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e-mail: vrastil@sirrah.troja.mff.cuni.cz,vokrouhl@cesnet.cz

Received 19 March 2015 / Accepted 27 April 2015

ABSTRACT

Context. The spin state of ten asteroids in the Koronis family has previously been determined. Surprisingly, all four asteroids with
prograde rotation were shown to have spin axes nearly parallel in the inertial space. All asteroids with retrograde rotation had large
obliquities and rotation periods that were either short or long. The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect has been
demonstrated to be able to explain all these peculiar facts. In particular, the effect causes the spin axes of the prograde rotators to be
captured in a secular spin-orbit resonance known as Cassini state 2, a configuration dubbed “Slivan state”.
Aims. It has been proposed based on an analysis of a sample of asteroids in the Flora family that Slivan states might also exist in this
region of the main belt. This is surprising because convergence of the proper frequency s and the planetary frequency s6 was assumed
to prevent Slivan states in this zone. We therefore investigated the possibility of a long-term stable capture in the Slivan state in the
inner part of the main belt and among the asteroids previously observed.
Methods. We used the swift integrator to determine the orbital evolution of selected asteroids in the inner part of the main belt. We
also implemented our own secular spin propagator into the swift code to efficiently analyze their spin evolution.
Results. Our experiments show that the previously suggested Slivan states of the Flora-region asteroids are marginally stable for only
a small range of the flattening parameter ∆. Either the observed spins are close to the Slivan state by chance, or additional dynamical
effects that were so far not taken into account change their evolution. We find that only the asteroids with very low-inclination orbits
(lower than '4◦, for instance) could follow a similar evolution path as the Koronis members and be captured in their spin state into the
Slivan state. A greater number of asteroids in the inner main-belt Massalia family, which are at a slightly larger heliocentric distance
and at lower inclination orbits than in the Flora region, may have their spin in the Slivan state.

Key words. celestial mechanics – minor planets, asteroids: general

1. Introduction

The past decade has seen an enormous increase in the number of
asteroids for which astronomical observations allowed resolving
the rotation pole orientation in space (e.g., Ďurech et al. 2015,
and references therein). This wealth of data allows new studies
of asteroids and their populations. One of the early examples of
such results was a discovery of Slivan states among the Koronis
family members (Slivan 2002; Slivan et al. 2009). The most
striking element in this dataset consisted of a group of prograde-
rotating asteroids with spin axes nearly parallel in inertial space
and similar rotation periods (later dubbed the Slivan states). A
model that explains this situation, proposed by Vokrouhlický
et al. (2003), is based on the idea that the spin axis is confined
in resonance between its precession rate by solar torques and
a particular mode of these asteroids’ orbit precession in the in-
ertial space. Because the latter is common to all bodies in the
main belt and because it derives from the current configuration
of giant planets, it explains the preferred direction in the inertial
space. Additionally, Vokrouhlický et al. (2003) proved that this
resonant state is an attractor of a long-term evolution driven by
the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) torques.
Hence, despite their tiny volume in phase and parametric spaces,
one may expect asteroids with spin states to populate this reso-
nance with a reasonable probability. Because the notion of this
resonant state is central to this paper as well, we briefly recall its
dynamical principle in Sect. 2.11.

1 The Cassini equilibria probably represent evolutionary end-
states of numerous regular satellites, including our Moon (e.g.,

Vokrouhlický et al. (2003) also mentioned that conditions fa-
vorable for existence of the Slivan states occur in the outer parts
of the main belt and for asteroids on low-inclination orbits. On
the other hand, their appearance in the inner part of the main
belt (heliocentric distance smaller than 2.5 au) seemed problem-
atic. Results in the recent study of the Flora-region asteroids by
Kryszczyńska, summarized by two papers Kryszczyńska et al.
(2012) and Kryszczyńska (2013), thus appear as a surprise2.
In particular, Kryszczyńska (2013) determined the spin vector
orientation of nearly 20 asteroids and found that many of the
prograde-rotating bodies possibly appear to be locked in Slivan
states. This situation motivates us to examine the conditions of
existence of Slivan states in the inner main belt, and in particular
among the asteroids observed by Kryszczyńska (2013).

Gladman et al. 1996; Peale 1999), and even planets (e.g., Colombo
1966; Ward 1975; Ward & Hamilton 2004; Hamilton & Ward 2004;
Peale 2006), and they are thus significant for understanding the long-
term spin evolution of bodies in planetary systems. Nevertheless, appli-
cations to asteroid spin states were limited so far (e.g., Skoglöv et al.
1996; Skoglöv 1997, 1998; Vokrouhlický et al. 2005).
2 An exact identification of the Flora family membership is compli-
cated by the significant dynamical chaoticity and high density of as-
teroids in the inner main-belt. For that reason, some of the asteroids
in the sample of Kryszczyńska (2013) that were claimed to be mem-
bers of the Flora family were not considered to belong to it by other
researchers. For instance, the latest work of Nesvorný et al. (2015) did
not assume asteroids on the lowest inclination orbits (e.g., (291) Alice
or (367) Amicitia) to belong to this family. This ambiguity, however,
does not affect our conclusions.

Article published by EDP Sciences A14, page 1 of 10

http://dx.doi.org/10.1051/0004-6361/201526138
http://www.aanda.org
http://www.edpsciences.org


A&A 579, A14 (2015)

2. Methods

2.1. Brief review of the theory

We consider a main-belt asteroid that rotates about the shortest
axis of the inertia tensor. We denote its angular velocity of rota-
tion by ω and the direction of the spin axis by a unit vector s. We
assume that the solar gravitational field produces the only torque
relevant for the spin state evolution and we are not interested in
variations of ω and s with periods similar to or shorter than its
revolution about the Sun. This easily leads to (i) ω is constant;
and (ii) the spin axis direction s evolves in any inertial frame
according to (e.g., Colombo 1966; Bertotti et al. 2003)

ds
dt

= −α (c · s) (c × s) . (1)

Here c denotes a unit vector in the direction of the asteroid’s
orbital angular momentum and

α =
3

2η3

n2

ω
∆, (2)

where η =
√

1 − e2, e is the orbital eccentricity, n is the or-
bital mean motion, and ∆ depends on the asteroid’s principal
moments of inertia (A, B,C)

∆ =
C − 1

2 (A + B)
C

(3)

(we assume A ≤ B ≤ C).
If the orbital plane were fixed in the inertial space, Eq. (1)

would have a simple solution, namely a steady precession of s
about c at a constant angular distance ε (cos ε = s · c) and with a
frequency α cos ε. The situation becomes more complicated and
interesting when the time evolution of c is taken into account.
This is relevant because the asteroid’s orbital plane evolves due
to planetary perturbations on a timescale similar to the period of
precession estimated from this simple model.

It has been argued that the dynamics of s is more conve-
niently described in a reference frame that co-moves with the
orbital plane in which simply cT = (0, 0, 1). Because this new
system is not inertial, the simplicity of the description of c is paid
for by the occurrence of new (non-inertial) torques on the right-
hand side of Eq. (1). In particular, by denoting with A the trans-
formation matrix between the inertial frame E, which is suitable
to describe the asteroid’s orbital evolution, and the co-moving
frame E′, one obtains the following expression for the additional
torques:

Tin =
dA
dt

AT s. (4)

Because the matrix (dA/dt) AT is skew symmetric, its three off-
diagonal terms may be organized into a vector quantity h, such
that Tin = −h × s. As a result, the dynamical equations for the
spin axis evolution now take the following form:

ds
dt

= − [α (c · s) c + h] × s. (5)

The orientation of the orbital plane in E, set by c, is parametri-
cally described by the orbital longitude of node Ω and inclina-
tion I. Indefiniteness of the nodal line, and the associated singu-
larity in the dynamical equations, when I becomes very small,
may be conveniently eliminated by a suitable choice of the ref-
erence direction in the E′. To do this, the transformation be-
tween E and E′ is chosen using a 3-1-3 sequence of the Euler

angles (Ω, I,−Ω), and thus A = R3(−Ω)R1(I)R3(Ω). Here, R1
and R3 are rotational matrixes about the x and z directions of a
given reference frame. In this case, hT = (A,B,−2C) with

A=cos Ω İ − sin I sin Ω Ω̇,

B=sin Ω İ + sin I cos Ω Ω̇, (6)
C=sin2 I/2 Ω̇,

where overdots mean time derivatives.
While not necessarily convenient for numerical integration,

the spin vector s may be parametrized with two angular param-
eters. By long tradition in astronomy, they have most often been
chosen such that

s =

 sin ε sinψ
sin ε cosψ

cos ε

 , (7)

where ε is the obliquity and ψ the precession angle. The two
independent dynamical equations for ε and ψ take a form of
Hamilton equations associated with a Hamiltonian (e.g., Ward
1975; Henrard & Murigande 1987; Laskar & Robutel 1993;
Neron de Surgy & Laskar 1997; Vokrouhlický et al. 2006c),

H(X, ψ; t) =
α

2
(c · s)2 + h · s

=
α

2
X2 − 2C X +

√
1 − X2 (A sinψ + B cosψ) , (8)

where (X = cos ε, ψ) are canonical variables, X is the momen-
tum and ψ the conjugated coordinate. Even though H is one-
dimensional, a solution in form of a quadrature cannot be found.
This is because coefficients (A,B,C), and in principle also α
via the eccentricity evolution, explicitly depend on time and the
problem does not admit an energy integral. Definitions (6) may
be more conveniently rewritten using a complex, and nonsingu-
lar, quantity ζ = sin(I/2) exp(ıΩ), namely

A + ıB =
2√

1 − ζζ̄

(
dζ
dt
− ıζ C

)
, (9)

C =
1
2ı

(
ζ̄

dζ
dt
− ζ

dζ̄
dt

)
, (10)

where ı =
√
−1 is the complex unit and ζ̄ is complex con-

jugate to ζ. For a small enough orbital inclination I, Eqs. (9)
and (10) reveal that to a linear approximation in I (i) C ' 0; and
(ii)A+ ıB ' 2 (dζ/dt). The linear analytical theory of the aster-
oid secular evolution provides insights into the time dependence
of ζ, namely its representation by a finite number of harmonic
terms ζ =

∑
Ai exp[ı(νit + φi)]. Nonlinear corrections, and/or

an analysis of numerically integrated orbital evolution, typically
add more terms in this Fourier representation, but do not modify
its principal character.

Vokrouhlický et al. (2006c) showed that for (i) high-
inclination orbits, such as in the Phocaea region, the harmonic
representation of ζ is dominated by a single (proper) term; while
at (ii) lower inclinations typically two contributions compete, the
proper term and a forced term associated with the s6 planetary
frequency. The presence of other terms in the ζ harmonic devel-
opment usually contributes as a weak perturbation. A toy model
that assumes only a single harmonic term in ζ, easily applica-
ble to (i) and a point of guidance in (ii), is generally known
as the Colombo top problem (e.g., Colombo 1966; Henrard &
Murigande 1987). While necessarily approximate, concepts in-
troduced in the Colombo top model are crucial for understanding
Slivan states, and we thus briefly recall the main results.
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The single-line case, when ζ = A exp[ı(st + φ)], corresponds
to the situation of a constant orbital inclination I (A = sin I/2)
to a reference plane in E, and a steady precession of the node
(Ω = st + φ). At a first glance, not much is changed since the
Hamiltonian (8) is still time-dependent. But a simple canonical
transformation helps to remove this time dependence (assuming
orbital eccentricity, and thus α, is constant). The new canonical
variables (X′, ϕ) are defined by X′ = −X and3 ϕ = −(ψ+ Ω), and
the new Hamiltonian now takes the form

H ′(X′, ϕ) =
α

2
X′2 − s cos I X′ + s sin I

√
1 − X′2 cosϕ. (11)

Since H ′ may obviously be scaled by any constant, it depends
on only two dimensionless parameters κ = α/(2s) and I. The
time independence of the new Hamiltonian (11) enforces the first
integral H ′ = C, which in principle may lead to an analytic so-
lution of the problem (Breiter et al., in prep.). We focus here on
the general knowledge of the phase flow from the first integral
itself, however. Its makeup follows from a number of station-
ary solutions of the Colombo problem4. Depending on the value
of κ, there might be two or four stationary solutions: (i) |κ| < κ?
implies two stationary solutions; and (ii) |κ| > κ? implies four
stationary solutions, with (e.g., Henrard & Murigande 1987)5

κ? =
1
2

(
sin2/3 I + cos2/3 I

)3/2
· (12)

The stationary solutions have either ϕ = 0◦ or ϕ = 180◦, and the
obliquity value satisfies

κ sin 2ε = − sin (ε ∓ I) (13)

with the upper sign − for ϕ = 0◦ and lower sign + for ϕ = 180◦.
Of particular interest is the ϕ = 0◦ stationary point when |κ| > κ?
(four stationary solutions), which is usually referred to as Cassini
state 2 (C2). This is because the phase flow around C2 is char-
acteristic of a resonant situation with ϕ librating in a limited in-
terval of values. In fact, the stable C2 solution is associated with
one of the stationary points at ϕ = 180◦ (Cassini state 4, C4) that
is unstable, such that the isolines H ′ = C meeting at C4 consti-
tute a separatrix of the flow around C2 (Fig. 1). To understand
the nature of the resonance in this case, one may use Eq. (13).
Assuming that the obliquity ε is higher than the orbital inclina-
tion, we have α cos ε ' −s. We recall that the left-hand side here
is the precession rate of s due to the solar gravitational torque,
and thus C2 state is a 1:1 resonance between the spin axis pre-
cession and the orbital plane precession in space. The maximum
resonance width ∆ε may be determined from (e.g., Henrard &
Murigande 1987; Ward & Hamilton 2004; Vokrouhlický et al.
2006c)

sin
∆ε

2
=

1
|κ|

√
sin 2I
sin 2ε4

, (14)

where ε4 is obliquity of the unstable equilibrium from Eq. (13).
Note that ε4 has a minimum, nonzero value atan(tan1/3 I) when
|κ| = κ? and asymptotically approaches 90◦ for |κ| → ∞. At
this limit ∆ε → 0, because κ sin 2ε4 is still finite according to

3 We recall that the longitude ϕ is measured in the orbital plane of the
asteroid with an origin at a 90◦ angle from the ascending node.
4 For historical reasons these stationary solutions are called Cassini
states (e.g., Colombo 1966).
5 Note that κ? from Eq. (12) is positive by definition, while κ is typi-
cally negative, reflecting retrograde precession of the asteroid’s orbital
plane, hence s < 0.

Fig. 1. IsolinesH ′ = C on a unit sphere for the Colombo top model with
I = 5◦ and κ = −0.914; since |κ| > κ? ' 0.652 there are four station-
ary (Cassini) equilibria of the flow denoted by symbols and labeled C1
to C4. The resonant zone about C2 is highlighted by gray shading. The
four panels show different angles of view; the coordinate grid is such
that colatitude ε is measured from the north pole near C1, and the lon-
gitude ϕ is measured from the meridian of the C2 equilibrium.

Eq. (13). Equation (14) shows the dependence of the orbital in-
clination on the square root, so even when I is small (a few de-
grees, for instance), the width of the resonance zone may be
large (tens of degrees, for instance). This is important for the
above-mentioned case of asteroids on low-inclination orbits in
the main belt, because the Fourier representation of ζ requires
at least two terms (unlike in the Colombo model, where only
one term is present). We may formally construct the orbital ref-
erence frame E′ associated with each of the two contributing
terms and apply the concepts of the Colombo top model, but the
second term will always introduce a perturbation. For instance,
the characteristic amplitude of the perturbation in obliquity is on
the order of the orbital inclination of the orbital frame associated
with the perturbing term. Motion in the resonant zone about the
C2 point may, however, withstand these perturbations provided
the extent of the zone is large enough.

Generally speaking, the occurrence of any given rotation
state of an asteroid in the resonant zone about the C2 state re-
quires a fine-tuning of parameters and thus it is a priori unlikely,
especially for low-inclination orbits or a resonance zone asso-
ciated with Fourier term in ζ with a low value of amplitude Ai.
This is because several constraints must be satisfied. First, we
have seen that |κ| > κ?, which requires a correlated combination
of the rotation frequency ω and the dynamical ellipticity param-
eter ∆ from (2). The panels in Fig. 2 show the limited zone in the
ω − ∆ plane where |κ| > κ?. However, not all ω and ∆ values are
equally likely. For the sake of simplicity, we assumed an approx-
imately Gaussian distribution of ∆ values with a mean value of
0.25 and a standard deviation 0.06, roughly matching the data
in Fig. 2 of Vokrouhlický & Čapek (2002). Additionally, we
assumed a Maxwellian distribution of the rotational frequency
f = ω/2π with a mean frequency of three cycles per day (e.g.,
Pravec et al. 2002), as is characteristic of large asteroids (larger
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Fig. 2. For an assumed asteroid orbit typical of the Flora basin, namely
a = 2.22 au, e = 0.1, the gray area at the top of both panels shows
the region in the rotation frequency f = ω/2π and ∆ plane, where
the resonance zone about the Cassini state C2 does not exist for s =
s6 = −26.34′′/yr frequency and I = I6 = 1.1◦ inclination. Conversely,
the resonance zone exists in the white zone at the bottom of the pan-
els. Top: for simplicity, we assume a Maxwellian distribution of f with
a maximum probability density at 8 h rotation period (corresponding
to the characteristics of large asteroids, e.g., Pravec et al. 2002), and a
Gaussian distribution for the probability density of ∆, truncated and nor-
malized to the definition interval 0 to 0.5, with a maximum at 0.25 and
a standard deviation of 0.06 (roughly corresponding to typical asteroid
shapes, e.g., Vokrouhlický & Čapek 2002). With these properties, the
Cassini resonance characterized by |κ| > κ? exists for 72% of cases. The
isolines at the bottom of panel a) show regions of maximum probabil-
ity density, with the label by the isoline depicting the total weight of the
states enclosed by the curve in the white part of the graph. Bottom: using
formulas given by Henrard & Murigande (1987), we calculate the area
of the Cassini resonance zone about C2 on a unit sphere, normalized to
its total area 4π, for each of the f and ∆ combination in the plot (and
other orbital parameters noted above). The isolines in panel b) show the
result expressed in percents, indicating that the resonance zone typically
covers '10% of the sphere.

than '20–30 km, which roughly corresponds to those observed
by Kryszczyńska 2013). The isolines in the top panel of Fig. 2
show a combined probability density distribution function nor-
malized to the whole ω − ∆ plane. From this exercise, we esti-
mate that the C2-associated resonance zone exists in '72% of
cases for the following orbital parameters: a ' 2.22 au, e ' 0.1,
I6 ' 1.1◦ and s6 ' −26.34′′/yr, typical of the Flora region. Even
if this condition is satisfied, that is, if f and ∆ happen to reside
in the bottom white region of the plot, the orientation of s must

fall into the resonance zone about C2. To estimate how likely
this is to occur, we computed for each f and ∆ value the angu-
lar area of the resonance using the analytical formulas given by
Henrard & Murigande (1987; see also Hamilton & Ward 2004),
and normalized them to the surface area of the whole unit sphere
(i.e., 4π). If the rotation pole values of asteroids were isotropic
in space, this surface area ratio would have been the probability
estimate of a pole residence in the resonance (see bottom part
of Fig. 2). For other pole-orientation distributions on the sky,
one could run a Monte Carlo computation of this probability.
However, we here adopted the simple area argument, noting that
the general conclusions we draw from our test are not overly de-
pendent on this simplification. Since the probabilities evaluated
in the panels of Fig. 2, namely occurrence of the f and ∆ val-
ues and pole residence in the resonant zone about C2, are inde-
pendent, the total probability of finding a given asteroid from a
sample with its pole captured in the Cassini resonance is a sim-
ple product of the two. We thus find that there is ∼6% chance
of this to happen. If we were to exclude the cases where the
Cassini resonance about the C2 state of the proper frequency s
also exists for low-inclination orbits in the Flora region (because
it could produce a strong perturbation for the pole residence in
the resonance Cassini zone corresponding to the s6 frequency),
this probability would drop to '4%. Finding many asteroids in
a given sample close to or in the resonance zone corresponding
to the s6 frequency (as suggested by Kryszczyńska 2013) would
therefore be a very unlikely situation.

Another aspect of studying a possibility for finding a rotation
state of a given asteroid in the C2 state is analyzing the stability
of its residence in the corresponding resonance zone. If the sta-
bility is high, one may imagine evolutionary scenarios that lead
to a capture of the resonance in the past. If the resonance was
an attractor of such evolutionary paths, and the post-capture res-
idence in the resonance is stable, the overall probability of re-
siding near C2 state may be much higher than estimated above.
This is exactly the proposed scenario for existence of the Slivan
states among the Koronis family members (e.g., Vokrouhlický
et al. 2003). If, on the other hand, the stability is low, one should
rely on the simple probability estimate of finding the spin state
in the resonant zone at random. For these reasons, we examined
the stability of the proposed Slivan states in the inner part of the
main asteroid belt in Sect. 3. In Sect. 3.4 we also briefly examine
the possibility of a capture into this state from a low-obliquity
initial situation and a rotation period that increases as a result of
the thermal torques.

2.2. Tools

In the next sections we numerically integrate Eq. (5) to investi-
gate the secular spin axis evolution of selected asteroids in the
inner part of the main belt. We make use of the efficient sym-
plectic integrator proposed by Breiter et al. (2005), in particular,
by adopting the LP2 splitting scheme. Since we deal with the
secular evolution of s, we chose a conveniently long timestep of
50 yr. The code needs time series that describe the orbital evo-
lution of the asteroid: the values of the semimajor axis a, the
eccentricity e, and the complex parameter ζ that combines the
longitude of the node and the inclination. This information was
obtained using the well-tested and widely used integration pack-
age6 swift. Because swift integrates the full system of equa-
tions of motion for both planets and asteroid(s), it requires an ac-
cordingly shorter timestep. We typically used 5 d, short enough

6 http://www.boulder.swri.edu/hal/swift.html

A14, page 4 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526138&pdf_id=2
http://www.boulder.swri.edu/hal/swift.html


J. Vraštil and D. Vokrouhlický: Inner main belt asteroids in Slivan states?

Fig. 3. Inner part of the asteroid main belt shown in projection onto the
plane of the proper semimajor axis a and the proper sine of inclination
sin I. Our working definition of the inner part is a < 2.5 au, the position
of the 3/1 mean motion resonance with Jupiter, and we also exclude
here the high-inclination population of Phocaeas. The dashed line indi-
cates the approximate location of the ν6 secular resonance. Black sym-
bols indicate prograde-rotating objects from the study of Kryszczyńska
(2013), and the three objects discussed in Sect. 3 are labeled. The open
symbol shows the location of (20) Massalia, the largest member of its
own family.

to realistically describe the orbital evolution of all bodies (in-
cluding Mercury). The initial orbital state vectors for the chosen
asteroids and a given epoch were taken from the AstDyS internet
database7, and for the planets from the JPL DE405 ephemerides
file. To organize the propagation efficiently, we embedded our
secular spin integration scheme into the swift package. This
arrangement not only allowed us to propagate the spin evolution
online, avoiding large output files with the orbital evolution, but
it also allowed us to simultaneously propagate the spin evolu-
tion of more asteroids or parametric variants of the same aster-
oid (for instance, testing the evolution for different values of the
dynamical ellipticity parameter ∆). Note that the spin propaga-
tion only needs at a given time to know the orbital parameters
in the neighboring grid-points in time, which is readily provided
by the swift integrator.

The numerical integration described above provides the time
evolution of s with respect to the osculating orbital frame E′.
By applying the inverse matrix A−1 = AT , we may also obtain
s in the inertial frame8 E. To understand the possible affinity of
the spin vector to the Colombo top model concepts introduced
above, we may now choose one of the Fourier terms in decom-
position of ζ and transform s into a fictitious orbital frame E′′ re-
lated to this particular term (as if it were the only one in ζ and the
Colombo top model applied). Obviously, presence of other terms
in ζ implies that the spin evolution in E′′ does not exactly follow
the flow-lines of the Colombo Hamiltonian (11), but if they rep-
resent only a small perturbation, the evolution would stay close
to them. Since we are mainly interested in the occurrence of the
Slivan states, we chose the forced term in ζ associated with the
frequency s6 and constructed the associated reference frame E′′.

7 http://hamilton.dm.unipi.it/astdys/
8 The integration scheme of Breiter et al. (2005) explicitly uses
this transformation of s to the inertial frame in the midstep of the
propagation.

Fig. 4. Frequency spectrum of ζ = sin(I/2) exp(ıΩ) from a 10 Myr nu-
merical orbital integration of (291) Alice. The abscissa is the frequency
ν in arcseconds per year, and the ordinate in amplitude of the quasiperi-
odic approximation of ζ with A exp[ı(νt + φ)]. The principal spectral
lines are labeled with the standard notation in planetary studies: (i) s is
the proper frequency; (ii) s6 is the principal planetary frequency due to
the nodal precession of Saturn; (iii) s4, s7 and s8 are planetary frequen-
cies with smaller amplitudes; and (iv) s± (g− g6) are smaller nonlinear
terms that also combine the perihelion proper and forced frequencies
(due to the proximity of the ν6 secular resonance at the bottom of the
main asteroid belt).

3. Flora region asteroids

To place the studied asteroids in context, we show in Fig. 3
their position in the space of proper orbital elements, semima-
jor axis a, and sine of inclination sin I, together with other aster-
oids in the inner part of the main belt. Synthetic proper elements
were taken from the AstDyS website at the University of Pisa.
While the ν6 secular resonance somewhat constrains the highest
inclination values in the Flora region, some objects still have a
proper inclination of up to ∼7◦. To demonstrate the fundamental
role of the orbital inclination value, we selected three cases with
different I values from the sample of bodies in Kryszczyńska
(2013) and studied the stability of the spin axis confinement in
the Slivan state for these bodies.

3.1. Case of low inclination: (291) Alice

We started with the case of the lowest inclination orbit in the
sample, namely asteroid (291) Alice. Figure 4 shows a power
spectrum of ζ = sin(I/2) exp(ıΩ) from a numerical integra-
tion spanning the time interval of 10 Myr. We used the algo-
rithm by Ferraz-Mello (1981) that seeks to represent the sig-
nal with Fourier terms A exp[ı(νt + φ)], optimizing A and φ by
a least-squares method for a given frequency ν. We allowed a
range of ν between −0.1′′/yr (set by the timespan of integration)
and −100′′/yr (covering the expected signal reasonably well).
The principal two lines in the spectrum are (i) the proper term
with frequency s ' −36.44′′/yr and amplitude corresponding
to an inclination IP ' 2.1◦; and (ii) the forced term with fre-
quency s6 ' −26.34′′/yr and amplitude corresponding to an in-
clination I6 ' 1.1◦. The phase of the latter is φ6 ' 307◦. Given
the low inclinations of all terms, this renders the longitude of
the Cassini state C2, that is, ϕ = 0◦ meridian of the correspond-
ing reference frame E′′, at about 37◦ ecliptic longitude. Other
linear forced planetary terms, such as s4, s7 and s8 present in ζ
have a significantly smaller amplitude and are of little impor-
tance. Thanks to proximity of the secular resonance ν6, g = g6
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Fig. 5. Evolution of the rotation pole for (291) Alice projected onto the reference frame E′′ associated with the s6 frequency term in the Fourier
representation of the ζ = sin(I/2) exp(ıΩ) orbital parameter (see Sect. 2.2). Four panels are shown for four values of the dynamical flattening
parameter ∆. The dashed lines show a grid of meridian and latitude circles in E′′ with the north pole toward the center and the zero longitude
meridian, ϕ = 0◦, pointing to the bottom of each figure (the viewing angle is similar to that of the bottom and left panel in Fig. 1). The solid lines
are isolines of constant Colombo Hamiltonian H ′(X′, ϕ) = C for frequency s = s6 = −26.34′′/yr and inclination I = I6 = 1.1◦. In the middle
panels the spin remains well confined in the resonant zone about the Cassini state C2, in the extreme left and right panels the libration amplitude
is larger and the perturbation due to the proper term in ζ brings the spin toward the limits of the Cassini resonance, indicating a possible long-term
instability of the capture.

where g and g6 are the corresponding proper and forced frequen-
cies in the longitude of perihelion, there are nonlinear secular
terms such as s± (g−g6) present in the spectrum of ζ. Their am-
plitude is limited, such that the contribution of the s and s6 terms
dominates (see also Vokrouhlický et al. 2006c). In this case, the
proper inclination value IP is only less than a factor 2 higher than
the forced inclination I6.

We adopted the spin-state solution from Kryszczyńska
(2013), which has a rotation period of 4.316011 h and two pos-
sible pole orientations, (λ, β) = (67◦ ± 8◦, 56◦ ± 6◦) (pole P1)
and (λ, β) = (250◦ ± 8◦, 56◦ ± 6◦) (pole P2) with λ and β ecliptic
longitude and latitude. This ambiguity is characteristic for a pole
solution derived from optical photometry alone. In favorable
conditions, additional data such as infrared photometry, adap-
tive optics imaging, or star occultations resolve the ambiguity in
the pole solution (e.g., Ďurech et al. 2015). At the time of writ-
ing, however, asteroids from the sample of Kryszczyńska (2013)
do not possess these additional datasets. We therefore followed
the suggestion of Kryszczyńska (2013) that the P1 pole values
of several asteroids in the same zone of orbital space in the Flora
region are clustered in a similar way as those in the Koronis fam-
ily and thus preliminarily adopted them as the correct ones while
awaiting further techniques to verify them. We only note that in-
dependent spin solution for several asteroids from the sample of
Kryszczyńska (2013), including (291) Alice, were obtained by
Hanuš et al. (2011) from a partially overlapping dataset of dense
light curves and an independent dataset of sparse photometric
data. These solutions agree with Kryszczyńska (2013) within the
quoted intervals of uncertainty.

The remaining unknown parameter necessary for determin-
ing the precession constant α in Eq. (2) is the dynamical flat-
tening ∆. In principle, the light-curve inversion technique pro-
vides a generally correct shape model of the asteroid, which may
not represent the smaller-scale topographic features well, how-
ever. Additionally, an estimation of ∆ would require knowing the
density distribution inside the body. As a result, the shape mod-
els associated with the light-curve inversion may only provide
a ∆ value to about 10–20% accuracy. For (291) Alice we down-
loaded models from the DAMIT database (Ďurech et al. 2010)9,

9 See also http://astro.troja.mff.cuni.cz/projects/
asteroids3D/web.php

based on solution of Hanuš et al. (2011). Assuming a constant
bulk density distribution and using formulas from Dobrovolskis
(1996), we obtained an estimate ∆ ' 0.35.

We note that the resonant zone about the Cassini state C2
exists for ∆ ≥ 0.3 (e.g., Fig. 2). Using the tools described in
Sect. 2.2, we explored the spin axis evolution of Alice within the
next 10 Myr for ∆ spanning the interval 0.3 to 0.4 values. For a
higher ∆ value the resonant zone about the C2 state associated
with the proper frequency emerges, and this produces a signif-
icant perturbation of the spin axis evolution of Alice, prevent-
ing residence in the Slivan state. A sample of results is shown in
Fig. 5, where the 10 Myr trajectory of the spin evolution of Alice
has been transformed into the reference frame E′′ of the s6 pre-
cession term in the orbit. We found that the spin remains in the
resonant zone about the Cassini state C2 only for a very narrow
interval of ∆ values in between 0.34 and 0.35 (Fig. 5). Outside
this interval, the spin evolution over the monitored 10 Myr times-
pan generally drifts from the resonant zone, only regaining it at
sparse time windows. This is clearly caused by perturbations by
other contributing terms in the Fourier development of ζ (see
discussion in Sect. 2.1), mostly by the proper term with a fre-
quency s ' −36.44′′/yr and an amplitude about twice as large
as I6. Our results thus show that even in this lowest inclina-
tion case a permanent capture in the Slivan state (resonance zone
about C2 in the chosen E′′ frame) is problematic.

3.2. Case of medium inclination: (770) Bali

We now consider the case of (770) Bali, which has a slightly
higher value of the proper inclination IP ' 3.6◦ (Fig. 6). While
the general characteristics of the power spectrum of ζ are the
same as for (291) Alice, the amplitude of the s ± (g − g6) side-
bands of the proper frequency now increased. Because this aster-
oid resides in the nonlinear secular z2 resonance, the s±2(g−g6)
creates an alias with the s6 contribution. Kryszczyńska (2013)
provided pole solutions (λ, β) = (68◦ ± 5◦, 50◦ ± 5◦) (pole P1)
and (λ, β) = (262◦±5◦, 45◦±5◦) (pole P2) for a sidereal rotation
period of 5.818942 h. Again, a very similar solution has been
reported by Hanuš et al. (2011). The shape model obtained from
the light-curve inversion yields ∆ ' 0.27.
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Fig. 6. Same as in Fig. 4, but now for asteroid (770) Bali. The spec-
trum is similar as above, but the amplitude of the proper term (proper
inclination) is slightly larger.

Figure 7 shows the spin axis evolution of (770) Bali over
a 10 Myr time interval projected onto the reference frame E′′
of the s6 term in ζ for four values of ∆ in a tight interval be-
tween 0.268 to 0.271. We note that the possibility of residing in
the resonant state over the monitored interval of time now de-
creased to an even smaller range of ∆ values, in spite of an only
rather small change in proper inclination value.

3.3. Case of high inclination: (700) Auravictrix

Given the results from the previous sections, the prospects of
a stable residence in the Cassini resonance for asteroids on still
higher inclination orbits are weak at most. Indeed, we briefly an-
alyzed the spin evolution for asteroid (700) Auravictrix, whose
orbit has a proper inclination of IP ' 6.4◦. The power spec-
trum of ζ indicates that not only the amplitude of the proper
term now largely exceeds the amplitude of the s6 term, with still
only an I6 ' 1.1◦ inclination, but the nonlinear sidebands with
frequencies s± (g− g6) now have a significant amplitude as well
(Fig. 8). This is because with its higher inclination the aster-
oid resides closer to the ν6 resonance (Fig. 3). All this signal
in ζ disrupts the stable libration in the Cassini resonant zone of
the s6 frequency line.

Adopting the pole P1 solution from Kryszczyńska (2013),
(λ, β) = (67◦ ± 10◦, 46◦ ± 6◦) and a sidereal rotation period
of 6.07484 h, we integrated the spin evolution of Auravictrix
over the next 10 Myr interval of time. We considered a range of
values for the flattening parameter ∆ between 0.25 and 0.4. In
none of the cases tested we observed a stable capture in the res-
onance zone around the Cassini state C2 associated with the s6
frequency. Figure 9 shows a few examples of the most promising
choices of ∆ for which the current pole resides at the formally
low-amplitude isoline of the Colombo energy levelH ′ = C. We
note that even in these fine-tuned cases the pole exhibits strong
deviations from the Cassini resonance zone. We were not able
to find a case where the pole would remain localized inside the
Slivan-resonance zone.

3.4. Capture in the Slivan state at low inclinations?

Numerical simulations have shown that the affinity to the res-
onant zone of the Cassini state C2 is weak for asteroids in the
Flora region. Yet, at least for the lowest inclination cases, we

were able to find a range of ∆ values for which the pole posi-
tion mostly remained captured in the Slivan state over a 10 Myr
interval of time. We now briefly analyze why the pole could be
located in this state, since the results at the end of Sect. 2.1 sug-
gested that a chance occurrence of this location has a rather low
probability.

As indicated by the results in Vokrouhlický et al. (2003), a
satisfactory possibility would be a capture from a low-obliquity
state with the α parameter slowly evolving toward higher val-
ues. This can be caused in generally by decreasing the rota-
tion frequency ω in the denominator of Eq. (2), or equivalently,
by increasing the rotation period P. The Yarkovsky-O’Keefe-
Radzievskii-Paddack (YORP) effect would be the first suspect
for such a change in the rotation period of kilometer-sized
asteroids (e.g., Bottke et al. 2006). For instance, considering
(291) Alice with '12–13 km size, one might estimate a charac-
teristic YORP timescale P/(dP/dt) ∼ 500−700 Myr for a zero-
obliquity state and P ' 6 h (see Čapek & Vokrouhlický 2004,
for results and scaling laws). Thus Alice may have increased
its rotation period from ∼3 h to its current value of 4.32 h in
perhaps less than a billion of years. This is about the estimated
age of the Flora family (e.g., Nesvorný et al. 2002; Dykhuis
et al. 2014), if indeed this asteroid is a member. Additionally,
a billion-year timescale is shorter than the collisional lifetime of
Alice-sized objects in the Flora region (e.g., Bottke et al. 2005).
A similar estimate applies to the other asteroids in the sample of
Kryszczyńska (2013).

Since here we are not interested in details of the possible
past evolution due to the YORP effect, but merely we intend
to explore the possibility of a past capture in the Slivan state,
we restricted the formulation of the YORP effect to a simple
past change in the rotation period. We first considered the case
of (291) Alice with initially setting the rotation period to 3 h and
letting it change with time at a constant rate dP/dt = 0.005 h/Myr
(in fact, dω/dt rather than dP/dt should be constant, but we ne-
glect this minor difference given the small change in P we are
interested in). We assumed zero initial obliquity and ∆ = 0.3464,
for which results in Fig. 5 may promise a long-term lock in the
Slivan state. Since for the initial P = 3 h we have |κ| < κ? (inter-
ested in the s6 frequency mode), the Cassini resonance does not
exist. The initial pole is close to the C2 equilibrium of the rele-
vant Colombo model. As P increases, |κ| eventually reaches the
critical value κ?, the resonant zone onsets at low obliquity and
drifts to higher obliquities (eventually reaching the value '35◦ of
C2 for the current rotation period of Alice; Fig. 5). If the evolu-
tion is slow enough (adiabatic, see Henrard & Murigande 1987),
and perturbations from other spectral lines in ζ are kept low, the
rotation pole could stay in the vicinity of the C2 equilibrium dur-
ing the whole evolution.

Figure 10 shows the result of our simulation. In this case, the
spin axis of Alice was successfully captured in the Slivan state
and remained locked in this state till its rotation period reached
the current value. Except for a slightly larger libration amplitude,
the final spin state resembles our simulation from Fig. 5.

We repeated the same experiment for both (770) Bali and
(700) Auravictrix. For Bali, we were again able to reproduce a
capture in the Slivan state similar to what is shown in Fig. 10 for
Alice. This is encouraging, although obviously the downside is
that this only occurs for a very narrow range of ∆ parameters, as
shown in Fig. 7. As expected, no capture in the Slivan state was
recorded for Auravictrix.
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Fig. 7. Same as in Fig. 5, but now for asteroid (770) Bali. Thanks to the higher value of the proper inclination (Fig. 6), perturbations of the spin
evolution in the s6-frequency associated reference frame are now stronger. The stability of the librations about the C2 state is weaker as the solution
tends to deviate from the resonant zone.

Fig. 8. Same as in Fig. 4, but now for asteroid (700) Auravictrix. The
proper term, with the ±(g − g6) side-lines, now dominates and the con-
tribution of s6 term is weaker.

4. Massalia region asteroids

The innermost part of the main asteroid belt is not a favorable
zone to expect an existence of the Slivan states. However, we
now show that a niche can be found in the inner part of the belt
where this interesting situation may be expected. Given our re-
sults so far, we focus on a region of the orbital space that (i) ad-
heres to the 3/1 mean motion resonance with Jupiter; and (ii) has
low inclinations. Figure 3 indicates that the asteroid population
in this part of the phase space is dominated by several asteroid
families (see also Nesvorný et al. 2015). The most prominent are
the Massalia family and the Nysa-Hertha-Polana-Eulalia com-
plex. The Euterpe cratering family might similarly be of inter-
est, whose members have unusually low inclination orbits such
that I6 > IP in this case. We use Massalia as an example.

Figure 11 shows the power spectrum of ζ for (20) Massalia,
representative for many members in its own family. Since the
value of the semimajor axis is higher than in the Flora region,
the proper frequency s has now increased to '−45.11′′/yr. This
causes it to be better separated from the s6 frequency. The proper
inclination is suitably low IP ' 1.4◦, while the forced inclination
of the s6 term remains I6 ' 0.9◦. These two lines now domi-
nate the Fourier representation of ζ, with only a very minor role
played by contribution from other lines.

As an example we considered the pole solution for
(20) Massalia from Kaasalainen et al. (2002), updated on the
DAMIT website: (λ, β) = (0◦, 40◦) (pole P1) and (λ, β) =
(179◦, 39◦) (pole P2) with a rotation period of 8.09902 h. The
formal uncertainty of longitude and latitude values is '5◦, but

given the imperfect fit of the light-curve data, the realistic un-
certainty might be slightly larger. While interesting, we use this
asteroid’s data as an example of a possible spin evolution of
members in its family. As a result, the uncertainties in its pole
solutions are not critical for our conclusions. For that reason,
the ∆ value of '0.3 derived from the (20) Massalia shape solu-
tion at the DAMIT website is not critical for our considerations
either (on top of the fact that this value might have a realistic
uncertainty '0.05).

Figure 12 shows examples of a 10 Myr pole evolution of
Massalia projected onto the reference frame E′′ of the s6 fre-
quency for four different values of the ∆ parameter in a rather
wide range from 0.22 to 0.32. In all cases, the pole performs a
stable libration about the C2 stationary solution, following the
isolines of constant HamiltonianH ′ = C of the Colombo model
rather closely. This is because the proper term in ζ now rep-
resents only a high-frequency and small-amplitude perturbation
in E′′. Clearly, stable Slivan states can exist among the Massalia
family members. The particular case of (20) Massalia itself is in-
teresting. Our simulation indicates that this asteroid might have
its spin in the Slivan state. If confirmed, it might be consid-
ered as an example of the few percent fluke case (see discus-
sion in Sect. 2.1), because this asteroid is too large to assume
YORP evolution on any reasonable timescale. Additionally, ac-
cording to Vokrouhlický et al. (2006a), the Massalia-family par-
ent body underwent a large cratering event some 150–200 Myr
ago, when the family has been formed, giving even less time for
any evolution of (20) Massalia pole.

Unfortunately, not much is currently known about the pole
distribution of smaller members of the Massalia family. This is
because the largest of them only have '(3–5) km in size at most.
Interestingly, given the younger age of the Massalia family, the
pole evolutionary tracks of its largest members may be similar
to those of '(20–30) km size members in the '(2–3) Gyr old
Koronis family. Consequently, we might expect that numerous
Slivan states exist among the prograde-rotating Massalia mem-
bers. Approximate methods allowing constraining the ecliptic
longitude of the asteroid pole, such as in Bowell et al. (2014),
may provide first hints.

5. Conclusion

We studied the possibility of an occurrence of Slivan states in
the inner zone of the main asteroid belt. Our work has been mo-
tivated by recent results of Kryszczyńska (2013), who suggested
the existence of such spin states for several members in the Flora
region. However, we found this conclusion to be problematic,
at least for bodies with a proper value of the orbital inclination
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Fig. 9. Same as in Fig. 5, but now for asteroid (700) Auravictrix. In this case, we only show a short time-segment from out 10 Myr numerical
integration spanning 500 kyr. This is because plotting the whole output of the 10 Myr integration would just chaotically saturate the plot with pole
positions. The open symbol shows the current pole location.

Fig. 10. Example of a successful capture of the spin axis of Alice in the Slivan state. The simulation assumed an initial rotation period of 3 h, the
pole location at nearly zero obliquity, and ∆ = 0.3464. For the sake of simplicity, the orbital evolution is represented by a numerical simulation
of Alice from the current epoch. Each of the four panels shows a selected evolution of the pole in the 10 Myr duration window projected onto the
frame associated with the s6 Fourier term in the orbital ζ: the leftmost panel shows the situation at the beginning of the simulation, the rightmost
panel shows the situation at the end of the simulation. The top label also indicates the mean rotation period in the 10 Myr interval shown.

higher than '4◦ (as for (700) Auravictrix discussed in Sect. 3.3).
This is because the confinement in the Slivan state is too strongly
perturbed by the proper-term contribution in the Fourier repre-
sentation of orbital ζ. For objects with a proper value of the or-
bital inclination lower than '4◦ ((291) Alice and (770) Bali dis-
cussed in Sects. 3.1 and 3.2), a spin state that is long-term stable
in the Slivan state is possible. Additionally, in these cases we
also verified that the capture scenario proposed by Vokrouhlický
et al. (2003) may explain the current Slivan state for these aster-
oids on a reasonable timescale of ∼1 Gyr. However, the caveat
here is that this only works for a very narrow interval of the ∆ pa-
rameter. There is no reason why all the observed Flora asteroids
would have just the correct values of this parameter to match the
condition of residence in the respective Slivan state. While not
fully satisfactory, the situation is interesting because it provides
a double motivation for future work: (i) on the theoretical side,
our analysis may be missing some important element that would
need to be added to fully explain the situation; or/and (ii) on the
observational side, it would be interesting to know more about
the spin states of small Flora-region asteroids and understand in
more detail which fraction may be near the Slivan state.

As an example of (i), we may mention the following specula-
tion, for instance. We have mentioned in Sect. 3.2 that the aster-
oid (770) Bali is located in the weak, nonlinear secular resonance
z2 (e.g., Milani & Knežević 1994). Similarly, (700) Auravictrix
is very close, but not in the z2 resonance. Given its secular nature,

Fig. 11. Same as in Fig. 4, but now for asteroid (20) Massalia. Thanks
to the higher value of the semimajor axis, a ' 2.41 au, the proper fre-
quency s is now better separated from the forced frequency s6. These
two lines now dominate the power spectrum of ζ for this asteroid.

this structure has a complicated tilted shape in the space of
proper orbital elements, extending from a lower a and I value
towards higher a and I values in the Flora region. Prograde-
rotating asteroids migrating outward as a result of the Yarkovsky
effect may “slide” along the z2 resonance roughly from the lo-
cation of (770) Bali to the location of (700) Auravictrix (see
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Fig. 12. Same as in Fig. 5, but now for asteroid (20) Massalia. In this case, the stable residence in the Slivan state is possible for a wide range
of ∆ values: the leftmost and rightmost panels show approximately the limiting cases for the current spin state of Massalia. For the nominal
∆ ' 0.3 value, the pole of Massalia would librate about the C2 state with about 80◦ amplitude. The open symbol shows the current P1 pole location
(all integrations assumed this pole as the starting condition).

Fig. 3). Such a dynamical pathway has been discussed for small
members in the Eos family, for instance (e.g., Vokrouhlický et al.
2006b). It is thus conceivable that (700) Auravictrix has recently
been released from the z2 resonance after spending hundreds
of Myr in it and originating at lower a and I state, where its spin
axis could have been captured in the Slivan state. Demonstrating
this possibility is beyond the scope of this paper, however.

A much more favorable situation for existence of Slivan
states in the inner part of the asteroid belt occurs for asteroids
residing on low-I orbits near the 3/1 mean motion resonance
with Jupiter. Examples might be found among asteroids in the
Massalia, Eulalia, or new Polana families after observations will
allow solving their spin states.
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Ďurech, J., Sidorin, V., & Kaasalainen, M. 2010, A&A, 513, A46
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