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ABSTRACT
Equations of secular dynamics for stellar quadruple systems in 2+2 hierarchy are formulated.
Non-singular, angular momentum and Laplace vector variables are used to describe orbital
evolution of both inner and outer orbits. Given a typical wide separation of the binaries in
these systems, gravitational interactions are truncated at the octupole approximation. Secular
equations are propagated numerically and the results compared to the complete numerical
integration on a long time-scale. Our basic formulation uses a point-mass model, but we
also extend it by including the simplest description of the quadrupole interaction among the
components of close (inner) binaries. Evolution of orbital planes of the binaries is discussed
analytically in a simplified model and numerically using a more complete model. Maximum
angular separation of the two orbital planes reaches only 20–40 per cent of the simple geometric
maximum value for low-eccentricity cases with small inclination with respect to the orbital
plane of the relative motion. This may be a pre-requisite for occurrence of quadruple systems
with both binaries showing eclipses. However, statistical occurrence of eclipses at any time
for a synthetic population of quadruples with initially isotropic distribution of orbital planes is
about equal to the model where the orbits do not evolve due to gravitational interactions. We
also show that the model is potentially suitable for long-term studies of the initial evolutionary
tracks of the 2 + 2 quadruple systems.

Key words: binaries: eclipsing – stars: kinematics and dynamics.

1 IN T RO D U C T I O N

Multiple stellar systems are observed at various long-term stable
configurations. The case with four components comes in two vari-
ants, namely (i) a hierarchical 3+1 case (or (2+1)+1 case), a triple
system accompanied by a fourth, distant component, and (ii) a 2+2
case, two binaries orbiting each other. Interestingly, the 2+2 config-
uration (ii) is found more common, representing about 4 per cent of
multiple systems in total (Tokovinin 2008, 2014). It has been sug-
gested that these systems form through a particular fragmentation
sequence, different from that leading to the 3+1 case.

To unwind traces of the formation processes, if not fully masked
by subsequent dynamical evolution, and/or to reveal statistical prop-
erties of components in multiple systems, it is important to well
determine their physical parameters and geometrical architecture
of their orbits. These parameters are better constrained when at
least one of the binary component is eclipsing. The limited num-
ber of cases when both binaries in a 2+2 quadruple configuration
are eclipsing are even more favourable to determine the system’s
geometry (e.g. Lee et al. 2008; Zasche & Uhlař 2013, 2016). Sta-
tistical chances of a system to be eclipsing at any time differ in
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single binaries and systems when the binary is a component in a
multiple system (such as a triple or 2+2 quadruple). In the former
case it is principally given by the expected initial isotropy of orbital
planes in space. In the multiple system cases, the orientation of or-
bital planes of embedded binaries evolve in time and may favour or
disfavour eclipses at occasions. The overall statistical expectations
of the eclipsing phenomenon thus additionally require modelling of
orbital interactions in the system.

Only few studies were devoted to the dynamics of quadruple
systems in the 2+2 hierarchy so far (e.g. Pejcha et al. 2013). This
is also because observational evidence of their orbital evolution is
very limited (e.g. Pribulla et al. 2008). Most of the currently known
systems are widely separated, implying evolution time-scales of
thousands of years or longer (e.g. Tokovinin 2008). Some studies
set general constraints on systems’ evolution in non-generic ge-
ometries or a restricted parameter space (e.g. Roy & Steves 2000;
Széll, Steves & Érdi 2004), but these are of a limited importance for
general astronomical use. Beust (2003) presented fast and efficient
numerical scheme of propagation of stellar orbits in multiple stellar
systems (including our 2+2 hierarchy). While powerful as a tool,
it still requires an integration timestep of a fraction of the shortest
orbital period of a participating subsystem. To grasp some charac-
teristics of the system’s long-term evolution, it might be therefore
interesting to have a faster, though possibly less precise, framework.
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This is provided by the secular approach (e.g. Morbidelli 2002), in
which details of the orbital evolution on a time-scale shorter than
that of inner and outer binaries is neglected and the system evolu-
tion is studied on longer time-scales. Recently, Hamers & Portegies
Zwart (2016) presented a general scheme of the first-order secular
theory applicable to nested multiple systems.1 Their approach obvi-
ously includes also quadruples in the 2 + 2 architecture. While very
interesting, we find our paper adds discussion of new topics, such
as coplanarity of the binary subsystems. Moreover, being tailored
to the 2 + 2 architecture from scratch, it is little easier to discern
results in our case than in the very general set-up of Hamers &
Portegies Zwart (2016).

In this paper, we introduce the simplest equations for the secular
dynamics of the 2+2 orbital hierarchy of quadruple stellar systems
(Section 2). We use them to analyse coupling of the orbital planes
of the close binaries in the 2+2 systems. We find this happens
to be higher than expected from simple geometrical arguments for
systems that are near coplanar. This result may imply higher chances
for eclipses in both binaries. However, assuming a larger sample of
2+2 systems with initially isotropic distribution of orbital planes the
advantages disappears. In Section 3.3, we show that the statistical
occurrence of eclipses at any moment of time is on average the same
as for dynamically non-evolving (static) systems. In Section 4, we
demonstrate applicability of our approach for studies of interaction
of the binary systems in the Kozai–Lidov (KL) regime that may
result in colourful evolutionary tracks. Conclusions, with a brief
discussion of two interesting quadruple systems, are summarized in
Section 5.

2 T H E O RY

To set the stage, we start by introducing a simplified model in which
all stars in the system are point masses. Interestingly, the orbital
evolution is well approximated by a couple of interacting triple-star
systems. One can thus readily develop a reasonable secular ap-
proximation of the system’s motion and even, in certain conditions,
obtain a constraint on tilt between the orbital planes of the eclipsing
binaries. Stellar proximity in the close binaries requires in general
to include additional dynamical effects, namely (i) quadrupole and
higher order terms due to interaction of stars modelled as extended
bodies, (ii) tidal interaction, and (iii) spin-orbit coupling. Some of
these effects are considered in this paper. However, we do so only to
the level needed to explain the observations since a more complete
work would inevitably involve large number of free parameters. At
this moment it is not our intention to fully analyse their impact on
the results.

2.1 Notation

Denote A and B the two close binaries which together constitute
the quadruple system A-B. Masses of components in A are mAa and
mAb, similarly masses in B are mBa and mBb. It is also useful to intro-
duce MA = mAa + mAb, the total mass in A, m′

A = mAamAb/MA, the
reduced mass in A, and XAa = mAa/MA and XAb = mAb/MA, which
denote the mass fraction of the two stellar components in the sub-
system A. The corresponding quantities in B are MB = mBa + mBb,
m′

B = mBamBb/MB, and XBa = mBa/MB and XBb = mBb/MB. Fi-
nally, MAB = MA + MB is the total mass of the system and

1 We were not aware of this work prior submission of this paper.

m′
AB = MAMB/MAB the reduced mass associated with the rela-

tive motion of A and B about the centre-of-mass of the system.
The nature of the system, (2,2) hierarchy (see, Milani & Nobili
1983), dictates a preferred coordinate system: (i) rA is the relative
position of Ab with respect to Aa, (ii) rB is the relative position
of Bb with respect to Ba, and (iii) R is the relative position of the
centre-of-mass of B with respect to the centre-of-mass of A.2 The
corresponding conjugate momenta are pA, pB and P . Obviously,
a one-to-one transformation between the four star positions in an
arbitrary inertial system and our variables requires to complement
them by position T of the overall centre-of-mass of the system (and
the related momentum). Assuming the system is isolated, the last
degrees of freedom are ignorable, because they result only in linear
motion of T , and observationally, would result in a simple systemic
velocity of the whole quadruple system. For that reason we do not
need to consider T in our analysis.

Dynamics of the quadruple system in a reduced phase space
(rA, rB, R; pA, pB, P) follows from the Hamiltonian

H = HA

(
rA, pA

) + HB

(
rB, pB

) + HAB (R, P)

+Hint (rA, rB, R) + H′
int (rA, rB, R) , (1)

where the first row highlights separation on to three integrable,
uncoupled two-body motions

HA

(
rA, pA

) = p2
A

2 m′
A

− G
m′

AMA

rA
, (2)

HB

(
rB, pB

) = p2
B

2 m′
B

− G
m′

BMB

rB
, (3)

HAB (R, P) = P2

2 m′
AB

− G
m′

ABMAB

R
. (4)

The second-row terms Hint and H′
int express a plethora of mutual

interactions. Interestingly, there is a particular hierarchy in the inter-
action terms which justifies to organize them in the two mentioned
terms.

The leading-order interaction term is given by the Hint which
reads:

Hint = −G
m′

ABMAB

R

∑
n≥2

χA,n

( rA

R

)n

Pn (γA)

− G
m′

ABMAB

R

∑
n≥2

χB,n

( rB

R

)n

Pn (γB) , (5)

where we introduced non-dimensional coefficients3

χA,n = XAaXAb

[
Xn−1

Aa − (−XAb)n−1
]
, (6)

χB,n = XBaXBb

[
Xn−1

Bb − (−XBa)n−1
]
. (7)

Note that equal-mass binaries have χn = 0 for odd-degree multi-
poles n and, as expected, the series in (5) start with a quadrupole

2 See also Beust (2003) in whose notation our variables are called hierarchi-
cal Jacobi coordinates.
3 Note the reverse order of ‘a’ and ‘b’ components in the definition of the
χ -coefficients. Alternately, see Milani & Nobili (1983), one could define

χB,n = XBaXBb

[
Xn−1

Ba − (−XBb)n−1
]

and use Pn( − γ B) in the right-hand

side of equation (5).
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contribution (n = 2). The arguments in Legendre polynomials Pn are
expectedly cosines of mutual angles of the rA-R and rB-R pairs:

γA = R · rA

R rA
, (8)

γB = R · rB

R rB
. (9)

Note there is no direct rA-rB interaction in (5) and the overall struc-
ture can be interpreted as coupled evolution of two triple systems:
(i) pair A interacting with body of total mass MB located in the
centre-of-mass of the system B, and (ii) pair B interacting with
body of total mass MA located in the centre-of-mass of the system
A. Assuming rA � rB, interaction Hamiltonian (5) is of the sec-
ond order in a small parameter ε � rA/R � rB/R if compared to
the Hamiltonian terms (2)–(4). In what follows, we shall primarily
restrict to the quadrupole truncation in (5). This is because in our
exemplary case of V994 Her (i) the small parameter ε � 1/80,
and (ii) additionally both pairs A and B have stellar components of
comparable masses (suppressing thus the role of the octupole term).

The second interaction term H′
int in (1) has a more complicated

structure and exhibits all possible couplings of the rA, rB and R
vectors. Fortunately, H′

int ∼ ε4 (e.g. Milani & Nobili 1983, and
equation 10 below) and thus it is less important than the quadrupole
and octupole terms in (5). For sake of completeness we give the
principal part (omitting the order ε5 and higher)

H′
int = −3 Gm′

Am′
B

4 R

( rArB

R2

)2 (
11 − 15 γ 2

A − 15 γ 2
B

− 8 γ 2
AB + 35 γ 2

A γ 2
B

)
, (10)

with

γAB = rA · rB

rA rB
. (11)

H′
int, together with the higher multipole terms in (5), would be

required for tracking longer term orbital evolution of the system,
but at this moment we shall not need them.

In passing we mention that at least two quadruple systems in
the 2 + 2 hierarchy were suggested to reside in mutual PB/PA �
3/2 mean motion resonance (e.g. Ofir 2008; Cagaš & Pejcha 2012;
Kołaczkowski et al. 2013). These situation, however, present an
interesting and intrigue problem, because the relevant dynamical
coupling (10) is rather weak, as mentioned above. Long-term sta-
bility of the suggested resonant configuration is speculative and has
not been studied yet.

2.2 First-order secular approach

Moving now towards the perturbation approach, the secular theory
in particular, we transform the conjugated coordinates and momenta
to orbital elements. From the plethora of possible choices we adopt
the following set (e.g. Breiter & Ratajczak 2005, and references
therein): (i) semimajor axis a, (ii) normalized (non-dimensional)
angular momentum vector K = √

1 − e2 k, where e is the orbital
eccentricity and k unit vector normal to the orbital plane, (iii) nor-
malized (non-dimensional) Laplace vector π = e p, where p is the
unit vector directed to the pericentre, and (iv) longitude in orbit λ.
The apparent overparametrization is due to existence of two con-
straints: K · π = 0 and K 2 + π2 = 1. Conveniently, the adopted
orbital elements (a, K ,π, λ) are non-singular, allowing thus to anal-
yse all possible orbital configurations including small values of ec-
centricity and inclination. Additionally, when λ is eliminated from

the mean Hamiltonian, as in the secular theory, the resulting pertur-
bation equations have readily a form valid in an arbitrary reference
system. As in the case of coordinates and momenta, the orbital el-
ements of the binaries A and B are denoted (aA, K A, πA, λA) and
(aB, K B,πB, λB), and the orbital elements of the relative motion of
centre-of-mass B with respect to the centre-of-mass A are simply
(a, K ,π, λ).

With these elements at hand, the two-body parts (2)–(4) of
the Hamiltonian transform to their simple Keplerian values:
(i) HA(aA) = −G m′

AMA/(2aA), (ii) HB(aB) = −G m′
BMB/(2aB),

and (iii)HAB(a) = −G m′
ABMAB/(2a). These allow us to define un-

perturbed mean motion values nA, nB and n using (i) n2
Aa3

A = GMA,
(ii) n2

Ba3
B = GMB, and (iii) n2a3 = GMAB. The corresponding un-

perturbed orbital periods are PA, PB, and P.
It is notoriously quite more difficult to express the interaction

potential energy (Hint + H′
int) in terms of the orbital elements of

all three orbital components (see e.g. Appendices in Hamers &
Portegies Zwart 2016). Typically, one would obtain its form in
(i) power-series of semimajor axes and scalar products of K and
π variables, and (ii) Fourier series in longitudes in orbit. Luckily,
we shall not need such a complete form of the perturbing potential
because our goal is to provide characterization of the long-term
orbital evolution using secular approach. We assume short-period
variations have sufficiently small amplitude, which is always true
unless mean motion resonances are present (see above).

In the secular approach one seeks a coordinate transformation
which allows us to eliminate fast variables λA, λB, and λ from the
perturbing potential energy (Hint + H′

int), thereby defining the mean
perturbation potential energy H = Hint + H′

int. While a systematic
fast-variable elimination to any order in small parameter ε may
be cumbersome procedure (e.g. Morbidelli 2002), we shall restrict
to the lowest order theory. In this case, we use the quadrupole
and octupole parts in Hint and the corresponding Hint is a mere
orbital average of Hint over unperturbed cycles of A, B, and A-B
revolution.4 In order to specify which part we have in mind, we shall
denote H2 the average of the quadrupole part in Hint and H3 the
average of the octupole part in Hint. So altogether H = H2 + H3

in our case.
The immediate consequence of the fast-variable elimination in H

is that the semimajor axes aA, aB, and a are integrals of motion and
remain constant. The mean values of K and π for each of the orbital
components remain the only active variables. The corresponding
dynamical equations for binaries A and B read (e.g. Breiter &
Ratajczak 2005; Tremaine, Touma & Namouni 2009; Farago &
Laskar 2010; Rosengren & Scheeres 2014; Liu, Muñoz & Lai
2015)

dK A

dt
= − 1

�A

(
πA × ∂H

∂πA
+ K A × ∂H

∂K A

)
, (12)

dπA

dt
= − 1

�A

(
K A × ∂H

∂πA
+ πA × ∂H

∂K A

)
, (13)

dK B

dt
= − 1

�B

(
πB × ∂H

∂πB
+ K B × ∂H

∂K B

)
, (14)

4 Second-order quadrupole contributions would be necessary to include con-
sistently n = 4 in Hint and also H′

int (see e.g. Breiter & Vokrouhlický 2015,
for clarification).
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dπB

dt
= − 1

�B

(
K B × ∂H

∂πB
+ πB × ∂H

∂K B

)
, (15)

where we denoted �A = m′
A nAa2

A and �B = m′
B nBa2

B. Similarly,

dK
dt

= − 1

�

(
π × ∂H

∂π
+ K × ∂H

∂K

)
, (16)

dπ

dt
= − 1

�

(
K × ∂H

∂π
+ π × ∂H

∂K

)
, (17)

with � = m′
AB na2, holds for the elements of the relative orbit A-

B. Once H is determined, the secular system (12)–(17) is to be
integrated numerically. This is because in generic cases there are
no additional first integrals apart from: (i) conservation of the total
angular momentum �A K A + �B K B + � K , and (ii) conservation
of energy H. The major advantage though is that the mean orbital
elements (K A, πA; K B, πB; K ,π) change only very little on the or-
bital time-scales. Thus a much longer integration timestep, typically
years, can used to propagate the secular system (12)–(17).

Because the quadrupole and octupole parts in Hint are equivalent
to a pair of interacting triple systems, it is straightforward to borrow
results from triple-star dynamics studies to obtain the corresponding
mean value H of the Hamiltonian.

2.2.1 Quadrupole interaction

The quadrupole level has been extensively studied in both planetary
and stellar context. The mean Hamiltonian part may be widely
found, and is provided by Farago & Laskar (2010), Liu et al. (2015)
or Breiter & Vokrouhlický (2015) in the vectorial elements adopted
in this paper. We have

H2 = −CA

η5

[
η2

(
6e2

A − 1
) + 3 (K A · K )2 − 15 (πA · K )2

]

− CB

η5

[
η2

(
6e2

B − 1
) + 3 (K B · K )2 − 15 (πB · K )2

]
,

(18)

where η = √
1 − e2 and

CA = 1

8
G

m′
AMB

a

(aA

a

)2
, (19)

CB = 1

8
G

MAm′
B

a

( aB

a

)2
. (20)

Obviously, e2
A = πA · πA, e2

B = πB · πB, and e2 = π · π. The sys-
tem of secular equations (12)–(17) with H2 included is fairly com-
plex and does not admit general analytic solution. There is only
one straightforward additional integral of motion, namely the ec-
centricity e of the relative orbit of the two binary systems at this
level, a consequence of the fact that H2 depends on π only through
e2 = π · π. On the contrary, both eA and eB are generally not con-
served except for admitted eA = 0 and eB = 0 solutions. It is well
known (e.g. Farago & Laskar 2010) that the zero eccentricity so-
lutions are stable only when the mutual inclination of the orbital
plane of the corresponding binary A or B and the orbital plane of
the relative motion A-B is less than a certain limit (roughly 40◦).
If the mutual inclination of these orbital planes is larger, the zero
eccentricity solution of the binary is unstable and it is necessarily
pushed to have large oscillations (unless tidal effect keeps again

the eccentricity smaller than some limit). This is the Kozai regime
(e.g. Söderhjelm 1982; Morbidelli 2002; Khodykin, Zakharov &
Andersen 2004; Fabrycky & Tremaine 2007).

2.2.2 Octupole interaction

Systems with unequal mass components in eclipsing pairs, and those
with large enough ε parameter, may require to include the octupole
term in H. This is done through (e.g. Breiter & Vokrouhlický 2015;
Liu et al. 2015)

H3 = −C ′
A

η7
[(πA · π) GA − 10 (πA · K ) (π · K A) (K A · K )]

− C ′
B

η7
[(πB · π) GB − 10 (πB · K ) (π · K B) (K B · K )] ,

(21)

where we abbreviated

GA = (
1 − 8e2

A

)
η2 − 5 (K A · K )2 + 35 (πA · K )2 , (22)

GB = (
1 − 8e2

B

)
η2 − 5 (K B · K )2 + 35 (πB · K )2 , (23)

and the constant factors read

C ′
A = 15

64
G

m′
AMB

a
(XAa − XAb)

(aA

a

)3
, (24)

C ′
B = 15

64
G

MAm′
B

a
(XBb − XBa)

( aB

a

)3
. (25)

Now e is not any more constant, but often its variations are limited
thanks to smallness of the octupole perturbation.

2.3 Approximate analytical constraint on mutual inclination
of the A and B orbital planes

While the equations of the secular system must be integrated nu-
merically in general, a useful approximation could be obtained by
assuming zero, or small, eccentricities of the binaries A and B and
restricting to the quadrupole interactionH = H2. Sufficiently small
inclination of both A and B orbital planes to the orbital plane of
the A-B motion, or strong tidal interaction in A and B, guarantees
consistency of such assumption.

Setting thus eA = eB = 0, with e arbitrary constant, we now have
the fundamental set of variables reduced to unit vectors kA, kB, and
k normal to the respective orbital planes. One easily checks their
evolution satisfies

dkA

dt
= σ1 (kA · k) (kA × k) , (26)

dkB

dt
= σ2 (kB · k) (kB × k) , (27)

dk
dt

= σ (k · kA) (k × kA) + σ ′ (k · kB) (k × kB) , (28)

with the corresponding fundamental frequencies

σ1 = − 3

4η3
n

n

nA

MB

MAB
, (29)

σ2 = − 3

4η3
n

n

nB

MA

MAB
, (30)
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σ = − 3

4η4
n XAaXAb

(aA

a

)2
, (31)

σ ′ = − 3

4η4
n XBaXBb

(aB

a

)2
. (32)

Equations (26)–(28) describe precession motion of the normal vec-
tors about each other. Unfortunately, they still have too many de-
grees of freedom to possess an easy analytic solution. Nevertheless,
they admit useful first integrals5

C1 = σ x2 + σ ′ y2, (33)

C2 = σ2

σ ′ x + σ1

σ
y + z, (34)

where we introduced x = kA · k, y = kB · k, and z = kA · kB.
Equations (33) and (34) indicate that the motion in the (x, y, z)
space is constraint to the intersection of an elliptic cylinder and a
plane. Given some initial values (x0, y0, z0) for these parameters, it
is easy to determine minimum value zmin of the z coordinate on that
intersection, namely

zmin = z0 + σ2

σ ′ x0 + σ1

σ
y0

−
√(

x2
0

σ ′ + y2
0

σ

) (
σ 2

1

σ
+ σ 2

2

σ ′

)
. (35)

The previous analysis of (26)–(28) does not take into account the
obvious constraints |x| ≤ 1, |y| ≤ 1 and |z| ≤ 1, which formally
represent a ‘unitary’ cube in the (x, y, z). Intersecting the |x| ≤ 1 and
|y| ≤ 1 prism with the plane (34) we obtain an alternative constraint
on the minimum value of the z coordinate, namely

zmin = z0 + σ2

σ ′ (x0 − 1) + σ1

σ
(y0 − 1) . (36)

In some cases (36) may be stronger constraint than (35), thus the
resulting zmin is minimum of either value.

Denoting the mutual angle of the A and B system orbital planes
by JAB, we can use zmin from (35) and (36) to set an estimate
of its maximum value J max

AB . Notably, when |zmin| ≤ 1, we have
cosJ max

AB = zmin.
In order to demonstrate usefulness of the previous constraint, we

conducted the following experiment. Denote JA and JB the an-
gle between vectors kA and k (cosJA = kA · k = x) and kB and k
(cosJB = kB · k = y). In the most simple approach one would ap-
proximate k fixed in the inertial space, by virtue of holding dominant
part of the total angular momentum of the system, and assume only
evolution of kA and kB. These would exhibit steady precession about
k with frequencies σ1 cosJA and σ2 cosJB as readily described by
equations (26) and (27). Given enough time, the mutual angle JAB

of the orbital planes of binary systems A and B would range from
a minimum value |JA − JB| to a maximum value (JA + JB) (note
the JA and JB are preserved in this model). The latter would thus
be the ‘naively’ estimated maximum value of JAB. The reality is
more complicated though, because the vector k itself evolves as
described by equation (28). Henceforth, the maximum J max

AB value
is given rather by zmin described above and, as a rule of thumb, is
smaller than or equal to (JA + JB). To see this effect, we evaluated
function F = 1 − J max

AB /(JA + JB) for values JA and JB smaller

5 These integrals may be also obtained from the general integrals of energy
and total angular momentum of the quadruple system.

Figure 1. Isolevels of the F-function for parameters appropriate to the V994
Her system. The abscissa and the ordinate are the initial values of JA and
JB inclinations of the orbital planes of systems A and B with respect to the
orbital plane of their mutual motion. See the text for more discussion.

than 30◦ in order to meet the condition of zero eccentricities of the
A and B binaries. The value F = 0 implies that the sum (JA + JB)
sets the maximum JAB value, but when F > 0, J max

AB < JA + JB,
and J max

AB strengthens the limit by which the orbital planes of A and
B systems would maximally differ.

Fig. 1 shows the results. For sake of definiteness, we used
nominal parameters of the V994 Her system (Zasche & Uhlař
2016): (i) stellar masses mAa = 3.01 M
, mAb = 2.58 M
,
mBa = 1.84 M
, mBb = 1.93 M
, and (ii) orbital periods
PA = 2.083 27d, PB = 1.420 04d, and P = 1062.8775d. The eccen-
tricities eA and eB of the A and B systems were assumed zero, and
the eccentricity of their mutual motion e = 0.76. WhenJA � JB we
have F > 0 up to values of 0.6–0.8. This translates into maximum
angular separation of the A and B planes being only 20–40 per cent
of the plain sum (JA + JB), making them to be significantly more
coupled together.

Fig. 2 shows an example of numerical integration that illustrates
our conclusion. We keep using physical and orbital parameters of
the V994 Her system determined by (Zasche & Uhlař 2016). In
particular, the inclinations of the two eclipsing binaries were esti-
mated to be iA � 84◦ and iB � 85◦. Zasche & Uhlař (2016) also
argued that the inclination of their relative orbit must be large, but
were not able to determine its value precisely; for simplicity, we as-
sume i � 90◦. Obviously, this is only half of the information needed
to set the mutual architecture of the three orbital planes, as we need
to specify nodal longitudes. Unfortunately, the available photomet-
ric and spectral observations cannot determine these parameters, and
the exact mutual inclinations of the three planes are not presently
known. In what follows we test different assumptions. Motivated
by our discussion above, we start with a small value of mutual incli-
nations. Therefore, assigning arbitrarily 
 = 0◦ (note the origin of

 is irrelevant for the mutual inclination of the orbital planes), we
next assume 
A = 10◦ and 
B = 15◦. This results in JA � 11.◦6
and JB � 15.◦8 initially. For these values we have J max

AB � 5.◦2, or
F � 0.8 (see also Fig. 1). To make the comparison of the results as
close as possible, we now assume zero eccentricities eA and eB, and
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Secular dynamics of a bound pair of binaries 3969

Figure 2. Exemplary numerical integration of a V994 Her-like system with
the A and B orbital planes tightly coupled. Grey line from a complete numer-
ical integration of the Hamiltonian (1), black line from numerical integration
of the secular system (12)–(17). Top: orbital inclination with respect to the
Laplace plane (normal to the conserved total angular momentum) for A and
B systems (labels A and B), and the mutual motion of B about A (label
A-B). Bottom: mutual inclination JAB of the A and B orbital planes; the
dashed grey line at �5.◦2 is the analytically derived limit J max

AB .

keep the large value for the eccentricity e = 0.76 of the systems A
and B relative orbit. The corresponding argument of pericentre is
ω � 236◦ from Zasche & Uhlař (2016).

We used two integrators for interest of their comparison: (i) direct
integration of Hamilton’s equations derived from Hamiltonian (1),
and (ii) integration of secular system (12)–(17). The secular system
obviously contained only the quadrupole and octupole interaction
terms (18) and (21), but it runs approximately two orders of magni-
tude faster. The match of the results from both numerical models is
very good. All orbital variables were transformed into the Laplace
coordinate system with (i) the z-axis along the direction of the con-
served total angular momentum of the system, and (ii) the x-axis
along the nodal line of the A and B systems (the nodal line of their
mutual motion is then directed along −x). First we confirm that
eA and eB remain essentially zero except for a very low-amplitude
oscillations. Similarly, the eccentricity e of the mutual motion of
A and B centre-of-mass is conserved. The inclination values of the
A and B orbital planes with respect to the Laplace plane xy show
long-period oscillations (Fig. 2, top panel). However, their nodal
circulation in this reference frame is coupled enough such that the
mutual inclination JAB of A and B orbital planes oscillates between
�3.◦5 and �5.◦2 (Fig. 2, bottom panel). The analytical limit J max

AB is
shown by the grey dashed line at the bottom panel of Fig. 2, and
indeed it nicely bounds the oscillations of JAB angle.

One may wonder, whether the time-scale shown in Fig. 2 is suf-
ficient for our conclusion of a persisting coplanarity of the A and
B orbital planes. This is because equations (26) and (27) basically
indicate that kA and kB precess about a near constant k with fre-

quencies σ1 cosJA and σ2 cosJB. By coincidence their ratio is
near unity to about a per cent level. As a result one could think that
non-coplanarity would develop on a time-scale of �(100–1000)
precession cycles of the A and B planes in the Laplace frame. We
thus repeated our simulation to 100 Myr, instead of 100 kyr shown
on Fig. 2. It turns out that the system keeps to be very stable even on
this much longer time-scale and no long-term oscillations in JAB

angle are observed.

3 N U M E R I C A L E X A M P L E : V 9 9 4 H E R

3.1 The point-mass model

We now extend the previous analysis by (i) dropping the restriction
of zero eccentricities of the A and B orbits, and (ii) exploring
dependence of the results on changes in geometrical architecture of
the system (mutual inclinations of the three orbits). As we continue
using V994 Her to be our template for the 2+2 multiple stellar
system, we now adopt the observed values of the eccentricities of
the eclipsing binaries (Zasche & Uhlař 2016): eA �0.031 and eB

�0.125. Variations of the orbital architecture are easily achieved by
changing nodal longitudes 
A and 
B.

To proceed step-by-step, and to not confuse different effects to-
gether, we first relax the eccentricity values of the eclipsing systems
eA and eB mentioned above. We also use the corresponding argu-
ments of pericentre ωA �10◦ and ωB �301◦ from Zasche & Uhlař
(2016), all of the MJD 53855 epoch. Fig. 3 shows the results. Re-
call the inclinations in this figure have been transformed to the
Laplace frame, in which the z-axis is directed along the conserved
total angular momentum of the system. Upper and lower panels
are as in Fig. 2, while the middle panel now shows evolution of
the orbital eccentricities of the A and B binaries (the eccentricity
e = 0.76 of their mutual orbit is conserved). As above, the grey
lines are from full-fledged numerical integration of the system (in-
cluding the short-period orbital effects), and the black line results
from a much faster integration of the secular system (12)–(17) with
quadrupole and octupole perturbations included. Clearly, this or-
bital architecture is fairly stable, with eA and eB values having just
small-amplitude oscillations. This is because the mutual angles JA

and JB of the A and B orbits with respect to the A-B plane are
smaller than ∼15◦. The mutual angle JAB of the A and B orbital
planes exhibits stable oscillations between �1◦ and �6◦, still being
fairly well bounded by the simple analytic estimate J max

AB (dashed
grey line at the bottom panel). This is because ≤0.15 eccentricities
of the A and B orbits only little affect the overall dynamics of the
system.

As expected, things change when the inclinations of A and B
in the Laplace frame approach �40◦, namely the Kozai instabil-
ity limit. To probe onset of this regime, we chose 
A = 35◦ and

B = 40◦ in our next simulation. Other orbital elements at the initial
epoch were as above. Results of the orbital propagation for these
initial data are shown in Fig. 4. Now the initial values of the relative
inclinations JA and JB are �35◦ and �40◦, the latter being larger
than the critical Kozai inclination (e.g. Farago & Laskar 2010). In
the point-mass model at this stage the eccentricities eA and eB be-
have differently: while eA is still stable, eB exhibits large oscillations
that also trigger similar inclination effects. The orbital planes of the
A and B orbits now decouple and their mutual angle JAB spans a
large interval of values from 0◦ to more than �70◦. Obviously, at
this moment the analytical limit J max

AB is of no use, because the basic
simplifying assumptions in Section 2.3 are violated.
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3970 D. Vokrouhlický

Figure 3. Exemplary numerical integration of a V994 Her-like system
with the A and B orbital planes tightly coupled. Grey line from a complete
numerical integration of the Hamiltonian (1), black line from numerical
integration of the secular system (12)–(17). Contrary to Fig. 2, here we
initially adopt true eccentricities of the eclipsing systems eA �0.031 and eB

�0.125. Top: orbital inclination with respect to the Laplace plane (normal
to the conserved total angular momentum) for A and B systems (labels A
and B), and the mutual motion of B about A (label A-B). Middle: orbital
eccentricities of the A and B systems. Bottom: mutual inclinationJAB of the
A and B orbital planes; the dark grey line at �5.◦2 is the formal, analytically
derived limit J max

AB .

Fig. 4 also indicates that, unlike in the previous cases, results
from the direct numerical integration of the Hamilton’s equations
and the secular system no more agree beyond ∼5 kyr. Fig. 5 helps
to further grasp the situation: here we show time dependence of
the argument of pericentre ω for the three orbits A, B and A-B in
the observer-oriented frame (i.e. measured from the sky plane as
it is traditional in stellar astronomy). The phase space describing
orbital motion of the quadruple system has now quite more complex
structure. Previously, these elements were only slowly, but steadily
circulating. This is now continued on the time-scale shown in the
figure only by the argument of pericentre of the mutual orbit of
the two binary systems. The corresponding element of the A and B
binaries has far more complex evolution. The periods of circulation
are interrupted by oscillations and vice versa. This reflects existence
of additional stable and unstable solutions in the phase space and
the chaotic zones near the separatrix of their associated libration
and circulation regions (Farago & Laskar 2010).

As a rule of thumb, that we also want to illustrate here, the best
understanding of dynamical features is obtained if the elements are
transformed to the Laplace frame (i.e. with the z-axis along the
conserved total angular momentum of the whole system). Fig. 6
shows argument of pericentre for orbits A and B in this reference
frame. While ωA for the system A behaves nearly regularly, showing
a near-steady circulation because its inclination in this frame is

Figure 4. The same as in Fig. 3, but now in the situation when the orbital
inclinations are large. This is particularly important for the system B. Top
panel shows inclination values in the Laplace frame, in which iB exceeds
40◦, a limit for onset of Kozai-type dynamics. In this regime, inclination
and eccentricity undergo large-amplitude, correlated oscillations. This is
demonstrated in the middle panel, where eB maximum values reach above
0.6. The mutual inclination JAB of the A and B orbital planes (bottom
panel) now attains large values, exceeding the simple limit J max

AB from the
zero-eccentricity analysis in Section 2.3. While initially results of the full
numerical integration and the secular approximation agree well, they start
to significantly deviate after �5 kyr.

Figure 5. Time evolution of argument of pericentre ω for the three orbits,
A and B (the close binaries) and A-B (mutual orbit of the binaries) in
the observer-oriented frame. The steady circulation pattern now changes
to irregular evolution with temporary reversals for the orbits A and B.
Prediction from the full numerical model starts to deviate from that of the
secular theory at ∼5 kyr.
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Secular dynamics of a bound pair of binaries 3971

Figure 6. Time evolution of argument of pericentre ω for the two binary
orbits of V994 Her system, A and B, in the Laplace frame. While ωA is
characterized by a nearly steady circulation, ωB shows intermittently periods
of circulation and librations, when captured around the stationary points at
90◦ and 270◦. The grey lines from the complete numerical simulation, the
black lines from integration of the secular system.

subcritical, ωB has a much more irregular evolution, related to its
super-critical inclination. Circulation is soon interrupted by capture
of librations about the stationary point at 90◦. However, this capture
is only temporary. At about 5 kyr in the integration it is left for
another period of circulation, before being captured anew, now
about the stationary point at 270◦. These periods of captures about
90◦/270◦ stationary points proceed with transition through a chaotic
layer in the phase space. That is where the full numerical model and
the simplified secular model start to diverge.

3.2 Beyond the point-mass model: order restored

Results described in our second example above (large relative incli-
nation values JA and JB), while theoretically interesting, suggest
the point-mass model must be incomplete, provided the so far un-
known mutual inclination of the orbits is large. Not only the apparent
instability of the whole system would be striking, but also the peak
eccentricities for the B system of ∼0.6 are not possible as they
would imply stellar collision. Suffice, however, to notice that the
pericentre precession period for both eclipsing binaries would be-
come several thousand years long in the observer-oriented system
(Fig. 5). This is in conflict with the observationally suggested pre-
cession periods of 116 ± 50 yr for the A system and 111 ± 40 yr
for the B system. We note that even in the low JA and JB case
discussed earlier in Section 3.1, the four-body interaction induces
precession periods of pericentres of the A and B systems would be
about 10 times longer than observed. So at least 90 per cent of this
effect must come from somewhere else.

The proximity of the components in the eclipsing binaries offers a
natural solution. While the point-mass model provides a basis of the
orbital solution, dynamics of the A and B systems requires to include
interaction terms of stars modelled as extended bodies, including
their tidal integration. This task can be performed at different level
of accuracy. Given the large parametric uncertainty in V994 Her we
restrict to a simple quadrupole model by Hut (1981) at this moment.6

6 Note, however, that the essential fast component in the precession of orbital
pericentres for the A and B system in rather independent on specific details

This implies that the dynamical equations of the A system, as they
follow from the Hamiltonian (1), are complemented by a term(

d pA

dt

)
quadr

= − 6 QA

1 − QA
G

m′
AMA

r3
A

(RA

rA

)5

rA, (37)

where RA is a characteristic radius and QA is a characteristic
quadrupole deformability of stars in the A system. One could also
split (37) into two terms representing tide produced by Ab on Aa
components, and vice versa, but again such details are not essential
at this time. Such contribution translates into a corresponding term,
by which the secular system has to be complemented. A simple
algebra yields (e.g. Eggleton, Kiseleva & Hut 1998; Eggleton &
Kiseleva 2001; Fabrycky & Tremaine 2007; Liu et al. 2015)(

dπA

dt

)
quadr

= FA (K A × πA) , (38)

with

FA = nA
15 QA
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)5 1 + 3
2 e2

A + 1
8 e4

A

η11
A

, (39)

A similar terms should also complement description of dynamics
of the B system.

For sake of our test, we assumed mass–radius relation R ∝ M0.8

for stars in the A and B binaries. The quadrupole deformability
values QA �0.031 and QB �0.014 were set to match the above-
mentioned precession rates in the binary components of the V994
Her system. Assuming the same initial conditions as used in sim-
ulation shown in Fig. 4, but now including the quadrupole inter-
action from (38), we obtain orbital evolution shown in Fig. 7. As
anticipated, order has been restored with now only small oscilla-
tions in the orbital inclinations of orbital planes of the A and B
binaries (top panel). Their mutual angle JAB (bottom panel) also
indicates only limited variations. Interestingly, the upper limit J max

AB

derived in Section 2.3 for point-mass model still holds well (grey
line in the bottom panel). This is because the quadrupole model
is basically still valid for the orbital planes dynamics, thus k, kA,
and kB vectors. Their dynamics is not affected by the star–star
quadrupole interaction in the close binaries A and B as seen from
equation (38). This effect principally enforces fast pericentre circu-
lation in the binaries, inhibiting thus the long-term Kozai instability
seen in Fig. 4. There is again good agreement between prediction
of the orbit evolution by the full numerical model and the secular
system.

To further illustrate persistent near-coplanarity of the orbital
planes of the binaries A and B we show in Fig. 8 orbital inclina-
tions iA and iB in the observer-oriented system (i.e. measured with
respect to the sky-plane). Because their orbital inclinations with re-
spect the orbital plane of their relative motion, that has i = 90◦, are
�(30◦–40◦) (Fig. 7), the inclinations in the observer-oriented frame
oscillated between �(60◦ and 120◦). This is a simple projection of
the orbital precession in the Laplace system. Interestingly though,
the oscillations have nearly the same frequency such that both A
and B systems are either eclipsing or, occasionally, non-eclipsing.
In ≥95 per cent of time this happens simultaneously.

In conclusion, we note that until interferometric observations re-
veal more details about the orbit-plane architecture of the V994 Her
system, all possibilities are in principle open (i.e. from coplanar to
perpendicular orbit planes of A and B with respect to each other and

of the model. we also do not include the tidal component in the Hut’s model,
since it is not necessary for the sake of our argument.
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3972 D. Vokrouhlický

Figure 7. The same as in Fig. 4, but now the model contains apart from the
mutual gravitational interactions of the stars as mass points also quadrupole
interactions between the components in the close binaries A and B
(see equation 38). The quadrupole deformability parameters QA and QB

were adjusted such that the pericentres of the binary systems circulate with
the observationally constrained periods. This restores the order with only
small oscillations of the inclinations and eccentricities. The orbital planes
of the binaries remain close each other (bottom panel); the dashed grey line
is the formal limit J max

AB from the zero-eccentricity analysis in Section 2.3.

with respect to the plane of A-B motion). However, and interesting
clue could be provided by a rather high eccentricity of the B system:
eB �0.125 (Zasche & Uhlař 2016). We speculate it could have to
do with the mutual interaction of the A and B components in the
system. This would favour non-coplanar configuration. Analysis of
systems predicting the observed eB value, obviously in a statistical
sense, could provide interesting constraints on the tidal interaction
of the stars in the B system.

3.3 Statistics of eclipses in the V994 Her-like systems

Encouraged by a rather good performance of the secular numerical
model, and intrigued by previously described tight coplanarity of
the A and B orbital planes in our previous simulations, we now
proceed to show usefulness of the secular model in dealing with
more general problems. We should recall that its principal strength is
in the possibility to choose a much longer integration timestep than
in the fully numerical model, allowing a much faster performance.

The problem we want to analyse is a general statistical expec-
tation of occurrence of eclipses in the V994 Her-like quadruple
systems in 2 + 2 hierarchy. For simplicity we shall assume param-
eters from our simulation shown in Fig. 7, obviously except for
the orbital plane inclinations and node longitudes. In particular, we
keep the mean orbital periods PA, PB, and P from above, as well as
the stellar masses mAa, mAb, mBa, and mBb. The latter also set the
assumed stellar radii of approximately RAa � 2.4 R
, RAb � 2.1

Figure 8. Inclination of the orbital plane for binaries A (top) and B (bottom)
in the observer-oriented coordinate system (dynamical model from Fig. 7).
The bold grey line is from complete numerical integration, the black line
is from numerical integration of the secular system. The dark grey region
indicates inclination for which no eclipses in the binaries would be observed.

R
, RBa � 1.6 R
, and RBb � 1.7 R
. For sake of definiteness,
we also keep the eccentricity values eA, eB, and e, and the quadrupole
deformabilities QA and QB. Obviously, the simulation can be effi-
ciently performed with different values of these parameters, but here
we limit ourselves to a demonstration of the method rather than a
complete scan of results through a large parameter space.

First, we consider a static situation. This will provide a useful
template for comparison when discussing results of the more general
dynamical model. Assuming thus no mutual interactions between
the A and B systems, as if they were isolated, we can simply evaluate
odds for each of them separately to be eclipsing. This is only set
by orbital periods, eccentricities, and stellar radii (assuming their
spherical shape). Assuming the orbital planes are isotropic in space,
we find there is �36.6 per cent chance that system A is eclipsing and
�39.7 per cent chance that the system B is eclipsing. Considering
these two probabilities uncorrelated, there is �14.5 per cent chance
that both systems A and B are simultaneously eclipsing. Obviously,
in this simplified model the systems are either eclipsing or not, and
keep being so independently of time.

Moving to real life, we have to take into account that the systems
A and B inevitably interact. Examples of their orbital evolution
have been shown in the previous section. Therefore, we now run a
simulation with all orbital components evolving as predicted by the
secular model. For sake of simplicity, the initial orbital planes of A,
B, and A-B components were set isotropic in space.7 We ran 105 trial

7 Note that the early evolution of the quadruple systems during their initial
contraction may result in a more complex than isotropic distribution of the
orbital planes. Analysis of this effect is beyond the scope of this paper.
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Figure 9. Results from a 50 kyr integration of 105 trial evolutions of V994
Her-like systems with initially isotropic distribution of orbit planes for all
components (A, B and A-B) in space. The grey histogram at each of the
panels shows statistical distribution of what fraction of the total time a
particular component was eclipsing: (i) system A at the top, (ii) system B
in the middle, and (iii) both systems A and B simultaneously at the bottom
(distributions were arbitrarily normalized to unity). The dashed lines show
what is the expected occurrence in a static model, in which the orbits would
not evolve in time: 36.6 per cent for the system A, 39.7 per cent for the
system B, and 14.5 per cent for both systems simultaneously. The median
values of each of the distributions are very close to these values.

simulations, each lasting 50 kyr, with a timestep of 10 d (in fact con-
servatively short). At each timestep we monitor the configuration of
the orbital planes for all three components in the system and deter-
mine whether systems A and B are eclipsing at that epoch. Because
the system dynamically evolves, the eclipses in a given individual
trial run may persist, occur transiently or never, depending on the
direction to the observer. Note, however, that our overall results ob-
viously do not depend on the observer’s position because of isotropy
of the initial conditions of our simulation. Having recorded at each
epoch, and for each trial run, existence or inexistence of eclipses,
we can finally determine statistical distribution of their appearance
for the A and B systems, or both together.

Fig. 9 shows our results. First, we note that the system A had
eclipses in at least one instant during our individual trial simulations
in �91.8 per cent cases, the system B in �93.7 per cent cases, and
both systems together in �83.9 per cent cases. Conversely, the
system A had never eclipses during the monitored 50 kyr interval
of time in �8.2 per cent cases, the system B in �6.3 per cent cases,
and simultaneous eclipses of systems A and B never happened in
�16.1 per cent cases. The trial runs in which some eclipses occurred
were used to construct distributions shown in the Fig. 8. In particular,
for each of the simulations we evaluated percentage of the total
time in which the particular component was eclipsing. Interestingly,

the median values of these distributions are within uncertainty the
same as those determined for the static model (see above). The
distributions are, however, quite broad and have tails towards large
and small values. We are mainly interested in the cases that showed
abundance of eclipses of both systems A and B. Checking some
of the trial runs that resulted in this behaviour, we observed they
indeed correspond to the near coplanar configurations described
in Sections 3.1 and 3.2, for which the observer happened to be
close to the orbital plane of the relative A-B motion. In quantitative
terms, there is �1.7 per cent chance that both systems A and B are
simultaneously eclipsing for more than 50 per cent of time.

4 KO Z A I – L I D OV R E G I M E F O R T H E
QUADRUPLES: A N EXEMPLARY CASE

Another example of a useful application of our secular model for
the 2+2 quadruple systems is a more in-depth analysis of the KL
regime, whose some aspects were already mentioned in Section 3.1.
The many applications of the KL dynamics have attracted a lot of
attention over the past decade or so. Their original area bound to the
Solar system dynamics has largely opened to many other fields in
astronomy, including important results in exoplanet dynamics and
astrodynamics. Naoz (2016) provides a recent and fairly complete
review of many of them. While we do not intend to enter the vast
realm of KL dynamics applications in this paper, we briefly show
that our formulation is fully capable to recover some of the earlier-
published results with a significant CPU time gain characteristic to
the secular versus complete integration.

One of the interesting aspects of the KL dynamics is a possibility
to flip orientation of the participating orbits from prograde to retro-
grade sense and vice versa (e.g. Naoz 2016, and references therein).
In the simpler case of triples, this phenomenon does not occur in the
first-order secular theory when only the quadrupole interaction term
is included. One needs a contribution from the octupole interaction
term to provide the necessary degree of freedom in the solution
(e.g. Katz, Dong & Malhotra 2011; Luo, Katz & Dong 2016; Naoz
2016). However, when all masses of the participating objects are
equal the secular effect of the octupole terms disappears and the
desired flips are again banned. The situation is more complex for
quadruple systems. Staying with the 2 + 2 hierarchy, one could
investigate the interplay of the A and B systems and analyse their
orientation with respect to the relative orbit A-B. In Section 2, we
have demonstrated that this could be to a high degree of accuracy
modelled as two interacting triple systems. Therefore, even when
considering all masses equal, for which the octupole terms are nil,
the phenomenon of orbit A or B flipping may occur at the expense
of interaction of the systems. This effect has been pointed out by
Pejcha et al. (2013), who used a complete numerical model in their
study. Here we show that their results are easily recovered also using
our secular model with, obviously, a significant gain in computation
time.

We first tested capability of our secular scheme by choosing the
initial orbital data similar to those in bottom panel of fig. 1 of Pejcha
et al. (2013), except for the secular angles, which were not reported
in this reference. Specifically, we set all stellar masses equal to
the solar mass (mAa = mAb = mBa = mBb = 1 M
), and used
aA = 0.57 au, aB = 0.35 au, and aAB = 5 au for the corresponding
semimajor axes. Initial eccentricity values were eA = 0.3, eB = 0.1,
and eAB = 0.3. Additionally, in accord with Pejcha et al. (2013), we
had initially cosJA = 0.3 and cosJB = −0.05, where JA and JB

are relative inclinations of the A and B orbital planes with respect
to the orbital plane of A-B orbit. Other orbit parameters, longitude
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Figure 10. Illustration of a chaotic behaviour of eccentricities (top) and
relative inclinations (bottom) of the A and B systems with respect to the A-
B orbital plane in a deep Kozai regime. Solution for the A system is shown in
black, solution for the B system in grey colour. Time at the abscissa is given
in the Kozai unit tK, here about 37.8 yr. Quadruple nature of the system
allows orbital flips even for equal-mass case assumed in this simulation
(mAa = mAb = mBa = mBb = 1 M
). Other orbital parameters as in fig. 1
(bottom panel) of Pejcha et al. (2013).

of node and pericentre for all orbits were chosen randomly. We
numerically integrated equations of the secular system for about
11 kyr with a timestep of 0.1 yr. In accord with Pejcha et al. (2013),
we scaled time in our solution by the Kozai unit tK:

tK = 2

3π

[
aA

(
1 − e2

AB

)
aB

]3/2 [
aAB

aA

]3

PB. (40)

In our case, tK �37.8 yr, thus our solution had approximately 300 tK.
Fig. 10 shows eccentricities eA and eB, together with relative incli-
nations JA and JB as a function of time, and could be thus directly
compared with fig. 1 of Pejcha et al. (2013). Obviously, details are
not the same, since the initial secular angles of our solution were
most likely different. Additionally, the chaotic evolution near the
flip conditions would anyway produce difference between the fully
numerical results of Pejcha et al. (2013) and our solution. These
details are, however, not important here. What matters more is the
general character of the solution, namely large oscillations of the
eccentricities and orbit flips when one of them approaches unity.
These qualitative features of the solutions are the same. We should
mention that simulation in Fig. 10 took only a few seconds on a
standard CPU core.

This is encouraging. To further illustrate usefulness of our ap-
proach we now re-derive the population results, namely spanning
all possible initial values JA and JB. In particular, we ran our prop-
agator with cosJA and cosJB uniformly spanning 50 values in
their definition intervals (−1, 1). At each of these grid points we
run 50 different jobs with secular angles chosen randomly. This

is very similar to the procedure described by Pejcha et al. (2013),
except for a more densely sampled cosJA and cosJB values in our
simulation (which we can afford by faster speed of the runs). At
each job we monitored behaviour of the eccentricities eA and eB, in
particular recorded cases when 1 − eA or 1 − eB became smaller
than 10−3. We found this happened in 31.0 per cent runs for the
system A and 48.1 per cent runs for the system B. This is in a very
good accord with 35.8 and 53.0 per cent cases reported by Pejcha
et al. (2013) in their table 1. Fig. 11 shows cosJA and cosJB values
for which system A (left) and system B (right) achieved these very
high eccentricity states. The results are again in a very good accord
with those shown by Pejcha et al. (2013) in their fig. 2.

While not exactly identical, our results therefore provide the
same conclusions in a statistical sense as in Pejcha et al. (2013).
However, there is a significant difference in the required CPU time:
our simulation ran about 100 times faster.

5 C O N C L U S I O N S

Secular theory represents a versatile tool to study long-term evolu-
tion of stellar systems in different configurations. The most often
discussed case is that of triple systems in the 2 + 1 hierarchy. Here
we extended this basic formulation to quadruple systems in the
2 + 2 hierarchy.

Unless the systems are very compact, we found they could be
effectively modelled as two interacting triple systems. This conve-
niently allows us to bring formulation of the secular equations of
motion from triples, and easily adapt it to the more general case of
quadruples. Our formulation may help to efficiently analyse data
about the exceptionally tight and/or exceptionally well observed
2+2 systems, such as V994 Her or VW LMi (e.g. Pribulla et al.
2008; Pawlak et al. 2013). For instance, we estimate that the peri-
centre of the non-eclipsing component B in VW LMi may drift by
�3◦ yr −1 due to interaction with the system A. This is in a rough ac-
cord with the preliminary results reported by Pribulla et al. (2008),
but more observations are clearly needed. Note that the �7.93 d
period of system B, and solar-mass stars, implies that the tidal or
quadrupole interaction here would be quite less important than in
the case of V994 Her system with shorter PA and PB values. The
pericentre drift would be thus likely dominated by the four-body
interaction described in our approach. Even more widely separated
is the case of V379 Cep quadruple, where the systems A and B
have orbital periods of �99.8 d and �158.7 d (e.g. Harmanec et al.
2007). Especially the non-eclipsing system B is interesting for us,
because of its large estimated eccentricity of eB �0.5. If the whole
architecture of this quadruple is not too distant from a coplanar
case, we estimate that the pericentre of the system B should drift
by about a degree in �6 yr. A high-quality spectroscopy should
be able to reveal this effect in about a decade or two. Obviously,
interferometric and further photometric observations would be also
valuable to characterize geometry of this interesting system.

The secular approach may be also efficiently used to study long-
term evolutionary tracks during the formation phase of the quadru-
ple systems. This includes orbital collapse powered by the tidal
interaction during the high-eccentricity states excited by the angu-
lar momentum exchange between all components of the 2 + 2
system (KL phase). This interesting application, awaiting fur-
ther analysis, would require to complement secular equations pre-
sented in this paper by tidal and spin-orbit coupling effects as in
Fabrycky & Tremaine (2007), who studied early phases of dynam-
ical evolution for triples.
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Figure 11. Simulations as in Fig. 10 now spanning a uniform grid of initial values cosJA and cosJB inclinations (abscissa and ordinate). The left-hand panel
shows results for the system A, the right-hand panel for the system B. In both cases, we integrated 50 variants for each (JA,JB) grid-point, all having random
values of secular angles (nodes and pericentres). In each job we monitored if 1 − eA or 1 − eB became smaller than 10−3. Number of such cases are given by
the grey-shaded plots with the value bar on the right of the figure. The dashed lines mark the formal Kozai angle cos JK = ±√

3/5 for each system. The figure
reproduces well results shown in fig. 2 of Pejcha et al. (2013).

AC K N OW L E D G E M E N T S

I thank Petr Zasche for useful information about the V994 Her
system and the anonymous referee for suggestions that helped to
improve the final version of this paper. This work was partly funded
through the research grants P209-13-01308S and GA15-02112S of
the Czech Science Foundation.

R E F E R E N C E S

Beust H., 2003, A&A, 400, 1129
Breiter S., Ratajczak R., 2005, MNRAS, 364, 1222
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