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Czech Republic
e-mail: cibulkova@sirrah.troja.mff.cuni.cz

2 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland
3 Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, 86001 AZ, USA
4 Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Słoneczna 36, 60-286 Poznań, Poland
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ABSTRACT

Context. Large all-sky surveys provide us with a lot of photometric data that are sparse in time (typically a few measurements per
night) and can be potentially used for the determination of shapes and rotational states of asteroids. The method generally used to
derive these parameters is the light curve inversion. However, for most asteroids their sparse data are not accurate enough to derive a
unique model and the light curve inversion method is thus not very efficient.
Aims. To fully utilize photometry sparse in time, we developed a new simplified model and applied it on the data from the Lowell
photometric database. Our aim was to derive spin axis orientations and shape elongations of asteroids and to find out if there are some
differences in distributions of these parameters for selected subpopulations.
Methods. We modeled asteroids as geometrically scattering triaxial ellipsoids. Observed values of mean brightness and the dispersion
of brightness were compared with computed values obtained from the parameters of the model, i.e., the ecliptical longitude λ and
latitude β of the pole and the ratios a/b, b/c of axes of the ellipsoid. These parameters were optimized to get the best agreement with
the observation.
Results. We found that the distribution of λ for main-belt asteroids is not uniform and is dependent on the inclination of the orbit.
Surprisingly, the nonuniformity of λ distribution is larger for asteroids residing on low-inclination orbits. We also studied distributions
of a/b for several groups of asteroids and found that small asteroids (D < 25 km) are on average more elongated than large ones.
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1. Introduction

The amount of photometric data of asteroids has been grow-
ing rapidly in recent years. These data are a source of infor-
mation about shapes and rotational states of asteroids. Cur-
rently, the main method for determination of spin states and
shapes of asteroids from photometry is the inversion of light
curves, which was developed by Kaasalainen & Torppa (2001)
and Kaasalainen et al. (2001). Models obtained with this method
are stored in the Database of Asteroid Models from Inversion
Techniques (DAMIT; Ďurech et al. 2010), which now contains
models for 907 asteroids. The photometric data can be formally
divided into two groups: (i) data dense in time that sample the
rotational period well and that are typically used for the light
curve inversion method, and (ii) data sparse in time (few mea-
surements per night) that are produced by all-sky surveys, such
as Pan-STARRS, Catalina, or LONEOS. Kaasalainen (2004) and
Ďurech et al. (2005, 2007) showed that it is possible to get the
solution of the inverse problem from sparse photometry if the
data are of good quality (noise .5%). New asteroid models were
also derived with a combination of dense and sparse photometry
(Ďurech et al. 2009; Hanuš et al. 2011, 2013, 2016).

In the first statistical study of pole orientation of asteroids
(based on 20 bodies), Magnusson (1986) revealed the lack of
poles close to the ecliptic plane. That was later confirmed in

analyses by Pravec et al. (2002), Skoglöv & Erikson (2002), and
Kryszczyńska et al. (2007) for slightly less than 100 asteroids.
Hanuš et al. (2011), using a sample of 206 main belt asteroids,
found the dependence of the distribution of ecliptical latitudes β
on the diameter D. They found basically isotropic distribution
of β value with only a slight excess of prograde rotators for
D & 60 km, while the distribution of β value for D . 30 km
asteroids was found to have a strong preference for either low
or high values indicating pole orientation near the pole of the
ecliptic. The lack of poles near the ecliptic is most probably due
to the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect,
which can alter the direction of the spin axes of asteroids smaller
than ≈40 km on a timescale shorter than their collisional lifetime
(e.g., Pravec & Harris 2000; Rubincam 2000). The distribution
of ecliptical longitudes λ of spin axes was, however, supposed to
be rather uniform. For instance, Davis et al. (1989) came to this
conclusion from the simulations of the collisional evolution of
asteroids. With the growing number of asteroids for which pole
orientation have been determined, a reliable statistics could be
achieved and this hypothesis could be tested. However, even for
a sample of 206 asteroids, Hanuš et al. (2011) did not reveal any
nonuniformity in distribution of λ, but at the same time the data
sample was too small to indicate meaningful nonuniformities.
On the contrary, Slivan (2002) and Slivan et al. (2003) revealed a
nonuniform pole distribution for 20−35 km size members in the
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Koronis family. In particular, the prograde-rotating asteroids all
had ecliptic longitude between 24◦ and 73◦. This conundrum was
resolved by Vokrouhlický et al. (2003), who showed that these
objects underwent a 2−3 Gyr long dynamical evolution during
which the YORP effect tilted their spin axis near the ecliptic
pole. Since YORP also continued to decrease the rotation fre-
quency in their model, the spin state was captured in the Cassini
resonance between the pole precession owing to solar torque and
orbit precession from Jupiter-Saturn perturbations. The station-
ary point of this particular secular, spin-orbit resonance is cur-
rently at '35◦ ecliptic longitude. Thus all bodies whose spin
axes librate about this point must have λ near this value. More
recently, Bowell et al. (2014) estimated the ecliptical longitudes
λ for more than 350 000 asteroids of the main belt using the
magnitude method (Magnusson 1986), based on the variation of
brightness with the ecliptical longitude: the maximum of bright-
ness corresponds with the spin axis pointing either toward or op-
posite from the Earth. Surprisingly, the resulting distribution is
clearly nonuniform with an excess of asteroids with λ from 30◦
to 110◦ and with minimum for 120◦ to 160◦.

The success of getting a unique solution of the inverse prob-
lem with currently available sparse photometric data (which are
not accurate enough) is low. Nevertheless, using the distributed
computing project Asteroids@home (Ďurech et al. 2015), which
significantly reduces the computational time of the period
search, Ďurech et al. (2016) derived 328 new models from the
analysis of Lowell photometric data. This is an impressive, but
still small increase in number to enable a population-wide study.
For this reason, we describe a new method for the determina-
tion of the orientations of spin axes and shapes of asteroids to
utilize photometric data sparse in time. The uncertainties of spin
vectors are large for individual bodies, therefore we work with
groups of asteroids and construct distributions of tested parame-
ters because working with large samples of bodies should smear
uncertainties of individual solutions and, if uncorrelated, the re-
sults should hold in a statistical sense.

The structure of this paper is as follows: in Sect. 2, we
describe our model and test its reliability on synthetic data;
in Sect. 3, we apply the model to the photometric data from
the Lowell Observatory database and construct the distributions
of ecliptical longitudes for main-belt asteroids and for several
groups of asteroids; Sect. 4 deals with distributions of the ratio
a/b of axes of asteroids and, in Sect. 5, we summarize the main
results.

2. Model

In the light curve inversion method, all parameters describing the
rotational state (i.e., the rotational period and orientation of the
spin axis), shape, and light scattering on the surface are fitted,
and the unique sidereal rotational period P has to be determined.
In the case of dense photometric data, we can substantially re-
duce the computational time necessary for the determination
of P by only searching the interval around the value estimated
from dense light curves. For sparse data, we usually do not have
any estimate of P and we have to search the interval of all pos-
sible values, which is time consuming. Moreover, for the ma-
jority of asteroids we currently do not have sparse data that is
accurate enough to derive a unique rotational period. Therefore,
to fully utilize sparse photometry, we developed a new model,
which does not allow us to determine the rotational period, but
provides an approximate solution for the orientation of the spin
axis and the shape parameters of the asteroid.

We model asteroids as geometrically scattering triaxial ellip-
soids (a ≥ b ≥ c = 1) rotating about the shortest axis of the
inertia tensor. The parameters of the model are the ecliptic lon-
gitude λ and latitude β of the pole and the ratios of axes a/b and
b/c of the ellipsoid, alternatively axes a and b. The advantage
of this model is that the brightness L, which is proportional to
the projected area of the illuminated and visible part of the sur-
face, can be computed analytically (Connelly & Ostro 1984) as
follows:

L ∝
πabc

2

(
√

eTMe +
eTMs
√

sTMs

)
, (1)

where e, s are unit vectors defining the position of the Earth and
the Sun in the asteroid coordinate system of principal axes of the
inertia tensor, and

M =

1/a
2 0 0

0 1/b2 0
0 0 1/c2

 . (2)

In a special case of opposition e = s, the Eq. (1) simplifies to

L ∝ πabc
√

eTMe. (3)

The direction toward Earth can be described by the rotational
angle φ and aspect angle θ (i.e., angle between e and the direction
of the spin axis),

e = [sin θ cos φ, sin θ sin φ, cos θ]T. (4)

Having set c = 1, the squared brightness L2 normalized by the
maximal possible value πab is

L2 =
sin2 θ cos2 φ

a2 +
sin2 θ sin2 φ

b2 + cos2 θ. (5)

The mean quadratic brightness over one rotational period is then

〈L2〉 =
1

2π

∫ 2π

0
L2dφ = 1 +

1
2

sin2θ

(
1
a2 +

1
b2 − 2

)
, (6)

and the normalized dispersion of squared brightness is

η =

√
var(L2)
〈L2〉

=

√
〈(L2 − 〈L2〉)2〉

〈L2〉

=
a2 − b2

√
8

[
a2b2

sin2 θ
+

1
2

(
a2 + b2 − 2a2b2

)]−1

. (7)

We used Eqs. (6) and (7), to compute 〈L2
model〉 and ηmodel for

each asteroid and for each of its apparition; we defined appari-
tions as sets of observations with the gap between these sets of
at least 100 days.

For the observational data, we used the following procedure:

1. We remove the dependence on solar phase angle. The
changes in brightness in the light curve of an asteroid are not
only due to the rotation but also the geometry of observa-
tion. In the model, we assume the case of opposition, which
means the solar phase angle α = 0. For the observational
data, we fitted the dependence of the brightness on the solar
phase angle α by a linear-exponential dependence similar to
Hanuš et al. (2011), i.e.,

g
(
h exp−α/d −kα + 1

) 1 + cosα
2

, (8)

where g, h, d, k are parameters fitted for each asteroid, and
we divided the observed brightness by that function. As an
example, the corrected data for asteroid (511) Davida are
shown in Fig. 1.
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Fig. 1. Photometric data of the asteroids (511) Davida corrected by the
influence of the solar phase angle (black points). Red points with verti-
cal lines denote the observed mean brightness and its dispersion in in-
dividual apparitions, green color denotes the same but calculated quan-
tities for the best-fit model. To normalize L, we divided each value by
mean value of L calculated over all apparitions.

2. Then, we required that there were enough data for each as-
teroid: at least 20 points in one apparition and at least five
apparitions for one asteroid (in Fig. 1 there are data from ten
apparitions that can be used).

Computed theoretical values of the mean brightness 〈L2〉 and of
the dispersion of the brightness η can be compared with obser-
vation by χ2 that we define as:

χ2 = χ2
η + wχ2

L2 =
∑

apparitions

(ηmodel − ηobs)2

σ2
η

+w
∑

apparitions

(〈L2
model〉/〈L

2
model〉 − 〈L

2
obs〉/〈L

2
obs〉)

2

σ2
L2

, (9)

where σ denotes the standard deviation and w denotes the weight
for χ2 of brightness. To normalize values of calculated and ob-
served mean quadratic brightness, we divided them by 〈L2

model〉

and 〈L2
obs〉, respectively, which are mean values calculated over

all apparitions. The value of w is not set in advance and has to
be found by testing on known data. Since 〈L2〉 and η are not
Gaussian random variables, the χ2 in relation (9) is not χ2 dis-
tributed. Nevertheless, we use this χ2 formalism to define the
best solution, which has the minimum χ2.

In passing we note that in combining Eqs. (6) and (7) we
obtain, for a given asteroid, the relation between 〈L2〉 and η,

η =
1
√

2

a2 − b2

a2 + b2 − 2a2b2

[
1 −

1
〈L2〉

]
· (10)

This implies that for larger 〈L2〉 the model predicts smaller dis-
persion η. This is in accord with the intuition that a larger bright-
ness corresponds to the pole-on geometry of view (i.e., smaller
aspect angle θ).

To find a model with the best agreement (the lowest χ2) be-
tween the calculated values and the observation, we computed
model values on a grid in parameter space: the ecliptical longi-
tude of the pole from 0◦ to 360◦; the latitude from 0◦ to 90◦, both
with a 5◦ step, and the axes a and b, from 1.1 to 4 and from 1
to a, respectively, both with a 0.1 step (an elongation larger than

4:1 would be unrealistic). As mentioned above, we corrected the
observed brightness to the solar phase angle α = 0, however, the
geometry remained unchanged and the aspect angle θ, which ap-
pears in Eqs. (6) and (7), was calculated for each apparition as a
mean value as follows:

cos θmean = u · emean, (11)

where u = [cos β cos λ, cos β sin λ, sin β]T is the vector defining
the direction of the spin axis and emean is the mean vector defin-
ing the position of the Earth during one apparition. From the re-
lation (11) we can see that we obtain the same aspect angle for λ,
β and λ ± 180◦ , −β, which is the reason why we test β only in
the interval from 0◦ to 90◦. Relation (11) also indicates that, for
most asteroids, there is only a slightly worse second minimum
of χ2 for λ ± 180◦. For zero inclination of orbit (ez = 0), the
aspect angle would be the same for λ and λ ± 180◦. Owing to
this ambiguity in λ, we constructed distributions of λ only in the
interval 0◦–180◦ and for λ > 180◦ we used modulo 180◦.

2.1. Testing of the model on synthetic data

To test our model and confirm its reliability, we created syn-
thetic data. We computed the brightness of asteroids using the
models from DAMIT database and the Hapke scattering model
(Hapke 1981, 1993) with randomly chosen parameters, and we
assigned these new (synthetic) values to asteroids contained in
the Lowell database (to the time of observation and the appro-
priate geometry). The distribution of poles for this synthetic data
was isotropic.

We added the Gaussian noise (we tested noise σL = 0.15 and
0.2), which was then subtracted according the relation

ηobs =

√
η2 − σ2

L2 =

√
η2 − 4σ2

L (12)

if η ≥ 2σL, else ηobs = 0. For the real data, we only have an
estimate of the noise level and we attempt to subtract different
values from the data to find the best results. We also tested syn-
thetic data without any noise (σL = 0).

After applying our model on these data, we should obtain
uniform distributions of the ecliptical longitudes λ and latitudes
sin β. This was satisfied for the resulting distribution of λ, how-
ever, the distribution of latitudes showed a preference for high
β. The possible explanation is that we did not include the un-
certainties from the Hapke model and from the assumption that
asteroids are triaxial ellipsoids. That means, for example, that for
synthetic data without any noise and for an asteroid with β = 0,
there are still some changes in brightness that our model inter-
prets as nonzero β. To improve the model we added a new pa-
rameter that we called model noise σmodel. Then Eq. (12) had to
be changed to

ηobs =

√
η2 − 4σ2

L − σ
2
model (13)

if η ≥
√

4σ2
L + σ2

model, else ηobs = 0.
We tested values σmodel = 0.05, 0.06, 0.07 and 0.1. The re-

sulting distributions of λ were uniform independently on σmodel.
This is probably because λ is principally determined from the
mean brightness 〈L2〉, which is comparatively more stable than
the dispersion of brightness η from which β is determined. In
the left panel of Fig. 2, there are shown distributions of sin β for
the two best values of σmodel and for the data noise σL = 0. The
distributions are clearly nonuniform, nevertheless this is the best
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Fig. 2. Distributions of ecliptical latitudes β calculated from synthetic
data with noise σL = 0 (left) and σL = 0.15 (right) for two best values
of σmodel.

result we obtained. When we added noise to the synthetic data,
we found that there is no significant difference between distribu-
tions of sin β for σmodel = 0.06 and 0.07 (see Fig. 2 on the right)
and, therefore, we decided to use the value 0.06 for the real data.

The takeaway message from our tests is that (i) determina-
tion of λ is reliable in a statistical sense, while (ii) determination
of β is subject to systematic bias that needs to be corrected before
interpreting the results.

3. The distribution of ecliptical longitudes

Having tested our approach and calibrated its parameters, we
now construct the distribution of ecliptical longitudes for the
real data from the Lowell Observatory photometric database
(Bowell et al. 2014). This database contains data from 11 ob-
servatories, which are stored in the Minor Planet Center. The
data were calibrated using the broadband accurate photometry
of the Sloan Digital Sky Survey; the accuracy is ∼0.1−0.2 mag.
For more information about the data reduction and calibration,
see Oszkiewicz et al. (2011).

First, we applied our model to 765 asteroids included in
DAMIT database (from the first 10 000 numbered asteroids,
which are included in the Lowell Observatory database and sat-
isfy the conditions on the number of apparitions and the number
of measurements in one apparition) and tried different values of
noise σL (0.08, 0.1, 0.12, 0.15) and weight w (1, 5, 25); the value
of model noise was 0.06. To decide on the best noise level and
weight, we compared the calculated λ and β with λDAMIT (values
from DAMIT derived with the light curve inversion) and βDAMIT,
respectively. From the distributions of ∆λ = |λ − λDAMIT|, we
found the best value of weight as w = 5 and from the distribu-
tions of ∆β we found the best value of noise level as σL = 0.08.
However, we revealed that with this assumed data noise, the
model produces hardly any spheroidal asteroids a/b ∼ 1. This
is because the photometric data for less bright asteroids have
higher noise level than for brighter asteroids. In DAMIT, there
are preferentially brighter asteroids, hence the noise level 0.08
works for them, but for less bright asteroids, such noise level
is underestimated. To estimate the dependence of σL on L we
used the amplitudes Amag of light curves stored in the Aster-
oid Lightcurve Database (LCDB)1 compiled by Warner et al.
(2009). For Amag we can write

Amag = 2.5 log
Lmax

Lmin
= 2.5 log

L|φ=0

L|φ=π/2
, (14)

1 http://www.minorplanet.info/lightcurvedatabase.html
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Fig. 3. Dependence of the mean value of noise level σL on the mean
value of Lmean; Lmean is mean brightness over all apparitions. Each mean
value was calculated from a sample of 500 asteroids (as described in the
main text). Gray lines denote dispersions of σL among corresponding
500 bodies. The red line denotes the fit that was applied in the model.

where L is given by Eq. (5). The normalized dispersion of bright-
ness η, defined by Eq. (7), is then related with amplitude as

ηA =
1
√

8

(
1

1 − A2 −
1
2

)−1

, (15)

where A = Lmin/Lmax = 10−0.4Amag . For 9698 asteroids included
in LCDB, we calculated ηA according Eq. (15) and then the ap-
propriate noise level in data for each asteroid is written as:

σL =

(√
η2 − η2

A − σ
2
model

) /
2 (16)

if η >
√
η2

A + σ2
model, else σL = 0. We calculated the running

mean of σL for the sample of 500 bodies to obtain the depen-
dence of σL on the mean brightness over all apparitions Lmean.
The resulting dependence, with dispersion of σL among corre-
sponding 500 bodies, is shown in Fig. 3. We applied this de-
pendence in our model as follows: we assumed the noise level
σL = 0.07 for asteroids with Lmean > 80; the brightness here
is a dimensionless quantity calculated from magnitude M as
L = 10−0.4(M−15). For asteroids less bright than 80, we calculated
the noise level according to the equation of parabola,

σL = 0.07 +
(Lmean − 80)2

2 × 55 000
· (17)

The appropriate curve is shown in Fig. 3 (red line). We can
see it does not fit the data perfectly, nevertheless, considering
the dispersion of values of σL (gray lines), such deviation is
insignificant.

The Lowell Observatory database contains, in total, data for
326 266 asteroids. For 69 053 asteroids, there were enough ap-
paritions and data points to calculate ecliptical longitude λ and
latitude β; the vast majority of these asteroids belong to the first
100 000 numbered asteroids. For this sample, we used our model
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Fig. 4. Distribution of λ derived for 69 053 asteroids from the Lowell
Observatory photometric database with model noise σmodel = 0.06 and
weight w = 5. The values of λ larger than 180◦ map to the values λ −
180◦, because of the symmetry of the model.

with weight w = 5, model noise 0.06, and data noise calculated
for each asteroid according to the rule described above. The re-
sulting distribution of the ecliptical longitude λ of asteroid pole
orientation, shown in Fig. 4, is clearly nonuniform. As we can
see, there is an excess of asteroids with λ from 40◦ to 100◦ and a
minimum for λ ∼ 150◦. We calculated the Kolmogorov-Smirnov
(KS) test of this distribution with a uniform one. The probability
that they belong to the same parent distribution QKS is almost
zero. A similar result was obtained by Bowell et al. (2014), who
determined λ from the maximum of a sinusoid curve fitting the
variation of brightness.

The distribution of ecliptical latitudes β shows strong pref-
erence for sin β & 0.9, however, since the distribution of sin β
for the synthetic data was not uniform (Fig. 2), the determined
ecliptical latitudes are affected by biases and uncertainties that
are not properly modeled here; therefore, in the following text
we mainly study the distribution of ecliptical longitudes λ.

3.1. Searching for an explanation

Up to now, there is no satisfactory explanation of such nonuni-
formity in the distribution of ecliptical longitudes λ. We
considered the observational and method biases described in
Marciniak et al. (2015) and Santana-Ros et al. (2015), neverthe-
less, we found these do not influence our results; therefore, we
searched for some other observational biases and geometrical
and dynamical effects as well.

3.1.1. Galactic plane bias

First, we tested the influence of the measurements near Galac-
tic plane, where the stellar background is more dense and thus
the measurements may have higher uncertainties. We eliminated
the observations with Galactic latitude |b| < 10◦ and repeated
the analysis; for one asteroid there were on average about 6%
less points. The differences between computed λ and λ from the
DAMIT database were comparable with values for the model
with the Galactic plane, however, the nonuniformity in λ was
even larger. This result could suggest that, on the contrary, the
shortage of observations near the Galactic plane could cause the
nonuniformity of λ. However, if such a bias could influence our
results, it would have also been seen in our test with synthetic
data, since the geometry of observations was kept unchanged.
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Fig. 5. Distribution of the longitudes of ascending node Ω (from AstOrb
catalog) for the asteroid main belt. The red curve represents the distri-
bution in the ecliptic plane; the black curve indicates the distribution
in the invariant (Laplace) plane. The green and blue lines represent the
distribution in the invariant plane for asteroids with the inclination of
the orbit I < 10◦ and I < 5◦, respectively.

Nevertheless, the resulting distribution of ecliptical longitudes
was uniform, therefore, we believe our results are not influenced
by such bias and we had to look for another explanation.

3.1.2. Correlation with longitude of ascending node

Next, we studied the role of the orbital longitude of node Ω by
examining a possible correlation between asteroid’s pole longi-
tude λ and Ω. The orbital data were taken from the AstOrb cata-
log2. Figure 5 shows distribution of Ω values for 566 089 multi-
opposition orbits of main-belt asteroids.

Focusing first on the data in the ecliptic reference system,
we note that Ω values show overpopulation centered at '100◦
value, and underpopulation shifted by about 180◦, i.e., centered
at '270◦ value. This result is not new (see, e.g., JeongAhn
& Malhotra 2014, and references therein). The reason for this
nonuniformity in Ω is due to planetary perturbations. The dis-
tribution of Ω transformed to the Laplace plane shows similar
nonuniformity, only shifted by ∼180◦; this is due to a slight but
significant '1.58◦ tilt between the ecliptic plane and invariant
plane of planets. For small-inclination orbits (i.e., whose proper
inclination value is small), this effect becomes larger, as also
shown in Fig. 5. Having learned about the nonuniformity of os-
culating nodal longitudes of asteroids in the main belt we should
now examine, whether the nonuniform distribution of their pole
longitudes λ is not a simple implication of the primary effect in
nodes.

First, we ran the following experiment. We divided the aster-
oid population according to their value of Ω to 18 equal bins
(each 20◦ wide). We found the bin that contains the smallest
number N of asteroids, and from all other bins we randomly se-
lected N objects. That way, we had a sample of asteroids whose
distribution of nodes was uniform. We examined distribution of
rotation poles of this subsample, in particular the distribution of
their λ values, and we found it is still nonuniform, resembling
that in Fig. 4. The KS test of compatibility of the λ distributions
obtained from our subsample and the whole sample of asteroids
gave us a likelihood QKS ' 0.90 that they have the same parent
distribution. We repeated our experiment several times, creating
new subsamples, and obtained the same results. We also ran the

2 ftp://ftp.lowell.edu/pub/elgb/astorb.html
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Fig. 6. Distributions of ecliptical longitudes λ of poles for different lon-
gitudes of ascending node Ω.

same experiment in the Laplace reference system, but the choice
of reference plane does not influence the results. These exper-
iments suggest that nonuniformity in the distribution of orbital
nodes does not play fundamental role in the nonuniform distri-
bution of pole longitudes of asteroid spins.

Yet, we would expect some relation between Ω and λ should
exist. For instance, plotting λ distributions for asteroids in each
of the Ω bins described above, we obtained data shown in Fig. 6.
The results indicate that in each of the bins of restricted Ω val-
ues, distribution of pole longitude peaks at '(Ω − 90◦). This is
actually understandable in the simplest model, in which the spin
axis of each asteroid just uniformly precesses about the normal
to its osculating orbit due to solar gravitational torque. We have
quantitatively tested how much a simple geometrical effect of
such precession could contribute to the observed dependence of
ecliptical longitude λ on node Ω. To that goal we assumed the
pole position in the moving orbital plane is set with the obliq-
uity ε and we chose the inclination of orbit I and the longitude
of ascending node Ω. This initial set up was changed several
times, specifically, we tested values of inclination sin I = 0.10,
0.15, 0.30, values of node Ω = 10◦, 170◦, 250◦ and values of
obliquity ε < I, ε > I. Assuming a simple regular precession,
we randomly picked many values of longitude ϕ, uniform in 0◦
to 360◦. We then transformed poles to the ecliptic system, de-
termined appropriate λ and construct a model distribution of the
ecliptical longitudes. Results of these simple simulations satis-
fied our hypothesis of geometrical effect; for ε < I, the distribu-
tion of λ was only a tight interval of values near '(Ω− 90◦), and
for ε > I, the λ values ranged the whole interval from 0◦ to 360◦,
but with a peak at '(Ω − 90◦). However, when we summed dis-
tributions of λ for values of ε from assumed distribution n(cos ε)
for a fixed I and Ω, we reached an almost uniform final distri-
bution, which is far from the distributions shown in Fig. 6. We
tested n(cos ε) uniform and also some unrealistic distributions,
for example, we assumed there were ten times more bodies with
ε < 45◦ than with ε > 45◦, but with insignificant effect on the
final distribution.

Therefore, using two lines of evidence we show that the
nonuniformity of the ecliptic Ω values together with only simple
geometric (projection) effects cannot explain the nonuniformity
in the distribution of pole ecliptic longitudes. However, the flow
of pole orientation in the orbit frame may be much more com-
plicated than just a simple steady precession about the orbital
angular momentum vector. This is because of a possibility of
resonant, spin-orbit effects described by Cassini dynamics (e.g.,
Colombo 1966; Henrard & Murigande 1987; Vokrouhlický et al.
2006). In fact, the large-asteroid subgroup in the Koronis family,
the Slivan sample, has actually been identified as being captured
in the most prominent s6 Cassini resonance resulting in a com-
mon orientation of their pole longitudes near the stationary point
at ecliptic longitude '35◦ (e.g., Vokrouhlický et al. 2003). There-
fore, we examined whether such resonant effects could help us
to explain the nonuniformity in the λ distribution.

However, we found the answer is negative. First, if the cap-
ture in the aforementioned Cassini resonance played a domi-
nant role population wise, the pole longitude distribution would
be peaked at the stationary point of the resonance (shifted
by some 35◦−40◦ from the maximum seen in Fig. 4). Next,
Vraštil & Vokrouhlický (2015) have shown that the capture in
this resonance is generally unstable (especially in the inner part
of the main belt), and that its phase volume is small (few percent
at maximum). The latter implies that expecting the spin pole lo-
cated in this resonance by chance is very small. In order to verify
these preliminary conclusions, we used the software described
in Vraštil & Vokrouhlický (2015) to probe the expected effect.
This is basically much more sophisticated variant of our previ-
ous Monte Carlo experiment in which we assumed a steady pre-
cession in the orbit frame. Here we propagated orbit and spin
evolution of the first 10 000 main belt asteroids, giving them
random initial rotation state parameters, such as rotation period,
pole orientation, and dynamical ellipticity. We then numerically
propagated orbit and spin evolution for tens of millions of years
and monitored distribution of simulated ecliptic longitudes of the
sample. We found the sample quickly forgets given initial condi-
tions and fluctuates about a steady-state situation with basically
uniform distribution of ecliptic longitudes of rotation poles. We
repeated the numerical experiment several times with different
initial conditions but always obtained very similar results.

3.2. Distributions of λ for groups of asteroids

Our next step was to study the distributions of λ for various
groups of asteroids, specifically for asteroids with different sizes,
different spectral types, dynamical families, and asteroids in dif-
ferent parts of the main belt. Distributions were again compared
using the KS test.

3.2.1. Asteroids with different sizes

We divided asteroids into eight groups according their diameters:
0–3; 3–6; 6–9; 9–12; 12–15; 15–25; 25–50; and 50–1000 km; the
number of asteroids decrease with higher diameters, therefore,
we chose wider ranges of bins. We preferentially used diameters
derived from the observations of the WISE satellite (Masiero
et al. 2011)3. For asteroids not included there, we used diame-
ters from AstOrb catalog. We compared distributions with each
other and found that the differences are not significant, which
means that the data do not reveal any dependence of λ on size.

3 http://wise2.ipac.caltech.edu/staff/bauer/NEOWISE_
pass1/
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black curve). This is the simplest debiasing procedure we can use.

We also studied the dependence of ecliptical latitude β on size
and tried to confirm the result from Hanuš et al. (2011). In Fig. 7,
we can see that, even though the distributions show preference
for sin β & 0.9, with decreasing diameter D, there is a visible
depopulation of spin axes close to the ecliptic plane, which is in
agreement with findings of Hanuš et al. (2011).

This is yet another interesting hint about the origin of the
nonuniformity of λ distribution. The affinity of latitudes toward
extreme values for small asteroids clearly shows that the YORP
effect has been affecting the population in a size selective way
exactly predicted by the theory. However, the distribution of the
longitudes does not indicate this size-selectivity, implying the
YORP effect is not the primary mechanism in the longitude story.
Indeed, the theory of the YORP effect so far has not predicted
any significant effects for the pole longitude.

3.2.2. Taxonomic classes

We compared distributions of λ between asteroids belonging to
the taxonomic class C and S (using the AstOrb catalog), which
are the largest groups. The result of KS test, QKS = 0.45, indi-
cates that there is no significant difference. The fact that the dis-
tribution of λ is independent of the sizes and taxonomic classes
simplified tests with other subpopulations.

3.2.3. Different parts of the main belt

We also studied the distributions of λ for groups of asteroids lo-
cated in different parts of the main belt. Specifically, asteroids
with different inclinations sin I, eccentricities e, and semimajor
axes a of their orbits. We found that the distribution of λ is not
dependent on the eccentricity, however it is strongly dependent
on the inclination (see Fig. 8). For sin I < 0.02 there is a huge
excess of asteroids with λ from 60◦ to 100◦, there are more than
four times more bodies than for λ ∼ 150◦. With increasing I the
distributions are closer to the uniform distribution. This result is
surprising and it actually goes against the ideas about simple ge-
ometrical (projection) effects discussed in Sect. 3.1.2, suggesting
that perhaps some unidentified yet dynamical effects are at play.

We also studied the dependence of the distribution of λ
on the inclination of orbit in the invariant plane. Although the
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is highest. The locations of some more populous asteroid families are
emphasized.

maximum of distribution for sin I < 0.02 is slightly lower, there
is still strong dependence on the inclination.

We constructed distributions of λ for individual Ω bins (as in
Fig. 6) for asteroids with sin I < 0.04. The peaks of all distri-
bution were for λ from 60◦ to 100◦, which corresponds with the
distribution of λ for small inclinations. This means that for orbits
with small inclination, the dependence of λ on Ω is suppressed.

We then constructed distributions for asteroids with different
semimajor axes a. We separated the main belt into four parts (see
Fig. 9), the inner, middle, pristine4, and outer belt, which are sep-
arated by mean-motion resonances with Jupiter. To eliminate the
dependence on the inclination of orbit we divided asteroids of
each part into bins with different inclination (we used the same
bins as in Fig. 8) and we randomly chose such number of aster-
oids to have the same number of asteroids in corresponding bins
of two populations. In other words, the distributions of inclina-
tion of orbit for the compared populations were the same. The
results of KS tests show that only the pristine zone, bracketed by
the powerful mean motion resonances 5/2 and 7/3 with Jupiter
at '2.82 au and '2.96 au, has significantly different distribution
from the middle and outer belt (QKS < 3×10−6); specifically, the
nonuniformity is more significant in pristine zone than in other
parts. For the pair inner belt and pristine zone, the KS test gives
QKS = 0.00013.

4 We adopted the word pristine from Brož et al. (2013).
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3.2.4. Dynamical families

Finally, we studied dynamical families. The family membership
of asteroids was taken from Nesvorný et al. (2015). Distributions
of individual families were compared with the distribution of
corresponding background formed with asteroids from the same
part (inner, middle, pristine, and outer) as the family and with
inclinations of orbit from the interval defined by the members
of the family. The KS test did not reveal any significant differ-
ence between any family and its background. We also compared
families located approximately in the same interval of inclina-
tion (see Fig. 9) with each other, specifically: Themis with Mas-
salia; Vesta with Eos, Hygiea and Flora; Hygiea with Flora; and
Koronis with Nysa Polana. Again, the KS test showed no dif-
ference for these pairs of families. The distributions of λ for six
selected families are shown in Fig. 10. The differences we can
see between the distributions are caused only due to the depen-
dence on the inclination of orbit.

The strong maximum of the λ distribution between
'(80◦−110◦) in the Koronis family does not fit the interval of ex-
pected librators in Slivan states described by Vokrouhlický et al.
(2003) which would be shifted by about 40◦ to 50◦ degrees to-
ward lower values.

3.3. The bootstrap method

Formally, it is always possible to find the best ecliptical longi-
tude λ and latitude β of the pole, i.e., the lowest χ2. However,
the minimum can be flat and in that case λ is not well deter-
mined. To estimate the errors of determined longitudes we ap-
plied the bootstrap method (Davison & Hinkley 1997) on the
set of measurements for each asteroid; we used the first 10 000
numbered asteroids from the Lowell Observatory database, of
which for 9774 there were enough data points. From the set we
randomly selected data to get the same number of measurements,
but some of them were chosen more than once and some of them
were missing. We repeated this ten times, therefore, we obtained
ten modified sets of measurements and thus ten possible longi-
tudes for each asteroid. We considered that the longitude was
well determined when the maximum difference among ten val-
ues of λ was ≤50◦. This was satisfied for 3930 from 9774 as-
teroids; the mean value of the largest differences for these bod-
ies is 30◦. The dependences of λ on the longitude of ascending
node Ω and on the inclination of orbit I for this new sample of
3930 asteroids did not significantly change, which means that the
poorly constrained models did not cause any systematic effect to
distribution of λ.
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4. Distributions of the ratio of axes a/b

In this section, we study shapes of asteroids (specifically the ra-
tios of axes a/b and b/c) derived from our model. We tested our
model on synthetic data as described above in Sect. 2.1, the as-
sumed noise was 0.15. The values of ratios a/b and b/c obtained
with our model are compared with values from DAMIT models
derived from the principal moments I1, I2, I3 of the inertia tensor
(assuming uniform density),

a
b

=

√
I3 − I1 + I2

I3 + I1 − I2
,

b
c

=

√
I1 − I2 + I3

I1 + I2 − I3
· (18)

Since the values of ratios computed from our model were ob-
tained from synthetic data based on DAMIT, they should be
the same as values derived from the inertia tensor. The result
is shown in Fig. 11. We calculated the linear (Pearson) correla-
tion and Spearman correlation for both ratios, the coefficients ρ
are summarized in Table 1. We obtained a good correlation for
the ratio a/b, while the ratio b/c is not so well determined.

For the real data, the setup was the same as described in
Sect. 3: weight w = 5; model noise σmodel = 0.06; and data noise
σL = 0.07, respectively, σL was calculated according Eq. (17)
for asteroids less bright than 80. We compared resulting ratios
a/b and b/c of 765 asteroids included in DAMIT with a/bDAMIT
and b/cDAMIT and calculated correlation coefficients (see Table 1
and also Fig. 12). The correlation coefficients for the ratio b/c
are lower than 0.1, which implies that b/c is not well determined
and in following tests we will study only the ratio a/b. The prob-
lem to determine the ratio b/c is linked with our previous result
that the distribution of ecliptical latitudes β, especially for small
bodies (see Fig. 7), shows a preference for high values of β be-
cause for a spin axis with high latitude (small obliquity) we have
observations only from limited range of polar aspect angles. The
determination of b/c, however, requires observations from wide
range of aspect angles.

As in Sect. 3.3 we used the bootstrap method to estimate
errors of the ratio a/b. The allowed maximum difference among
ten calculated values of a/b was 0.25, 3819 remain from 9774
asteroids, and the mean value of the largest differences is 0.18.
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Table 1. Linear (Pearson) and Spearman coefficients ρ of correlation.

ρ linear ρSpearman

Synthetic data, a/b 0.88 0.91
Synthetic data, b/c 0.35 0.38

Real data, a/b 0.48 0.61
Real data, b/c 0.053 0.088
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4.1. Distributions of a/b for asteroids with different sizes

As in the case of the ecliptic longitude λ, we studied distributions
of a/b for several groups of asteroids. The test for asteroids with
different diameters showed that larger asteroids (D > 25 km) are
more spheroidal (values of a/b closer to 1) and smaller asteroids
are more elongated (a/b ∼ 1.6) as is shown in Fig. 13. The differ-
ences between distributions in Fig. 13 on the right are much big-
ger than the uncertainties estimated from bootstrap method 0.18.

This dependence of a/b on D also remained for a smaller
sample of 3570 asteroids, which were obtained from the boot-
strap method as having well-determined a/b. Since such depen-
dence on diameter can influence the comparison of distributions
of a/b of other populations of asteroids, we have to eliminate it
in the following tests.

McNeill et al. (2016) determined an average axial ratio for
asteroids with diameter D < 8 km from PanSTARRS 1 survey
as 1:0.85, i.e., a/b = 1.18, which is not in agreement with our
findings. For the corresponding range of diameters, we calcu-
lated the average value of a/b for asteroids in DAMIT (derived
from the principal moments of the inertia tensor). The average

value is a/bDAMIT = 1.47, however, the sample of asteroids
from DAMIT with D < 8 km is biased. The DAMIT sample
contains preferentially more elongated asteroids, for which is
easier to find the solution of the light curve inversion method.
We also checked our result, that larger asteroids are more often
spheroidal, against the asteroids in DAMIT; for D > 50 km we
obtained the average value of a/bDAMIT = 1.23 (our model gives
a/b = 1.29). We can conclude that the dependence of a/b on di-
ameter is real, however our model gives higher values of a/b for
asteroids with D < 25 km. Considering the dispersion of values
σL in Fig. 3, this could be because of the underestimated data
noise for smaller and less bright asteroids.

4.2. Different parts of the main belt

Next, we studied distribution of a/b for asteroids with different
inclinations of their orbits. To remove the dependence of a/b on
diameter, we used only asteroids with D < 20 km. The differ-
ences between resulting distributions of a/b are not so distinct
as when we studied the dependence on diameter, and they are
comparable with the uncertainties in a/b.

We also compared distributions of a/b for asteroids with dif-
ferent semimajor axes, specifically inner, middle, pristine, and
outer belt, using only asteroids with diameters D < 20 km. The
differences between distributions of a/b are not significant and
are again comparable with the uncertainties in a/b.

4.3. Dynamical families and taxonomic classes

As in Sect. 3.2.4, we compared dynamical families with their
backgrounds, using again only asteroids with D < 20 km. We
did not reveal any significant differences between distributions of
a/b of families and corresponding backgrounds. Also the com-
parison of families with each other did not show any differences
larger than uncertainties in a/b.

Szabó & Kiss (2008) derived distributions of a/b for eight
asteroids families using data from the Sloan Digital Sky Sur-
vey (SDSS). However, their distributions are different from ours;
they are often bimodal (Figs. 4−6 therein) and the maximum
is for a/b ∼ 1.2 (our distributions have maximum around 1.6).
They also suggest a possible dependence on the age of families
(old families contain more spheroidal members), but we do not
observe that in our distributions. We believe that they used an
assumption that could influence the results. First they assumed
that the rotational axes of all asteroids are perpendicular to the
line of sight. Then they also tested fixed value β = 50◦ for all
asteroids.

The last populations of asteroids we compared were different
taxonomic classes, specifically C and S types. The result of KS
test, QKS = 0.17, did not show any difference between these two
groups.

5. Conclusions

We developed a new method that allows us to determine the ori-
entation of rotational axes and equatorial axes ratio a/b, assum-
ing a triaxial shape model, using sparse data obtained by all sky
surveys. The goal of our approach is to provide a distribution
function of the solved-for parameters for a large sample of main
belt asteroids rather than detailed rotational state of individual
objects. A limitation of our method is that it provides, first, lon-
gitude λ of the rotation pole in the interval (0◦, 180◦) only, with
values in (180◦, 360◦) transformed to (0◦, 180◦) by λ = λ − 180◦
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rule; and second, absolute value of the ecliptic latitude β, instead
of β itself. The latter means that we cannot determine whether
the asteroid rotates in a prograde or retrograde sense. Addition-
ally, our model also does not provide rotational period.

We first justified our method by applying it to a synthetic
sample of asteroids and also to a known sample of objects with
rotational states resolved by more detailed methods that can be
found in the DAMIT database. We observed that our method re-
produces well the distribution of the ecliptic longitudes and the
equatorial axes ratio a/b in a statistical sense. The uncertainties,
estimated using the bootstrap method, are '30◦ in λ and '0.2 in
a/b without systematic effects on the mean value. The determi-
nation of ecliptical latitudes β shows bias toward finding prefer-
entially spin axes near the ecliptic pole. Our tests may, however,
provide a rough approximation of the bias function.

We then applied our method to 69 053 main belt asteroids
for which a suitably rich and good quality set of observations
were obtained from the Lowell Observatory database. The main
results are as follows:

1. The distribution of λ is nonuniform, with an excess of aster-
oids with λ values between 60◦ and 100◦. Similarly, there is a
deficiency of asteroids with λ values between 130◦ and 160◦.
Curiously, our tests revealed a correlation of this nonuni-
formity with orbital inclination: asteroids with very low-
inclination orbits (sin I ≤ 0.04) show the effect more sig-
nificantly than asteroids with higher inclination orbits.

2. While not a primary result from our paper, we also deter-
mined distribution of the absolute value of sine of ecliptic
latitude | sin β|. We confirm previously reported results that
asteroids with size D ≤ 25 km have their pole latitude tightly
clustered about the poles of ecliptic. This is due to the YORP
effect that makes the pole latitude to approach the extreme
values asymptotically.

3. We also found that small main belt asteroids (D ≤ 25 km) are
more elongated, with a median of ratio a/b ' 1.6, compared
to the large asteroids (D ≥ 50 km), which have a median of
ratio a/b ' 1.3.

4. We also analyzed our results for populations in different as-
teroid families. As to the λ distribution, they mainly derive
from their inclination value of the aforementioned inclina-
tion dependence. For instance, the low-inclination families
such as Massalia or Themis have the strongest nonunifor-
mity of the λ distribution in our results.

Using a more detailed method, we confirmed the previously re-
ported unexpected nonuniformity in distribution of ecliptic lon-
gitude of spin axes of the main belt asteroids. We tested various
hypotheses of its origin, but we had to reject them, proving that
the proposed processes would not lead to a significant enough
nonuniformity. Therefore, this result remains enigmatic and re-
quires further analysis. In particular, it would be very useful if
more detailed methods of spin state and shape inversion from as-
tronomical data confirmed this result and provided more details.
We note, for instance, that methods both in Bowell et al. (2014)
and here are not able to discriminate between the prograde- and
retrograde-rotating asteroids. It would be important to see, if
the excess in λ values at about 80◦ concerns equally well both
classes, or whether it is preferentially associated with one of
them. This could hint about the underlying processes that cause
the effect. In the same way, all methods used so far fold the whole
range of ecliptic λ values to a restricted interval (0◦, 180◦). This

is because of their intrinsic drawback of not distinguishing data
for λ and λ + 180◦ cases. Yet, breaking this uncertainty may
also help to disentangle the underlying physical causes of the
nonuniformity.

Justifications of reliability of our method, by running blind
tests against synthetic populations of asteroids and limited
datasets for which complete models are already available, make
our method a solid tool for further studies. It would be interest-
ing to apply it to more accurate photometric data provided by
Large Synoptic Survey Telescope (LSST).
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