress field is usually dominant one,
this may not be true for particles that rotate slowly. In this
case, the time-independent tesseral part of the stress field
will play an important role and, as shown in CV1, the bod-
ies would then experience much larger thermal gradients and
thus stress.

– Meteoroid streams may not be composed of particles of iden-
tical thermal and mechanical properties, but the ejected me-
teoroids from the parent comet may instead have material
parameters spanning a certain range of values. In this way,
thermal stresses may act as a selective process: for instance,
weaker large meteoroids may be more likely to be removed
than their stronger neighbors.

– The surface layer was assumed to be stress-free, which ap-
plies only to highly particulate materials. Henceforth, our ap-
proach would need to be modified if the crack system of the
surface, damaged layer were insufficiently interconnected. A
more precise way of describing the evolution of the fractured
volume would be a numerical modeling based on fracture
mechanics.

– While the retention of the surface layer by inter-molecular
forces is plausible, it also requires an analysis. If the particu-
late surface layer were instead removed by either centrifugal
forces or the elastic energy release that occurs during the the
crack formation (e.g., Jewitt & Li 2010), results would be
modified. In this approach, large particles would be eroded
and transferred into smaller ones, directly modifying the size
distribution of the meteoroid population.

– The surface layer of particulate, poorly bound material on
meteoroids that is able to form at Earth’s heliocentric dis-
tance on weak cometary meteoroids, would have implica-
tions for the erosion and fragmentation of these bodies dur-
ing their flight through Earth’s atmosphere. A detailed analy-
sis would be needed to verify whether they are in agreement
with observational data.

All of the aforementioned topics would be interesting pathways
to help us generalize our current model, and should be consid-
ered in the future.
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Appendix A: Solution of the Fourier equation

Here we provide more details about the analytical solution of the
temperature T distribution for a spherical body with a core of ra-
dius RB and a surface layer of thickness h (Sect. 2.2). Assuming
that all thermal parameters are constant in each of the two parts
of the body and the solution is periodic (with a period 2π/ω),
we can derive a general solution of the heat diffusion (Fourier)
Eq. (3) of the form:

T (r, θ, φ, t) =
∞∑

n=0

n∑
k=−n

tnk(r, t) Ynk(θ, φ). (A.1)

The monopole part (n = 0) corresponds to the average temper-
ature Tav = t00/

√
4π, and the terms from the dipole contribute
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to the temperature variations ΔT (r, θ, φ, t) in the body. The tem-
perature gradients in the body ∇(ΔT ) are of major importance
to our work, because they directly provide the mechanical stress
field in the body (e.g., CV1).

General solution of the Fourier equation.– In both of the two
parts of the body, the temperature field can be developed in the
series (A.1) given above. To distinguish the two solutions, we
use tc

nk(r, t) and tsl
nk(r, t) for the amplitude functions in the core

and the surface layer. The linearity of the Fourier Eq. (3) grossly
simplifies the solution of the t-functions with the following re-
sults:

– zonal terms with k = 0 are time-independent and given by

tsl
n0 (r, t) = An0 rn + Bn0 r−(n+1), (A.2)

and

tc
n0 (r, t) = Cn0 rn; (A.3)

– tesseral terms with k � 0 have frequency kω and read

tsl
nk (r, t) =

[
Ank jn

(
z′k
)
+ Bnk yn

(
z′k
)]

exp (ikωt), (A.4)

where z′k =
√−ik r/�d1, and

tc
nk (r, t) = Cnk jn (zk) exp (ikωt), (A.5)

where zk =
√−ik r/�d2.

The tsl
nk(r, t) terms are the most general solution of the Fourier

equation in spherical coordinates, while the tc
nk(r, t) are reduced

by eliminating the singular term at r = 0. We discuss the co-
efficients A, B, and C, that are determined by the boundary
conditions.

Boundary conditions.– Apart from the regularity of the solution
that we previously took into account, we have to satisfy three
additional boundary constraints (Sect. 2.2). The energy conser-
vation condition in Eq. (4) is the most complicated of them, and
troubles the analytic solution by the fourth-order emission term
εσSBT 4. As in CV1, we circumvent this problem by performing
a linearization. Assuming ΔT � Tav and retaining only terms of
the first order in ΔT , Eq. (4) simplifies to

√
2 tsl

nk (R, t) +
K1

εσSBT 3
�

⎡⎢⎢⎢⎢⎣∂tsl
nk (r, t)

∂r

⎤⎥⎥⎥⎥⎦
r=R

= T� bnk (θ0). (A.6)

The linearity of the resulting boundary condition prevents any
mixing of the constraints on tsl

nk coefficients with different de-
gree n and order k. The boundary conditions (5) and (6) at the
boundary between the core and the surface layer are linear and
thus provide the simple constraints

tsl
nk (RB, t) = tc

nk (RB, t) , (A.7)

and

K1

⎡⎢⎢⎢⎢⎣∂tsl
nk (r, t)

∂r

⎤⎥⎥⎥⎥⎦
r=RB

= K2

[
∂tc

nk (r, t)

∂r

]
r=RB

, (A.8)

Equations for A, B and C.– We use now Eqs. (A.6) to (A.8) to
derive the integration constants Ank, Bnk, and Cnk. Plugging in
the solution (A.2) into Eq. (A.5), we obtain

bn0(θ0)√
2
= An0

(
R
�d1

)n

[1 + nΛ1] (A.9)

+Bn0

(
�d1

R

)n+1

[1 − (n + 1)Λ1] ,

Cn0

(
RB

�d2

)n

= An0

(
RB

�d1

)n

+ Bn0

(
�d1

RB

)n+1

, (A.10)

n Cn0

(
RB

�d2

)n

= ξ
[
nAn0

(
RB

�d1

)n

(A.11)

− (n + 1) Bn0

(
�d1

RB

)n+1]
for the zonal terms (k = 0), and

bnk(θ0)√
2
= Ank jn

(
Z′k

) [
1 + Λ1ψn

(
Z′k

)]
(A.12)

+Bnk yn

(
Z′k

) [
1 + Λ1φn

(
Z′k

)]
,

Cnk jn
(
ZB

k

)
= Ank jn

(
Z′Bk

)
+ Bnk yn

(
Z′Bk

)
, (A.13)

Cnk

[
d jn
dz

]
z=ZB

k

= ξ
�d2

�d1

[
Ank

d jn
dz
+ Bnk

dyn

dz

]
z=Z′Bk

(A.14)

for the tesseral terms (k � 0). In each of these systems of three
equations, we may use the last two to eliminate Cn0 and Cnk,
and then couple the resulting equation with the first one to solve
(An0, Bn0) and (Ank, Bnk). Once knowing the A- and B-constants,
we may finally solve the C-constant in either of the two cases.
After some straightforward algebra, we obtain Eqs. (14) and (17)
in Sect. 2.2.

In principle, our method might be used to describe a more
complicated case of the radial dependence of the thermal param-
eters. We would only have a larger set of spherical shells defined
by the chose radial grid-points. In each of them, the solution
would have a form given by Eqs. (A.2) and (A.4) with its own
pair of A- and B-constants. These would be solved numerically
by extending the set of conditions from Eq. (A.9) to Eq. (A.12),
to an appropriate number of transition boundaries.
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