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ABSTRACT
A compact formula for the stress tensor inside a self-gravitating, triaxial ellipsoid in an arbitrary
rotation state is given. It contains no singularity in the incompressible medium limit. The stress
tensor and the quality factor model are used to derive a solution for the energy dissipation
resulting in the damping (short-axis mode) or excitation (long axis) of wobbling. In the limit
of an ellipsoid of revolution, we compare our solution with earlier ones and show that, with
appropriate corrections, the differences in damping times estimates are much smaller than it
has been claimed.
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1 IN T RO D U C T I O N

Most asteroids rotate in the principal, shortest axis mode: their
spin axes practically coincide with the directions of the maximum
moment of inertia. Only 45 out of almost 5500 entries of the light
curve data base (LCDB) (Warner, Harris & Pravec 2009, March
2012 version) refer to objects that are possible non-principal axis
(NPA) rotators, also known as ‘tumblers’ or wobbling objects. With
one exception of 253 Mathilde, tumblers are rather small, with
estimated diameters below 20 km, but even in this size range they
belong to a minority among about 2000 objects of this size with
known rotation periods.

Attitude dynamics of asteroids is shaped mainly by gravitational
torques (exerted either systematically by the Sun and giant planets
or sporadically during encounters with other bodies), collisions,
optical and thermal radiation recoil torques, i.e. the Yarkovsky–
O’Keefe–Radzievskii–Paddack (YORP) effect, and – last but not
least – by energy dissipation due to inelastic deformations. As far as
NPA rotation is concerned, collisions and close approaches trigger
tumbling (Scheeres et al. 2000; Paolicchi, Burns & Weidenschilling
2002). Small fragments created from collisions of larger objects are
also expected to start their lives in an NPA rotation state. The YORP
effect also excites wobbling (Rubincam 2000; Vokrouhlický et al.
2007; Breiter, Rożek & Vokrouhlický 2011), whereas – save for
possible resonances – distant body gravitation torques are neutral
in this respect. Thus, even accounting for observational selection
effects mentioned by Pravec et al. (2005), the dissipative damping
seems to override other effects in most of the cases.

The mechanism of wobble damping was first identified by
Prendergast (1958). In NPA rotation, the centrifugal acceleration
oscillates periodically, deforming each body fragment. The de-
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formation is not perfectly elastic, so some fraction of fluctuating
strain–stress energy is dissipated during each precession period and
converted into heat. Draining the elastic energy affects the kinetic
energy of rotation which also decreases. Thus, the rotation axis is
driven towards the minimum energy state – rotation around the prin-
cipal axis of maximum inertia. The angular momentum, however,
is not affected by the energy dissipation, as far as we ignore thermal
radiation and consider the body as an isolated system. Prendergast
provided a general form of the energy dissipation rate equation for
an oblate spheroid1 based upon the solution of 3D elasticity equa-
tions and the assumption that a constant fraction of the oscillating
part of elastic energy is dissipated at each precession period. The
latter assumption defines the now commonly adopted ‘Q-model’.

Burns & Safronov (1973) built upon the general idea of Prender-
gast using the combination of a spheroidal shape for rotation and
a bent slender beam approximation for elastic energy. Their simple
estimate of spin-axis alignment time is still in use – sometimes in
the version provided by Harris (1994). However, some scepticism
towards it has been brought by observations of asteroids that do
rotate around the principal axis in spite of having Burns–Safronov
damping time estimate longer than the age of the Solar system.
Meanwhile, the problem migrated to geophysics (e.g. the Chan-
dler wobble damping), rotation dynamics of comets and interstellar
dust grain physics. The last branch, stemming from Purcell (1979),
was finally brought back to the dynamics of comets and asteroids
with the sequence of papers by Efroimsky and Lazarian (Lazarian
& Efroimsky 1999; Efroimsky 2000, 2001, 2002; Efroimsky &
Lazarian 2000). Their main point of novelty is the attempt to dis-
cuss a triaxial object, represented by a rectangular prism (brick), by
solving the complete, quasi-static stress tensor equation (Efroimsky
2000). Later on, Molina, Moreno & Martı́nez-López (2003) issued

1 In this paper, we use the word ‘spheroid’ for an arbitrary ellipsoid of
revolution.
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the damping model for a spheroid using the same starting point as
Prendergast (1958), i.e. solving equations for displacements. The
work of Sharma, Burns & Hui (2005) not only provides the solution
for a spheroid with two different ways of estimating the peak elastic
energy required for the Q model, but it also offers a long discussion
of shortcomings and problems related to earlier papers mentioned
in this paragraph.

Trying to combine the YORP effect with a damping mechanism,
we first intended to use the spheroid-based model of Sharma et al.
(2005) for arbitrary shape asteroids. This approach, mentioned in
Vokrouhlický et al. (2007), became less appealing after a closer
inspection, because of a substantial difference in the dynamics of
bodies with and without axial symmetry. On the other hand, the
solution of Efroimsky (2000), albeit referring to a triaxial shape,
exhibits a number of drawbacks.

(i) As a consequence of using a non-smooth, brick-shaped ob-
ject, the solution of stress equations is inexact, with unknown error
bounds.

(ii) Compatibility conditions are not fulfilled, i.e. there is no
displacement field that might produce the strain tensor found by
Efroimsky (Sharma et al. 2005).

(iii) Rotation dynamics is treated by approximate formulae valid
only in the neighbourhood of the principal axis.

Later on, Efroimsky (2001) suggested the Fourier series involving
the Jacobi nome as a remedy for the last item, but none of subsequent
works has implemented this guideline. In these circumstances, we
have decided to resume the problem at the point where Efroimsky
has abandoned it, not only using the Fourier series to resolve the
last problem, but also applying the triaxial ellipsoid shape which
resolves the first two objections as well. From this point of view,
this work combines a stress solution in the style of Sharma et al.
(2005) with energy dissipation treatment in the spirit of Efroimsky
(2001).

In Section 2, we first formulate the problem of determining the
stress tensor and enumerate the assumptions, hoping to help a reader
less familiar with elasticity problems. Basic facts are recalled ac-
cording the textbooks of Landau & Lifshitz (1959), Saad (2005)
and Wilmanski (2010). Two independent methods (displacement
approach and stress approach) are used to derive and cross-check
the final expressions of the stress tensor.

The Q model of energy dissipation is introduced in Section 3
and applied in Section 4 to derive an energy dissipation rate for-
mula. Section 5 presents wobble damping time equations based
upon the results of Section 4 and some exemplary results. In Sec-
tion 6, we present the reduction to a specific case of a spheroid
where a comparison of our solution with those reported in earlier
works is possible. We use this opportunity to resolve controversies
concerning drastically different energy dissipation rates in various
models.

2 LINEAR ELASTIC MODEL O F ROTATING
DEFORMABLE ELLIPSOID

2.1 Basic terms: strain, stress and body forces

In an arbitrary reference frame, we consider a body as a dense
union of material points. Let the set of position vectors r define a
reference state (configuration); if the points, for any reason, move
with respect to the reference state, their position vectors will be
incremented by displacement vectors u(r, t), dependent on time t

as well as on position r , creating a new state with

r ′(t) = r + u(r, t). (1)

The notion of displacements is too general, because it may include
rigid body motion – translation and rotation of the entire body. The
rigid body motions are discarded by the introduction of the strain e
– the dimensionless, tensor quantity describing deformations of an
infinitesimal volume element in terms of displacement gradient.

Assumption 1. The gradient of displacements is small and its
square can be neglected.

Under the above assumption, the strain tensor e is symmetric by
its definition

e = 1

2

[∇u + (∇u)T
]
, (2)

where the derivatives are taken with respect to the components
of r .

Two kinds of forces have to be considered in a continuous
medium: volumetric forces and surface forces, known also as body
forces and tractions, respectively. Body forces represent the ‘exter-
nal’ force field. In our case, they include self-gravitation and forces
of inertia. They are defined as a vector field and specified in terms
of their volumetric density b(r, t) – force divided by the mass of the
volume element, so the total volumetric force F acting on a body
with density ρ(r) is the result of the volume integral

F =
∫

V

ρb dV . (3)

Surface traction tn is a vector of the force acting on an infinitesi-
mal oriented surface, divided by the area. It describes interactions
between adjacent volume elements or forces applied directly on the
boundary. The surface is defined by its unit normal vector n and
may lie either on a boundary or inside the body. In order to describe
traction at each possible direction of a plane passing through the
point r , each component vector of tn in a given basis is projected
on each component vector of n, creating the Cauchy stress tensor
T. Thus, traction on a surface defined by n can be obtained from T
as (unless explicitly stated, repeated index summation assumed in
all formulae)

tn
i = Tji nj . (4)

The units of stress tensor components are those of force per area.
A good illustration of the two forces of nature is a glass of water:
body force density is constant throughout the volume (homogeneous
gravitational field), whereas tractions define a hydrostatic pressure
– vanishing on the top surface, reaching maximum at the bottom
and depending, as a vector, on the direction of the surface element.

Assumption 2. The deformable body forms an isolated system
without internal heat sources.

The consequences of this assumption are numerous. First of all,
we can use the linear momentum conservation principle in the form
of the Cauchy equation, linking stress tensor, body forces and the
acceleration of mass particles in an inertial reference frame

∇ · T + ρb = ρ (r̈ + ü) . (5)

If the reference configuration is not fixed in space and still we want
it to define the reference frame for the Cauchy equation, then r̈
should be transferred to the body forces b (subtracted) as the density
of forces of inertia. In the case of rotation, some Corolis-type terms
involving u̇ may also appear on the right-hand side (Tokis 1974).

Assumption 3. Quasistatic approximation.
Quasistatic approximation results from setting ü = 0 (and any

Coriolis type u̇) on the right-hand side of (5). This simplification
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was generally adopted since Prendergast (1958) and we proceed
similarly in this work. Having included forces of inertia in b, so that
r̈ = 0, we solve a static equilibrium equation for T:

∇ · T = −ρb(r, t), (6)

although body forces can be time dependent. The validity of equa-
tion (6) can be justified if the solution of the original Cauchy equa-
tion is a sum of ‘free’ acoustic waves of high frequency and forced
vibrations whose frequencies – presumably much lower – come
from b. Free vibrations can be neglected from two points of view:
either we consider them to have zero amplitudes at some initial
moment and then a slow, adiabatic forcing will not excite them
considerably, or – looking forward to the introduction of some dis-
sipation mechanism – the high-frequency terms will be quickly
damped. In both cases, the stationary regime oscillations derived
from (6) will have amplitudes that differ from the actual ones by a
small quantity comparable with the ratio of free to forced vibration
periods.

Assumption 4. Traction-free surface.
Boundary conditions for the stress tensor will be specified as

homogeneous Neumann conditions on the surface of a deformable
body

T n = 0. (7)

The uniqueness of T as a solution of this boundary problem is
guaranteed by general theorems (Saad 2005), but it is not seen
immediately from three scalar equations of (7), even if we add
an additional property: according to Assumption 2, the angular
momentum is conserved, so the stress tensor should be symmetric,
i.e. T = TT. At this point, Molina et al. (2003) felt free to postulate
T = 0, which was harshly criticized by Sharma et al. (2005).

Assumption 5. Hookean constitutive relations.
Let us assume that an asteroid is made of a linear, isotropic elastic

material with adiabatic Lamé shear modulus μ and the Poisson ratio
ν describing the compressibility (incompressible materials have the
maximum possible ν = 0.5). With these assumptions, Hooke’s law
– serving as a constitutive equation – states a linear relation between
the strain and stress:

Tij = 2μ

(
ν

1 − 2ν
δij tr e + eij

)
, (8)

or, conversely,

eij = 1

2 μ

(
Tij − ν

1 + ν
δij tr T

)
, (9)

where δij is the Kronecker delta.

2.2 Stress approach versus displacement approach

Our first goal is to find the symmetric stress tensor T as a solution of
equations (6) with boundary conditions (7). In the stress approach,
the problem is solved directly, by assuming some ansatz on T as a
function of r . But if we accept Assumption 5, additional conditions
have to be imposed. Strain is a mathematically meaningful quantity
if there exists a displacement field that generates it through equa-
tion (2). Even without explicit knowledge of u, this is guaranteed
by Saint Venant’s compatibility conditions (Saad 2005; Wilmanski
2010)

∇ × (∇ × e) = 0, (10)

providing six independent relations between eij. Through the con-
stitutive relations (8), compatibility equations provide the identities

that a meaningful stress tensor has to obey in addition to bound-
ary conditions. In the following section, we show that (7) and (10)
together admit a unique solution for T. The stress approach was
applied by Efroimsky (2000) to the problem of a rotating rectangu-
lar prism. Yet, the postulated form of T satisfied only the Cauchy
equation (6); neither boundary conditions nor compatibility equa-
tions could be satisfied exactly (the latter were not tested at all) and
the level of resulting error remains unknown (Sharma et al. 2005).

Another way of solving the Cauchy equation is the displacement
approach. Using equations (2) and (8), we convert the first-order
differential equation for stress tensor (6) into a second-degree equa-
tion for the displacement vector field u, obtaining the quasistatic
Lamé or Cauchy–Navier equation

μ

[
tr (∇u)

1 − 2ν
+ ∇2u

]
= −ρ b, (11)

with boundary conditions

2ν (∇ · u) n + (1 − 2ν)
[∇u + (∇u)T

]
n = 0, (12)

derived from (7). Equations (11) with only three Neumann boundary
conditions (12) admit a solution u(r, t) which is not unique and an
arbitrary rigid motion may be added to displacements. But since
the definition of e involves differentiation, the resulting strain and
stress tensors are uniquely defined regardless of remaining arbitrary
terms. Following Denisov & Novikov (1987), we will impose two
special conditions: the volume integral of the displacements field
should vanish∫

V

u dV = 0, (13)

and the moment of displacements should also vanish, i.e.∫
V

r × u dV = 0. (14)

These six conditions aim at suppressing rigid translation and rota-
tion terms in displacements and allow a unique determination of u,
which is of minor interest for the stress tensor recovered through
(2) and (8), but gives more insight into the question of the ref-
erence configuration choice and simplify energy and momentum
balance discussion. Up to the ambiguity in the last two conditions,
the displacement approach was taken by Chree (1895), Denisov &
Novikov (1987), Molina et al. (2003) and Sharma et al. (2005).

We can also observe that restoring the term ρ ü in equation (11),
we obtain a quantitative measure of quasistatic approximation error.
The homogeneous solution will involve a frequency close to

ωf =
√

μ

ρa2
, (15)

where a is the radius of an object. If body forces are periodic with
frequency � (the precession frequency in our case) then, with μ of
the order of 10 GPa, the ratio �/ωf may be safely considered small.

2.3 Ellipsoid stress solution

2.3.1 Homogeneous ellipsoid body forces

Let the reference configuration be a homogeneous rigid ellipsoid
with semiaxes c ≤ b ≤ a. Its shape will be described by two dimen-
sionless parameters

h1 = b

a
, h2 = c

b
, (16)
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both taking values 0 < hi ≤ 1. In the reference frame whose centre
coincides with the centre of mass and the basis vectors ei are directed
along the principal axes, the parametric equation of the interior reads

r = q a (sin ϑ cos φ e1 + h1 sin ϑ sin φ e2 + h1 h2 cos ϑ e3) ,
(17)

where 0 ≤ q < 1, 0 ≤ ϑ ≤ π, 0 ≤ φ < 2π. The boundary is
specified by q = 1 and the unit normal vector on the boundary is

n = 
(h1, h2, ϑ, φ)
(

sin ϑ cos φ e1

+ h−1
1 sin ϑ sin φ e2 + h−1

1 h−1
2 cos ϑ e3

)
, (18)

where 
 is some nonzero function; its explicit definition is not
required for the vanishing traction condition (7). According to the
postulate (13), the centre of ellipsoid remains the centre of mass
even in a deformed state.

Given an arbitrary function F (r), the volume integration rule for
an ellipsoid is

∫
V

FdV = a3h2
1h2

1∫
0

q2 dq

π∫
0

sin ϑ dϑ

2π∫
0

F dφ, (19)

where F (r) should be expressed in terms of q, ϑ , φ according to
equation (17).

The body forces acting on a freely rotating ellipsoid include the
forces of inertia due to rotation, with the force density vector

bin = r × ω̇ + ω × (r × ω), (20)

where the time derivative of rotation vector ω is given by Euler
equations

ω̇ = −1 − h2
2

1 + h2
2

ω2ω3e1 + 1 − h2
1h

2
2

1 + h2
1h

2
2

ω1ω3e2 − 1 − h2
1

1 + h2
1

ω1ω2e3,
(21)

and the moments of inertia Ii for an ellipsoid with mass m

I1

ma2
= h2

1

(
1 + h2

2

)
5

,
I2

ma2
= 1 + h2

1h
2
2

5
,

I3

ma2
= 1 + h2

1

5
(22)

are substituted.
Gravitation inside the ellipsoid results in body forces density

bgr = −γ1x e1 − γ2y e2 − γ3z e3, (23)

with constants

γ1 = γm

a3
RJ

(
1, h2

1, h
2
1h

2
2, 1

)
,

γ2 = γm

a3
RJ

(
1, h2

1, h
2
1h

2
2, h

2
1

)
,

γ3 = γm

a3
RJ

(
1, h2

1, h
2
1h

2
2, h

2
1h

2
2

)
, (24)

expressed in terms of gravitation constant γ and Carlson’s elliptic
integral

RJ (u, v, w, p) = 3

2

∫ ∞

0

ds

(p + s)
√

(u + s)(v + s)(w + s)
. (25)

The body forces are linear in coordinates of reference configura-
tion, so we write them as

b = bin + bgr = Br, (26)

with coordinates-independent matrix B having elements

B11 = ω2
2 + ω2

3 − γ1,

B22 = ω2
3 + ω2

1 − γ2,

B33 = ω2
1 + ω2

2 − γ3,

B12 = − 2ω1ω2

1 + h2
1

,

B13 = − 2ω1ω3

1 + h2
1h

2
2

,

B23 = − 2ω2ω3

1 + h2
2

,
(27)

and

B21 = h2
1B12, B31 = h2

1h
2
2B13, B32 = h2

2B23. (28)

2.3.2 More assumptions

Assumption 6. Displacements and their partial derivatives are small
quantities of the first order.

This stronger variant of Assumption 1 allows us to treat the prob-
lem in terms of a first-order approximation. Namely, considering
boundary conditions we can impose them on the reference ellipsoid
surface, neglecting the displacements that deform it. It also means
we do not restrict reference ellipsoids to a figure of equilibrium-type
solutions like e.g. Jacobi ellipsoids (Chandrasekhar 1969). In the
same spirit, we ignore the variations of density due to strain and use
a constant, mean ρ whenever it serves to define displacements or
stress – either explicitly or indirectly (like in body forces bgr).

It turns out that postulates (13) and (14) are inherently related to
the choice of reference configuration that satisfies our assumption.
In the first approximation, i.e. evaluating volume integrals over the
homogeneous reference ellipsoid, we interpret (13) as a postulate
that the centre of mass position is not altered by displacements.
Similarly, equation (14) indirectly leads to the statement that dis-
placement velocities do not contribute to the angular momentum of
the system. Observing that u̇ will depend on Ḃij in exactly the same
form as u depends on Bij (the Cauchy–Navier equation is linear and
does not involve time derivative), we find∫

V

ρ(r × u̇) dV = 0, (29)

as a consequence of (14), provided ρ is constant and the same
bounding surface is used in both integrals, i.e. within the first-order
approximation. In other words, the postulate (14) implies that we use
Tisserand’s mean axes (Munk & MacDonald 1960) as the reference
frame and they approximately coincide with the principal axes of
the reference ellipsoid. Such choice has a property of minimizing
the displacements and their velocities.

Sharma et al. (2005) postulated a pre-stressed state of their ref-
erence spheroid and dropped the constant part of the stress due to
self-gravitation on the onset of their derivation. They were not con-
sequent in this point, because they did not do the same with a mean
part of centrifugal stress. For typical asteroids, both effects may be
comparable. They may even mutually cancel. Thus, we do not find
the pre-stressed state assumption necessary for asteroids, although
it is important for major objects, like the Earth, where it was origi-
nally introduced (Love 1934). On the other hand, its role would be
to provide the rationale for the validity of the six assumptions we
have already made.
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2.3.3 Displacement approach

The problem of finding displacements and stress tensor for a freely
rotating ellipsoid (without self-gravitation) was solved by Denisov
& Novikov (1987). Their impressive solution, apparently worked
out without the support of computer algebra, was based upon the
displacement approach, which helped in establishing the influence
of displacement field on the moments of inertia. Earlier results of
Chree (1895) included the self-gravitation, but only the principal
axis rotation was considered. We used the stress tensor of Denisov
& Novikov (1987) as a test of our solution.

The main advantage of using an ellipsoid is the possibility of
finding the displacement field that satisfies equations (11), (12) and
(26) as a sum of two homogeneous polynomials of degrees 1 and 3,
i.e. a sum of 13 monomials with dimensionless vector coefficients
f :

u = f 100x + f 010y + f 001z + a−2
(

f 003z3 + f 012yz2 + f 021y2z

+ f 030y3 + f 102xz2 + f 111xyz + f 120xy2 + f 201x2z

+ f 210x2y + f 300x3
)
, (30)

which involves 39 arbitrary constants: 9 for the linear part and
30 for the cubic terms. It is instructive to add B21, B31 and B32 as
additional, unspecified parameters, raising the number of unknowns
to 42. Our choice for the form of u is straightforward, although
not necessarily optimal; for example, Sharma et al. (2005) used
the spherical harmonics basis and reported a smaller number of
undetermined coefficients for a spheroid and in an unpublished
solution for the ellipsoid (Sharma, private communication).

Using the ‘brute force’ attack, allowed by the use of an algebraic
manipulator, we formulate 42 independent conditions involving lin-
early the coefficients of u and unspecified elements Bij of the matrix
B – the ones with i ≤ j are parameters and those with i > j are un-
knowns. First, we observe that the centre of mass condition (13) is
satisfied identically by (30). Actually, it has been used implicitly to
drop coordinate-independent and quadratic parts of u.

(i) Equation (11) generates three equations linear in x, y and z.
This amounts to nine equations linking each Bij with five coefficients
of the cubic part of u.

(ii) Postulating equation (14), we obtain three equations – each
linking two coefficients of the linear and six of the cubic part of u.

(iii) The remaining 30 equations result from boundary conditions
(12). They can be derived either directly, i.e. from the polynomial
form of the ellipsoid surface and normal vector (Denisov & Novikov
1987) or by considering trigonometric polynomials of φ and ϑ

resulting from the substitution of equations (17) and (18). In the
latter case, we first equate to 0 the coefficients of sin 3φ, cos 3φ,
sin 2φ and cos 2φ which have a common factor (sin ϑ)3 or (cos ϑ)3;
this provides 12 conditions. Then, in the coefficients of sin φ and
cos φ, we separate the terms with sin ϑ and sin 3ϑ , and set them to
0, obtaining another 12 conditions. Finally, in the part independent
of φ we separate terms factored by cos ϑ and cos 3ϑ resulting in the
last six conditions.

Solving the Cramer system of 42 linear equations, we obtain a
unique solution for the 39 coefficients of u as linear combinations
of Bi,j with i ≤ j. For the remaining three unknowns, we recover
equation (28) which becomes the condition of existence of the
displacements solution (30) for an ellipsoid – slightly more general
than the condition found by Denisov & Novikov (1987).

Unfortunately, the resulting expressions of the displacement field
u are too long to be quoted. Each Bij appearing in f has its own

multiplier – a rational function of h2
1, h2

2 and ν. The only common
factor of all f vectors is ρ a2 μ−1 = ω−2

f . This indicates a link
between Assumptions 3 and 6.

2.3.4 Stress approach

The structure of the displacement field is inherited by the stress
and strain tensors. Each Tij and eij is a linear combination of Bij,
including zero- and second-degree monomials of x, y and z. We
focus the discussion on the stress tensor, because T can be of interest
in studying the breakup of spinning asteroids (e.g. Washabaugh &
Scheeres 2002), whereas strain components eij in the elastic material
are easily found from T using constitutive relations (9).

Introducing

ỹ = y

h1
, z̃ = z

h1h2
, (31)

to benefit from some symmetries, we can write the general form of
T for the elastic ellipsoid as

T = ρ
(
a2A − x2A11 − ỹ2A22 − z̃2A33

−xỹA12 − ỹz̃A23 − xz̃A13
)
, (32)

where ρa2A represents the stress tensor at the origin x = y = z = 0,
and all matrices are symmetric. Thus, the stress definition requires
42 matrix elements to be determined. Their expressions resulting
from direct substitution of displacement solution are unwieldy, so
we decided to apply the second possible way of determining T –
the stress approach. The quasistatic equilibrium condition (6) does
not involve A and leads to nine linear relations between Aij and the
body force matrix B. Boundary conditions (7) generate 30 relations
between the elements of A and Aij . However, the resulting set of 39
linear equations admits solutions only if conditions (28) are satisfied
and then its rank drops to 36 allowing a unique solution for all Aij

as linear combinations of A and B elements.
The ‘central stress’ A results from compatibility equations (10),

forming two independent subsystems of equations:

∂2e11

∂y∂z
= ∂2e12

∂x∂z
− ∂2e23

∂x2
+ ∂2e13

∂x∂y
,

∂2e22

∂x∂z
= ∂2e23

∂x∂y
− ∂2e13

∂y2
+ ∂2e12

∂y∂z
,

∂2e33

∂x∂y
= ∂2e13

∂y∂z
− ∂2e12

∂z2
+ ∂2e23

∂x∂z

(33)

and

2
∂2e12

∂x∂y
= ∂2e11

∂y2
+ ∂2e22

∂x2
,

2
∂2e23

∂y∂z
= ∂2e22

∂z2
+ ∂2e33

∂y2
,

2
∂2e13

∂x∂z
= ∂2e11

∂z2
+ ∂2e33

∂x2
.

(34)

Relating e with T by means of (9), substituting the general form
of stress (32) and making use of Aij expressed in terms of A and
B, we find that subsequent equations of (33) directly define A23,
A13 and A12, respectively, in terms of Bij with the same subscripts.
On the other hand, equations (34) form a system of coupled linear
equations for Aii with right-hand sides depending on Bii. Its solution
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takes the form⎛
⎜⎜⎝

2A11

2h−2
1 A22

2h−2
12 A33

⎞
⎟⎟⎠ = (

1 + L−1R
)
⎛
⎜⎜⎝

B11

B22

B33

⎞
⎟⎟⎠ , (35)

requiring the inverse of a 3 × 3 matrix L. Although L is not compli-
cated and invertible by elementary means, an explicit formula for
L−1 is too long to be explicitly quoted. The detailed solution for Aij

and matrices L, R are given in Appendix A.
We have verified that both methods (displacements approach and

stress equations with compatibility conditions) lead to the same
final results. Nevertheless, the reduction of T to the simple form
given in Appendix A starting from the displacement solution would
be a tedious exercise.

3 TH E Q MODEL O F D ISSIPATION

3.1 Energy of a deformable ellipsoid

For a rigid ellipsoid in free rotation with angular velocity ω, the
only part of energy that matters is the kinetic energy

K0 = 1

2

∫
V

ρ (ω × r)2 dV = 1

2
ωiIijωj (36)

conserved during the motion. In the principal axes system, the tensor
of inertia I is diagonal, i.e Iij = δijIi, given in equation (22). In the
absence of external torques, the angular momentum

H =
∫

V

ρ r × (ω × r) dV = Iijωj ei (37)

is also conserved in an inertial frame, i.e. provided we account for
the rotation of body-fixed basis vectors ei . Only the norm H = ||H||
is constant in the body frame.

In a deformable body, the velocity of displacements u̇ adds up
to the total kinetic energy K and angular momentum. Moreover,
the results of volume integration are affected by the fluctuations
of density and by the bounding surface deformations. However,
under Assumption 2, as long as the deformations are elastic and
the centre of mass is not altered by displacements, the angular
momentum remains constant in the fixed frame. The total kinetic
energy may vary, but the sum K + U, where U is the potential
energy of deformation, remains constant. A rigorous discussion
of energy exchange between K and U can be found in Munk &
MacDonald (1960) or Lambeck (1980). For the present discussion,
we approximate the kinetic energy as K ≈ K0 and consider potential
energy U ≈ Ue, storing the work of both body forces and tractions,
to be the elastic energy

Ue =
∫

V

ε dV ≥ 0, (38)

with the energy density ε defined as

ε = 1

2
eij Tij , (39)

which is evaluated, according to the first-order approximation, with
the volume integral taken over the reference ellipsoid. Under As-
sumption 5, we can also express ε in terms of the stress tensor alone,
obtaining (Efroimsky 2000)

ε = 1

4μ

(
−ν (tr T)2

1 + ν
+ T 2

11 + T 2
22 + T 2

33 + 2
(
T 2

12 + T 2
23 + T 2

13

))
.

(40)

Inelasticity disturbs the ideal picture of Hookean oscillations.
Different rheological models have been constructed in hope to ad-
just constitutive relations between stress and strain to the reality of
the material world. Extended constitutive relations are formulated
either as differential equations, involving Ṫ and/or ė, or in terms of
integrals of creep and relaxation functions. This leads to the occur-
rence of a time lag between forced oscillations of strain and stress.
In this respect, the situation becomes similar to a periodically driven
harmonic oscillator with damping: due to a lag between velocity and
position, the time derivative of potential energy integrated over a
forcing cycle does not vanish and generates a power deficit credited
by the external forcing in order to sustain stationary oscillations. In
the case of our study, the power supply comes from the kinetic en-
ergy K0 and is not unlimited. Moreover, a coupling exists between
the power supply and demand, because the amplitude of stationary
vibrations depends on the excess of kinetic energy over the ground
state of 1

2 I3ω
2.

3.2 Quality factor principle

Introducing the quality factor Q as an empirical parameter, one may,
in principle, discuss the energy dissipation in vibrating inelastic ma-
terials without any explicit knowledge of their constitutive relations.
In practice, however, the problem of unknown rheology leaks into
the question of a proper definition of Q and of its dependence on
driving frequency, temperature, etc. (Efroimsky & Williams 2009).
In the limit, a perfect definition of Q is probably not easier than
defining an adequate rheological model and solving the related in-
elastic oscillation problem.

O’Connell & Budiansky (1978) tried to put some order into a
growing number of different Q definitions. They warned about ‘con-
fusion between some ill-defined Q of a process’ and ‘an intrinsic Q
of the material’. Their generally acclaimed definition of quality fac-
tor as the ratio of real and imaginary parts of compliance leads ‘for
a large class of viscoelastic materials’ to the common rephrasing as

Q = 2π
(2Eav)

E
, (41)

where E is the energy lost during one period of a harmonic (pure
sine) loading, and Eav is the ‘average stored energy’ during the
loading cycle (O’Connell & Budiansky 1978). The difficult point
of this apparently simple definition is how to interpret Eav in some
particular problem, even if we use the strain energy (38), (39) for
this purpose.

Sharma et al. (2005) complained that ‘definitions of measures
of energy fluctuations corresponding to the type of loadings en-
countered with tumbling bodies are not readily available’, meaning
the presence of a constant term in body forces that are not purely
periodic. Although their main solution followed the usual habit of
dropping the constant part from strain and stress when plugging Ue

into the definition (41), they express serious doubts and find ‘no eas-
ily identifiable reason’ for it, except that of comparison with earlier
works. They proposed an alternative approach including the effect
of the average 〈b〉. When starting this work, we did share the doubts
of Sharma et al. (2005) and were attracted by the alternative way
of estimating the fluctuating energy amount. But, having rejected
them at a later stage, we feel obliged to explain our point of view.

Consider the example given by Sharma et al. (2005): a scalar
stress T = a0 + a1sin t. There is no doubt that 〈T2〉 with a0 �= 0 is
different than for a0 = 0. Moreover, with a0 �= 0, the plot of Ue(t)
can be dominated by sin t, whereas dropping the constant part we
obtain only cos 2t. However, a similar situation is met in a damped
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harmonic oscillator driven by a0 + a1cos t: the potential energy
of the stationary solution has the same dependence on a0, but the
power loss is completely independent of a0. The statement that only
a time variable part of stress may dissipate the energy can be found
already in the paper of Prendergast (1958). There is no reason to
doubt it. Thus, the only question is: does the dissipation by the
periodic part of the stress depend on the constant part? We cannot
rule out such possibility if relations between stress and strain are
strongly nonlinear or the dissipation mechanism is complicated, but
– on the other hand – it is quite unlikely that in these circumstances
a simple term a0a1sin t will properly describe the dependence, as
Sharma et al. (2005) suggest, mentioning a friction due to grain
boundary or crack surface sliding. So, the alternative estimate of
the stored energy, as proposed by Sharma, neither looks promising
far from the almost-linear, weakly damped elasticity model, nor it
behaves properly within this area – the latter readily seen if we
consider the harmonic oscillator. Moreover, it does not account for
the fact that a kth harmonic in a general harmonic load works k
times during the fundamental period – the comment that applies
both the main and alternative solution of Sharma et al. (2005). As
a minor remark, we can add the contradiction between qualifying
gravitation as an ignorable pre-stress and mean centrifugal force as a
factor that contributes to the energy dissipation, present in Sharma
et al. (2005). The alternative recipe for Eav has a mathematical
meaning, but in our opinion, it will define an alternative ‘Q of a
process’ which may be too far from the ‘intrinsic Q’ in terms of
numerical values and dependence or independence on parameters.

We believe that the main line of reasoning and the warnings issued
by O’Connell & Budiansky (1978) are sufficient to formulate the
recipe for Eav leading to a reasonable, material-based quality factor.
The rule seems to be: stay close to the property that, for sufficiently
high Q values,

Q−1 ≈ tan ϕ, (42)

where ϕ is the phase lag angle between the stress and the strain (the
so-called loss angle). This rule validates the separation of contribu-
tions from subsequent harmonics of body forces b, as well as the
rejection of its constant part in the stress solution, i.e. the procedure
of Efroimsky (2000). Note that for a single harmonic, taking twice
the mean value of its square, we obtain its squared amplitude which
explains why 2Eav in equation (41) is often replaced by the ‘peak
energy’ Ep (O’Connell & Budiansky 1978; Lambeck 1980).

Energy is dissipated by the work of body forces. The basic for-
mula for the work rate Ẇ reads

Ẇ =
∫

V

ε̇ dV =
∫

V

Tij ėij dV . (43)

In the conservative, elastic case, when stress and strain are defined
by equations (32) and (9), depending on time-periodic functions
Bij, the integral over the fundamental period of wobbling renders
no work, because each term of the sum Tij ėij is a purely periodic
function of time.

Assumption 7. Inelastic oscillations will be described by the fol-
lowing, heuristic approximation.

(i) Periodic terms of Bij in the stress tensor T are taken directly
from definitions (27) and (28).

(ii) Periodic terms of Bij in the strain tensor e, derived using
equation (9), are modified by adding a phase lag ϕ to the argument
of each harmonic, and dividing the amplitudes by cos ϕ.

(iii) The phase lag is independent of the coordinates x, y, z, and
related to the quality factor by equation (42).

(iv) The quality factor is independent of the frequency of forcing
terms.

Let the fundamental frequency of wobbling be �, with an asso-
ciated period

P = 2π

�
, (44)

and consider an exemplary product of periodic terms appearing in
equation (43) under Assumption 7:

pex =
(
cp cos (p�t) + sp sin (p�t)

) d

dt

(
cq

cos ϕ
cos (q�t − ϕ)

+ sq

cos ϕ
sin (q�t − ϕ)

)
. (45)

Straightforward computation leads to the conclusion that the time
integral over the period P vanishes for p �= q, whereas p = q �= 0
leads to∫ P

0
pex dt = pπ

(
c2
p + s2

p

)
tan ϕ

= p
2π

Q

〈(
cp cos (p�t) + sp sin (p�t)

)2〉
. (46)

This example establishes a link between Assumption 7 and the
operational rule of computing the energy loss due to the work per
cycle P as the sum

E = −
∫ P

0
Ẇ dt = −2π

Q

∑
p≥1

p
〈

2 Up

〉
, (47)

in agreement with equation (41), where Up is the part of elastic
energy Ue from equation (38) involving only the pth harmonic in
each Bij term entering strain and stress.

A recent in-depth critical review of some issues concerning As-
sumption 7 can be found in (Efroimsky 2012).

4 E N E R G Y D I S S I PAT I O N R AT E

4.1 Volume integration

The energy dissipation rate can be obtained from equation (47) as

Ė = E

P
= −2�

Q

∑
p≥1

p
〈
Up

〉
. (48)

Having assumed the independence of ϕ and Q on coordinates, we
can perform the volume integration required for Up before the time
average. This allows for a considerable economy of expressions;
substituting the general form of T from equation (32) into equa-
tion (40), making use of the expressions for A, Aij from Appendix
A, plugging in the definition of B in (27), (28) and integrating over
the ellipsoid volume according to equation (19), we find〈

Up

〉
= a4ρ m

μ

(
α11

〈[
ω2

1

]2

p

〉
+ α22

〈[
ω2

2

]2

p

〉
+ α33

〈[
ω2

3

]2

p

〉
+ α12

〈[
ω2

1

]
p

[
ω2

2

]
p

〉
+ α13

〈[
ω2

1

]
p

[
ω2

3

]
p

〉
+ α23

〈[
ω2

2

]
p

[
ω2

3

]
p

〉
+ β12

〈
[ω1ω2]2

p

〉
+ β13

〈
[ω1ω3]2

p

〉
+ β23

〈
[ω2ω3]2

p

〉)
, (49)

where m is the ellipsoid mass and αij, β ij are dimensionless rational
functions of h1, h2 and ν. For any function F represented as the
Fourier series, the symbol [F]p designates its pth harmonic, i.e. a
trigonometric monomial with argument p�t.

C© 2012 The Authors, MNRAS 427, 755–769
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



762 S. Breiter, A. Rożek and D. Vokrouhlický

Regretfully, the full form of αij and β ij is too long to be explicitly
quoted (although short enough to be efficiently programmed), but
the expressions are available from the authors in an electronic form.

4.2 Fourier harmonics of angular velocity

Equation (49) requires the recall of basic facts about the free ro-
tation of the rigid body (Whittaker 1952) for the specific case of
a homogeneous ellipsoid. As usually, we have to distinguish the
short-axis mode (SAM) of rotation, when the angular velocity vec-
tor ω circulates around e3, and the long-axis mode (LAM), when
ω circulates around e1. Quantities referring to the SAM will have
subscript s = 3, and those for the LAM, subscript s = 1 (in this
paper, we use s exclusively for labelling the rotation mode).

Using two invariants of the free top, i.e. kinetic energy K0 and
angular momentum H (equations 36 and 37), with the diagonal
matrix of inertia I given by equation (22), we define an auxiliary
quantity A (Deprit & Elipe 1993; Breiter et al. 2011)

A = 2K0

H 2
, (50)

such that a3 ≤ A ≤ a1, where

ai = I−1
i . (51)

A nominal angular velocity of rotation Ha3 is often adopted as a
scaling factor in the energy dissipation models. Its value would be
equal to ω only in the principal axis rotation around e3. We prefer
to use a quantity appropriate for the LAM as well, so let us define
the nominal angular rates as

ω̃j = Haj , (52)

such that each ω̃j = ω in the principal axis rotation around ej .
Let us define

n3 =
√

(a1 − A)(a2 − a3), n1 =
√

(a1 − a2)(A − a3). (53)

Then, the components of angular velocity ωi in the body fixed
frame are expressible in terms of the Jacobi elliptic functions with
argument τ s = Hns t and modulus ks, where

k3 = n1

n3
= 1

k1
. (54)

Thus, in any rotation mode,

ω1 = ω̃1

√
A − a3

a1 − a3
F (1)

s ,

ω2 = ω̃2

√
A − a3

a2 − a3
F (2)

s ,

ω3 = ω̃3

√
a1 − A
a1 − a3

F (3)
s , (55)

with specific functions

F
(1)
3 = ±cn(τ3, k3), F

(2)
3 = sn(τ3, k3), F

(3)
3 = ±dn(τ3, k3)

(56)

and

F
(1)
1 = ±dn(τ1, k1), F

(2)
1 = ±k1 sn(τ1, k1), F

(3)
1 = cn(τ1, k1)

(57)

for the SAM and LAM, respectively.
The fundamental frequency of wobbling, appearing in equa-

tion (44) as �, is

�s = πHns

2Ks

, (58)

where Ks stands for the complete elliptic integral of the first kind:

Ks = K(ks) =
∫ π

2

0

dx√
1 − k2

s sin2 x
. (59)

Similarly, we will use Es = E(ks) for the complete elliptic integral
of the second kind.

In this work, we are interested only in the squares and products
of angular velocity components. Given the Jacobi elliptic functions
with argument τ s and modulus ks, we can expand their squares and
products in the Fourier series of angle

ψs = π

2Ks

τs = �s t. (60)

From the expressions available in Byrd & Friedman (1954), we can
easily derive the series

sn2(τs, ks) = X0 −
∞∑

p=1

X2p cos 2pψs, (61)

cn2(τs, ks) = 1 − X0 +
∞∑

p=1

X2p cos 2pψs, (62)

dn2(τs, ks) = 1 − k2
s X0 + k2

s

∞∑
p=1

X2p cos 2pψs, (63)

sn(τs, ks) cn(τs, ks) =
∞∑

p=1

Y2p sin 2pψs, (64)

cn(τs, ks) dn(τs, ks) = ks

∞∑
p=1

X2p−1 cos (2p − 1)ψs, (65)

sn(τs, ks) dn(τs, ks) = ks

∞∑
p=1

Y2p−1 sin (2p − 1)ψs, (66)

with coefficients

X0 = 1

k2
s

(
1 − Es

Ks

)
, (67)

Xj =
(

π

ks Ks

)2
j qj/2

s

1 − qj
s

, (68)

Yj = 1 − qj
s

1 + qj
s

Xj , (69)

involving Jacobi’s nome

qs = exp
(−πK′

s/Ks

)
, (70)

where K′
s = K(k′

s) is the elliptic integral with complementary mod-
ulus

k′
s =

√
1 − k2

s . (71)

The quickly convergent series for the nome

qs = ζs

(
1 + 2ζ 4

s + 15 ζ 8
s + 150 ζ 12

s + 1707 ζ 16
s + · · ·) , (72)

with

ζs = 1 − √
k′

s

2
(
1 + √

k′
s

) (73)

can be used (Innes 1902; Byrd & Friedman 1954). Even close to
the separatrix (A ≈ a2), the first five terms provide a relative error
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of 10−6 for ks = 0.999. However, for the values of ks close to 1, it
is better to use

ζ ′
s = 1 − √

ks

2
(
1 + √

ks

) , (74)

on the right-hand side of (72) instead of ζ , and obtaining the com-
plementary nome q′

s , which may serve to compute qs through the
relation

ln qs ln q′
s = π2. (75)

An additional benefit of the nome is also a quickly convergent series
for the elliptic integral

Ks = π

2

(
1 + 2

∞∑
p=1

qp2

s

)2

. (76)

The mean values required in equation (49) follow directly from
the presented Fourier series. For example, in the SAM〈[

ω2
1

]2

2p

〉
= ω̃4

1

(A − a3

a1 − a3

)2 〈(
X2p cos 2pψ3

)2
〉

= ω̃4
1

2

(A − a3

a1 − a3

)2

X2
2p, (77)

〈[
ω2

1

]2

2p−1

〉
= 0, (78)

and in the LAM〈[
ω2

1

]2

2p

〉
= ω̃4

1

2

(A − a3

a1 − a3

)2

k4
1X

2
2p,

〈[
ω2

1

]2

2p−1

〉
= 0,

(79)

with X2p depending on q3 and q1, respectively. Note that some of
the mean values can be negative, like〈[

ω2
1

]
2p

[
ω2

2

]
2p

〉
= − ω̃2

1ω̃
2
2

2

(A − a3)2

(a1 − a3) (a2 − a3)
X2

2p, (80)

in the SAM. However, their associated αij are also negative, so there
is no subtraction in equation (49).

4.3 Final expressions

Performing the necessary substitutions in equation (48), we find an
expression for the energy loss rate

Ės = −a4ρ mω̃5
s

μ Q
�s(ks, h1, h2, ν) (81)

with dimensionless

�3 = Z5
3 (P1(k3)M13 + P2(k3)M23 + P3(k3)M0 + P4(k3)M12) ,

(82)

�1 = Z5
1 (P1(k1)M13 + P2(k1)M12 + P3(k1)M0 + P4(k1)M23)

(83)

(note the swapped M23 and M12), where

Zs = �s

ω̃s

= πns

2asKs

. (84)

First, we recall that the leading factor depends on the semi-major
axis of ellipsoid a, its mass m, density ρ, the fifth power of the
nominal rotation rate ω̃s (resulting from the division of angular mo-
mentum H by the related moment of inertia), Lamé shear modulus
μ and quality factor Q. Functions Pi(ks) depend on the ratio of ki-
netic energy and angular momentum through an elliptic modulus ks

that enters Jacobi’s nome qs and have the form of infinite sums

P1(ks) =
∞∑

p=1

(2p − 1)3q2p−1
s(

1 − q2p−1
s

)2 , (85)

P2(ks) =
∞∑

p=1

(2p − 1)3q2p−1
s(

1 + q2p−1
s

)2 , (86)

P3(ks) =
∞∑

p=1

(2p)3q2p
s(

1 − q2p
s

)2 , (87)

P4(ks) =
∞∑

p=1

(2p)3q2p
s(

1 + q2p
s

)2 , (88)

although in practice only a few leading terms should be sufficient.
Finally, Mij and M0 are dimensionless, positive coefficients depend-
ing only on the shape (through h1, h2) and on Poisson’s ratio ν. In
terms of the coefficients from equation (49), they are

Mij = 16 a2
i a

2
j βij

d12d13d23dij

, (89)

M0 = 16

d12d13d23

(
a4

1d23α11

d12d13
+ a4

2d13α22

d12d23
+ a4

3d12α33

d13d23

−a2
1a

2
2α12

d12
+ a2

1a
2
3α13

d13
− a2

2a
2
3α23

d23

)
. (90)

where dij = (ai − aj). Appendix B contains the full expressions of
Mij and M0. For the reasons explained in the next section, we give
them with the fixed Poisson’s ratio ν = 0.25.

4.4 Poisson’s ratio

All recent models of spin-axis relaxation assume Poisson’s ratio
ν = 0.25, i.e. equal Lamé constants λ = μ. The authors justify it by
the fact that this is approximately a typical value for most of cold
solids (Efroimsky 2000). Earlier, Prendergast (1958) considered
an incompressible object with ν = 0.5. Only Molina et al. (2003)
maintain the explicit dependence on ν in their final formulae for a
spheroid.

The present model also maintains ν in the final expressions, so
we are in a favorable situation to estimate the sensitivity of Ės on its
value. Interestingly, in contrast to the results of Molina et al. (2003),
the dependence of Mij and M0 on Poisson’s occurs to be very weak.
As a function of 0 ≤ ν ≤ 0.5, the values of M coefficients vary on the
level of at most 10−2 (relatively), whereas the solution of Molina
et al. (2003) exhibits the dependence on the level of 10−1. This
property came unexpected, because αij still contained a factor (1 −
ν2)−1 that later vanished in M0. In these circumstances, we fix the
value of ν = 0.25 as a physically realistic one, which considerably
simplifies expressions, but the results will fairly well apply to an
incompressible case with ν = 0.5.

5 WOBBLE DA MPI NG TI ME

Let us define a ‘wobbling angle’ θ s as the maximum angle between
the angular momentum vector H and a relevant axis (Oz in the SAM
or Ox in the LAM) attained during the wobbling cycle of a rigid
body, namely

θs = max

(
arccos

∣∣∣∣ H · es

H

∣∣∣∣
)

. (91)
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In the principal axis rotation θ s = 0, regardless of the prograde or
retrograde case. The other limit, θ s = 90◦, refers to unstable rotation
around an intermediate axis of inertia Oy or to the nonperiodic
rotation on the separatrix, which falls beyond our model.

There is a direct relation between θ s and the variable A:

As = a2 − (a2 − as) cos2 θs . (92)

We have introduced the subscript s to A in order to facilitate the dis-
tinction of modes, although the primary definition (50) is universal.
The modulus ks is also related to the wobbling angle through

ks = sin θs√
1 + κs cos2 θs

, (93)

κ3 = 1

κ1
= a2 − a3

a1 − a2
= h4

1

1 − h4
2

1 − h4
1

. (94)

Since the dissipation of energy does not affect angular momen-
tum, and the energy is drained from the kinetic K0, the differentiation
of equation (50) leads to

Ȧs = 2 Ės

H 2
= −2a4ρ mω̃3

s

μQ
a2

s �s, (95)

where Ės has been taken from equation (81).
On the other hand,

Ȧs = 2 (a2 − as) sin θs cos θs θ̇s , (96)

and we can equate the two relations, obtaining the differential equa-
tion

dθs

dt
= Ės

H 2 (a2 − as) sin θs cos θs

. (97)

The resulting quadrature gives the time Ts required to change the
wobbling angle from the initial θ0

s to the final θ ′
s :

Ts = (as − a2) μQ

a4ρmω̃3
s a

2
s

∫ θ ′
s

θ0
s

sin θs cos θs

�s

dθs, (98)

where �s should be expressed in terms of the wobbling angle using
equation (93).

In particular,

T3 = − μQ

a2ρω̃3
3

[
h2

1

(
1 + h2

1

) (
1 − h2

2

)
5

(
1 + h2

1h
2
2

)
] ∫ θ ′

3

θ0
3

sin θ3 cos θ3

�3
dθ3,

(99)

implying θ ′
3 ≤ θ0

3 and

T1 = μQ

a2ρω̃3
1

[
h2

1

(
1 − h2

1

) (
1 + h2

2

)
5

(
1 + h2

1h
2
2

)
] ∫ θ ′

1

θ0
1

sin θ1 cos θ1

�1
dθ1,

(100)

with θ0
1 ≤ θ ′

1. For the reference with earlier works, we will use a
shape parameter Ds (Sharma et al. 2005) defined as

Ds(h1, h2) = Ts

a2ρω̃3
s

μQ
(101)

for prescribed integration limits.
Of course, the notion of wobble damping time is properly related

to T3 or, if the evolution starts in the LAM and continue through
the SAM, to the sum T1 + T3. In the LAM, energy dissipation
excites wobbling, driving the angular momentum vector towards
the separatrix. A term ‘excitation time’ seems more appropriate
for T1.

Figure 1. Logarithmic plots of wobble damping/excitation times for ellip-
soids with h1 = h2 = h. Top: time spent in the LAM with θ1 increasing from
5◦ to 85◦; bottom: time spent in the SAM with θ3 decreasing from 85◦ to
5◦. Physical parameters – see the text.

As an illustrative example, we first plot damping/excitation times
for a family of ellipsoids with h1 = h2 = h, assuming sample physical
data a = 1 km, ρ = 2000 kg m−3, μ = 109 Pa and Q = 100, chosen
more for an ease of scaling than for the reference to some specific
case. We have assumed ω̃3 = 2π/10h for T3 and computed an
equivalent

ω̃1 = 1 + h2
1

h2
1

(
1 + h2

2

) ω̃3 (102)

to be used in T1.
Interested in a possibly complete history, we start the evolution at

the LAM, with θ0
1 = 5◦ and integrate equation (100) up to θ ′

1 = 85◦.
The results are displayed in Fig. 1 (top). The dependence of T1 on
h is not monotonic: the shortest excitation time, 0.6 Myr, occurs at
h = 0.75. Increasing asphericity, we reach T1 ≈ 2 Myr at h = 0.3.
The other extreme would be h = 1, but we stop at h = 0.99, because
the results would be meaningless for a sphere. After crossing the
separatrix, the angular momentum vector is driven towards e3 and
we computed the damping times T3 take to evolve from θ0

3 = 85◦

to 5◦. This time (Fig. 1, bottom), damping times are much longer
than in the LAM for the same shape. T3 is as high as 258 Myr at h =
0.3 and systematically decreases to 6.5 Myr at h = 0.99. Thus, the
total damping time consists mostly in T3 and – fixing the semi-axis
a – we find that triaxiality inhibits the total damping process, save
for a quick passage through the LAM, where we find a minimum at
h1 = h2 = 0.75.
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Figure 2. Logarithmic plots of shape functions Ds. Solid line: ellipsoids
with h1 = h2 = h; dashed line: spheroids with h1 = h (LAM – top) or with
h2 = h (SAM – bottom).

Integration limits in the above example have been wider than
usually. For the reference with earlier works, we have also computed
shape factors Ds for the limits 45◦ ≤ θ1 ≤ 85◦ and 45◦ ≥ θ3 ≥ 5◦

like Sharma et al. (2005). Fig. 2 confronts Ds for a family of h1 =
h2 = h ellipsoids with spheroids having an appropriate ratio h1

(SAM) or h2 (LAM) equal to 1, and the other one set as h. We note
a systematic increase of Ds with increasing h for ellipsoids similar
to T3, but unlike T1 from Fig. 1. For oblate spheroids there is a
shallow minimum of D3 close to h ≈ 0.9. These discrepancies are
not essential and result from an arbitrary choice of integration limits
that cut off some more or less prominent (depending on the shape)
parts of an integrand.

Integrated damping/excitation time is important for qualitative
considerations, but if the joint action of inelastic dissipation and
other torques is to be studied, the shape of �s(θ s) becomes more
interesting. Figs 3 and 4 demonstrate, how the ellipsoid’s shapes
affect �1(θ1) and �3(θ3). Each curve is normalized, i.e. �s values
are divided by w – the mean value of �s with respect to θ s on the
interval [0,π/2]. The situation is a bit different in the LAM (Fig. 3)
and SAM (Fig. 4). Departure from a spheroid (solid line) weakens
the dissipation close to the principal axis and amplifies it for higher
θ3 in the SAM. In the LAM, this is not the rule, as seen for h1 =
0.3 and h2 = 0.7.

6 R E D U C T I O N TO SP H E RO I D A N D
C O M PA R I S O N W I T H OT H E R WO R K S

In the previous section, we have presented some results for
spheroids. They could be computed by assuming h1 or h2 suffi-

Figure 3. Normalized LAM energy dissipation rate functions �1(θ1)/w.
Solid line: (h1, h2, w) = (0.7, 1, 3000); dashed: (0.7, 0.7, 4000); dotted:
(0.3, 0.7, 9.6 × 105); dot–dashed: (0.7, 0.3, 5200).

Figure 4. Normalized SAM energy dissipation rate functions �s(θ s)/w.
Solid line: (h1, h2, w) = (0.7, 1, 210); dashed: (0.7, 0.7, 530); dotted: (0.3,
0.7, 1.6 × 104); dot–dashed: (0.7, 0.3, 140).

ciently close to 1, but in the strict limit the expressions involve
singular factors. However, this singularity is only apparent. The
point is that although k1 = q1 = 0 for h2 = 1 and k3 = q3 = 0 for
h1 = 1 (hence all Pk(ks) = 0), after we expand Pk(ks) in powers
of ks, substitute (93) and multiply by Mij, some factors (1 − h2

1)
or (1 − h2

2) cancel, leaving a well-defined limit for a spheroid. The
resulting SAM expression for h1 = 1, h2 = h is

�3(h, θ3) = 8
(
1 − h2

)
sin2 θ3 cos θ3

35
(
1 + h2

)5

(
2h4C cos2 θ3 + S sin2 θ3

)
,

(103)

where

C = 26 + 35 h2

13 + 20 h2
, (104)

S = 25 + 20 h2 + 16 h4

15 + 10 h2 + 8 h4
, (105)

and the LAM expression for h1 = h, h2 = 1 is simply

�1(h, θ1) = −h4 �3(h−1, θ1). (106)

The factor h4 marks the difference between the LAM of the b = c <

a spheroid (present work) and a prolate a = b < c spheroid used by
other authors.

We have found it interesting to compare our solution with other
published results. Remarkably, the latter can be reduced to the same
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general form (103) of �3, differing only with the particular expres-
sions of the coefficients C and S.

Let us begin with Efroimsky & Lazarian (2000). Their solution
for a rectangular prism with semi-edges a = b and c = ah has the
form of equation (103) with

C = 1323

128
, S = 105

16
. (107)

Obviously, the prism has a higher volume than an ellipsoid with
the same a and h. In particular, the volume integral

∫
x4dV for a

spheroid is smaller by a factor π/14 ≈ 0.224. Thus, we propose to
use

C = π

14

1323

128
, S = π

14

105

16
, (108)

in equation (103) to make the comparison with a spheroid more
even.

Molina et al. (2003) obtained for a spheroid

C = 1, S = 2

1 + ν
. (109)

Since our solutions differ only by the choice of boundary conditions,
we adopt for comparison the values from equation (109) with ν =
1/4, i.e. C = 1 and S = 8/5.

The complete solution of Sharma et al. (2005) is known only in-
directly through the coefficients provided by Sharma (private com-
munication) and published in Vokrouhlický et al. (2007). In these
circumstances, we have derived C and S using the stress tensor from
Appendix D of Sharma et al. (2005) and following the recipe from
their sections 5 and 6 (i.e. the mainline solution, not the alternative
model). What we have obtained agrees with Vokrouhlický et al.
(2007), and reads

C = 1

2

[
26 + 35 h2

13 + 20 h2

]
,

S = 1

4

[
25 + 20 h2 + 16 h4

15 + 10 h2 + 8 h4

]
, (110)

where the factors in square brackets are the same as in our present
solution (105). The difference in denominators 2 and 4 is easily
understandable. First, the definition of Q used by Sharma et al.
(2005) is based upon the mean value of energy; hence, their energy
dissipation rate is twice as small as the one based upon our more
common equation (41). On the other hand, Sharma et al. (2005)
do not apply the multiplier p in the sum given by our formula
(47), whereas S is directly related to the second harmonic of elastic
energy. In these circumstances, we will use for comparison

C =
[

26 + 35 h2

13 + 20 h2

]
, S = 1

2

[
25 + 20 h2 + 16 h4

15 + 10 h2 + 8 h4

]
, (111)

i.e. the same C as in our solution (105) and a half of our S.
Figs 5 and 6 present �3(θ3) of the four solutions for oblate

spheroids with h = c/a = 0.9 and 0.3. When the oblateness is mod-
erate (Fig. 5), there is a reasonable proximity between the present
model and a volume-scaled model of Efroimsky & Lazarian (2000),
whereas the models of Molina et al. (2003) and Sharma et al. (2005)
have maxima lower by 25 per cent than the present model and
shifted with respect to each other by about 15◦. Curiously, increas-
ing the oblateness (Fig. 6), we find good agreement in the shape
of the curves and differences of the maxima below 10 per cent,
with the notable exception of Sharma et al. (2005) that dissipates
energy twice as slow as the remaining models. A better agreement
with Molina et al. (2003) for smaller h is understandable: the only
difference with the present solution is due to different boundary

Figure 5. �3(θ3) for a spheroid with h = c/a = 0.9. Solid line: present solu-
tion, dashed: volume-scaled Efroimsky & Lazarian (2000), dotted: Molina
et al. (2003); dot–dashed: re-derived Sharma et al. (2005) for the equivalent
Q definition.

Figure 6. Same as Fig. 5 for h = 0.3.

conditions. They postulate a stress-free surface instead of the usual
traction-free setup, and the deviatoric part of the stress tensor on the
boundary in our solution decreases with h. Concerning the solution
of Sharma et al. (2005), we find a systematic underestimation of
�3 due to the missing multiplier of the second mode, with the ratio
close to 2.

Let us recall the claims of Sharma et al. (2005) that their solution
gives damping times longer than other ones by factor 10 or more,
and that the difference is due to incomplete or incorrect solution
of the elasticity problem in other papers. Why the differences in
Figs. 5 and 6 are less drastic? At this point, we feel obliged to ob-
serve that for any h, numerical values of shape factors and damping
times published and plotted in Sharma et al. (2005, Fig. 2) differ
from the ones resulting from his energy dissipation formulae by a
constant factor π. We have found no trace of this discrepancy in
the published equations, so the difference, most likely, should be
attributed to a purely computational error. Together with the in-
compatible definition of quality factor Q, it means that all damping
times from Sharma et al. (2005) should be divided by 2π, so they
are no longer to be considered unusually high. On the other hand,
damping times shorter than Burns–Safronov estimates claimed by
Efroimsky & Lazarian (2000) result partially (factor 14/π) from
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using an object (a prism) with a higher volume than any solid of
revolution with the same ratio of axes.

7 C O N C L U S I O N S

Using the ensemble of standard assumptions, we have derived the
stress tensor inside a freely rotating and self-gravitating ellipsoid.
Writing about known solutions to this problem, Washabaugh &
Scheeres (2002) put meaningful quotation marks around the word
available. Our present solution, given in Appendix A has a form
which is probably compact enough to suppress the marks, espe-
cially for the principal axis rotation. Interestingly, the presented
form of T does not involve singularity at the incompressible limit
ν = 1

2 , where Washabaugh & Scheeres (2002) had to use ν =
0.499.

The stress tensor has served us as the basis for the energy dissi-
pation model built along the lines that Efroimsky (2002) proposed,
but left unaccomplished. However, the use of an ellipsoid instead of
an Efroimsky–Lazarian rectangular prism permitted us to avoid all
objections related to partially satisfied boundary conditions and/or
missing compatibility conditions. We have also found no reasons to
impose superficial conditions of a stress-free boundary like Molina
et al. (2003).

The solution hinges upon the use of the Pk(q) series of the Jacobi
nome q. Their convergence is very good and even taking p ≤ 4 in
equations (85)–(88) guarantees at least three significant digits in the
area under �s(θ s) for 0 < θs < π/2. Of course, the series are not
legitimate exactly at qs = 1 (i.e. θ s = 90◦). An in-depth discussion
of this limit was given by Efroimsky (2001). On the other hand,
this state is not to be considered seriously, since any additional
torque will trigger the emergence of a chaotic zone in the vicinity
of separatrices.

In contrast to the results of Molina et al. (2003), we find that the
role of compressibility in the energy dissipation process is marginal
in the range of Poisson’s ratio 0 � ν � 1

4 . Apparently, the stronger
dependence obtained by Molina et al. (2003) for a spheroid resulted
from too strong boundary conditions.

Investigating the spheroid as a particular case of our model, we
have succeeded to resolve a major part of controversies concerning
short damping times of Efroimsky & Lazarian (2000) and very long
ones according to Sharma et al. (2005). In our opinion, the excess of
energy dissipation rate over mainstream models is mostly due to a
higher volume of the body shape assumed by Efroimsky & Lazarian
(2000). The shape factors reported by Sharma et al. (2005) are
overestimated mostly by an incompatible quality factor definition,
a spurious factor π in their computations and a missing second-
mode multiplier. We find the objections against boundary conditions
used or compatibility condition violation, raised by Molina et al.
(2003) or Sharma et al. (2005), formally justified, yet we note that
they affect the accuracy of the damping/excitation times by at most
50 per cent.
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APPENDI X A : ELLI PSOI D STRESS TENS O R

In order to shorten the expressions of the elements of A and Aij in
equation (32), we first introduce

Bijk = 1

2

(
(−1)iB11 + (−1)jB22 + (−1)kB33

)
(A1)

and

h12 = h1h2. (A2)

Then, we can explicitly define

A11
22 = h2

1A11 + 2A22 − h−2
2 A33 − h2

1B
001, (A3)

A11
23 = 3A23 − h2

12B23, (A4)

A11
33 = h2

12A11 − h2
2A22 + 2A33 − h2

12B
010, (A5)
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A22
11 = 2A11 + h−2

1 A22 − h−2
12 A33 − B001, (A6)

A22
13 = 3A13 − h2

12B13, (A7)

A22
33 = −h2

12A11 + h2
2A22 + 2A33 − h2

12B
100, (A8)

A33
11 = 2A11 − h−2

1 A22 + h−2
12 A33 − B010, (A9)

A33
12 = 3A12 − h2

1B12, (A10)

A33
22 = −h2

1A11 + 2A22 + h−2
2 A33 − h2

1B
100, (A11)

A12
12 = −h1

(
A11 + h−2

1 A22 − h−2
12 A33 − B001

)
, (A12)

A12
13 = −h−1

1

(
2A23 − h2

12B23

)
, (A13)

A12
23 = −h1

(
2A13 − h2

12B13

)
, (A14)

A12
33 = 2h2

12

(
2h−1

1 A12 − h1B12

)
, (A15)

A23
11 = 2h−1

1

(
2h−1

12 A23 − h12B23

)
, (A16)

A23
12 = −h1

(
2h−1

12 A13 − h12B13

)
, (A17)

A23
13 = −h12

(
2h−1

1 A12 − h1B12

)
, (A18)

A23
23 = h1h12

(
A11 − h−2

1 A22 − h−2
12 A33 + B100

)
, (A19)

A13
12 = −2h−1

12 A23 + h12B23, (A20)

A13
13 = −h12

(
A11 − h−2

1 A22 + h−2
12 A33 − B010

)
, (A21)

A13
22 = 2h2

1

(
2h−1

12 A13 − h12B13

)
, (A22)

A13
23 = −h12

(
2A12 − h2

1B12

)
. (A23)

For the remaining 15 matrix elements that are not given above, we
have (repeated index marks a pattern, no summation implied)

Aii
jk = Ajk, Aii

jj = Ajj , A
ij
kk = 0. (A24)

The off-diagonal ‘central stress’ elements are given directly by

A12 =
⎛
⎝1 − 1 + ν

2h2
12h

2
2 +

(
3 + h2

2 + h2
12

)
(1 + ν)

⎞
⎠ h2

1B12

2
, (A25)

A13 =
⎛
⎝1 − (1 + ν)h2

2

2h2
1 +

(
1 + 3h2

2 + h2
12

)
(1 + ν)

⎞
⎠ h2

12B13

2
, (A26)

A23 =
⎛
⎝1 − (1 + ν)h2

1h
2
12

2 +
(
h2

1 + h2
12 + 3h2

1h
2
12

)
(1 + ν)

⎞
⎠ h2

12B23

2
. (A27)

The rest is obtained from equations (35) with

L11 = −2 − h2
1 − h4

1 − h2
12

(
1 − h2

1

)
ν, (A28)

L12 = −1 − h2
1 − 2h4

1 + h2
12

(
1 − h2

1

)
ν, (A29)

L13 = 1 + h2
1 + h4

1 + h2
1

(
1 + 2h2

2 + 2h2
12

)
ν, (A30)

L21 = h2
1

(
1 + h2

2 + h4
2

)
+

(
2 + 2h2

2 + h2
12

)
ν, (A31)

L22 = −h2
1

(
2 + h2

2 + h4
2

)
−

(
1 − h2

2

)
ν, (A32)

L23 = −h2
1

(
1 + h2

2 + 2h4
2

)
+

(
1 − h2

2

)
ν, (A33)

L31 = −2 − h2
12 − h4

12 − h2
1

(
1 − h2

12

)
ν, (A34)

L32 = 1 + h2
12 + h4

12 + h2
1

(
2 + h2

2 + 2h2
12

)
ν, (A35)

L33 = −1 − h2
12 − 2h4

12 + h2
1

(
1 − h2

12

)
ν (A36)

and

R =

⎛
⎜⎜⎜⎝

1 − h2
1ν h2

1

(
h2

1 − ν
)

−h2
12

(
1 + h2

1

)
ν

− (
1 + h2

2

)
ν h2

1

(
1 − h2

2ν
)

h2
12

(
h2

2 − ν
)

1 − h2
12ν −h2

1

(
1 + h2

12

)
ν h2

12

(
h2

12 − ν
)

⎞
⎟⎟⎟⎠ .

(A37)

APPENDI X B: C OEFFI CI ENTS M

After setting Poisson’s ratio ν = 1
4 and defining

N = 32

35

(
h2

12(
1 − h2

1

) (
1 − h2

2

) (
1 − h2

12

)
)2

, (B1)

where h12 = h1h2, we obtain a compact form of three coefficients
required in equations (82) and (83):

M13 = N
(
1 − h4

1

) (
1 − h4

2

) (
2 − 5h2

2

5 + 8h2
1 + 15h2

2 + 5h2
12

)
,

(B2)

M23 = N
(
1 − h4

12

) (
1 − h4

1

) (
2 − 5h4

1h
2
2

8 + 5h2
1 + 5h2

12

(
1 + 3h2

1

)
)

,

(B3)

M12 = N

(
1 − h4

12

) (
1 − h4

2

)
h4

2

(
2 − 5

15 + 5h2
2 + h2

12

(
5 + 8h2

2

)
)

.

(B4)

The expression of the fourth one is more involved:

M0 = N

3h4
2N9

8∑
j=1

Nj h
2j
2 .

(B5)

Using an auxiliary variable

ξ = (
h1 + h−1

1

)2
, (B6)

we can compress Nj to read

N0 = 225 (ξ − 1) , (B7)

N1 = 6
(
1 + h2

1

)
(29ξ − 21) , (B8)

N2 = h2
1

(
31ξ 2 + 82ξ − 62

)
, (B9)
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N3 = h2
1

(
1 + h2

1

) (−92ξ 2 + 305ξ − 216
)
, (B10)

N4 = h4
1

(
31ξ 3 − 341ξ 2 + 99ξ + 295

)
, (B11)

N5 = h4
1

(
1 + h2

1

) (
174ξ 3 − 1012ξ 2 + 1185ξ − 458

)
, (B12)

N6 = h6
1

(
225ξ 4 − 1404ξ 3 + 2412ξ 2 − 1409ξ − 124

)
, (B13)

N7 = h6
1

(
1 + h2

1

) (
225ξ 3 − 1179ξ 2 + 1376ξ − 368

)
, (B14)

N8 = h8
1 (3ξ − 4) (75ξ 2 − 292ξ + 64), (B15)

N9 = 48ξ − 57 + h2
1h

4
2

(
48ξ 2 − 119ξ + 100

)
+ h2

2

(
1 + h2

1

) (
32ξ − 23 + h2

1h
4
2 (39ξ − 44)

)
+ 16h4

1h
8
2(3ξ − 4). (B16)
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