
MNRAS 475, 5215–5230 (2018) doi:10.1093/mnras/sty132
Advance Access publication 2018 January 15

Resonant dynamics of gravitationally bound pair of binaries: the case of
1:1 resonance

Slawomir Breiter1‹ and David Vokrouhlický2
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ABSTRACT
The work presents a study of the 1:1 resonance case in a hierarchical quadruple stellar system
of the 2+2 type. The resonance appears if orbital periods of both binaries are approximately
equal. It is assumed that both periods are significantly shorter than the period of principal orbit
of one binary with respect to the other. In these circumstances, the problem can be treated as
three independent Kepler problems perturbed by mutual gravitational interactions. By means
of canonical perturbation methods, the planar problem is reduced to a secular system with
1 degree of freedom involving a resonance angle (the difference of mean longitudes of the
binaries) and its conjugate momentum (involving the ratio of orbital period in one binary
to the period of principal orbit). The resonant model is supplemented with short periodic
perturbations expressions, and verified by the comparison with numerical integration of the
original equations of motion. Estimates of the binaries periods variations indicate that the
effect is rather weak, but possibly detectible if it occurs in a moderately compact system.
However, the analysis of resonance capture scenarios implies that the 1:1 resonance should be
exceptional amongst the 2+2 quadruples.

Key words: methods: analytical – celestial mechanics – binaries: eclipsing – stars: kinematics
and dynamics.

1 IN T RO D U C T I O N

The exact statistical census of stellar hierarchies, from binaries to
multiple-star systems, is subject to debate because of difficulties in
precise debiasing procedure of surveys. Nevertheless, a significant
progress has been achieved over the past decade or so. We know that
stars like companions, and nearly 10 per cent live in hierarchies of
more than two (e.g. Tokovinin 2014; Riddle et al. 2015). This num-
ber was determined for solar-type stars of F- and G-classes, and it is
likely quite larger for more massive stars. As outlined in Tokovinin
(2008), relative number of systems with different multiplicity and
their parameters (such as ratio of masses of participating stars and
orbital periods of their sub-systems) put important constraints on
their formation processes. These include not only direct fragmenta-
tion of the initial cloud but also orbital processes such as gas- and
tide-driven migration. The latter leave important fingerprints on the
presently observed architecture of the stellar systems.

In this paper, we focus on the quadruple systems. Their long-term
stability requires one of the two architectures: (i) ((2 + 1) + 1),
namely a triple system accompanied with a distant star, or (ii)
(2 + 2), namely two binary systems revolving about a common
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centre of mass. Of these two, we are concerned about the latter
category (ii). Interestingly, the 2+2 systems are more frequent (e.g.
Tokovinin 2008; Riddle et al. 2015) and have distinct properties,
both factors suggesting their unique formation route. In particular,
Tokovinin (2008) found that (i) the binaries embodied in the 2+2
quadruples are frequently composed of stars with similar mass, (ii)
orbital spin of binaries and their common orbit in compact 2+2
quadruples are correlated (unlike in triples and wider 2+2 quadru-
ples), and (iii) period ratio of the binaries in compact 2+2 quadru-
ples is within an order-of-magnitude near unity (unlike in triples
and wider 2+2 quadruples).

Unlike the primordial dynamical issues mentioned above, we
deal with the present dynamical configuration. Equations of secular
dynamics of quadruple systems in the 2+2 hierarchy have been for-
mulated and studied at different levels of accuracy and with differ-
ent goals (e.g. Pejcha et al. 2013; Hamers & Portegies Zwart 2016;
Vokrouhlický 2016; Hamers & Lai 2017). Put in an immediate prac-
tical use, these results may be employed to interpret observations
of long-term changes in architecture of these quadruple systems,
such as precession of periapses of the two participating binaries or
changes in orientation of their orbital planes witnessed by variations
of eclipse depths (e.g. Pribulla et al. 2008; Zasche & Uhlař 2013,
2016). This is actually a traditional framework used for decades for
interpretation of orbital changes in triple stellar systems, only now
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adapted for a more general architecture.1 However, as the available
observational data about the 2+2 quadruple systems grow, prob-
lems of new flavor may appear. This is the case of a possibility of
mean motion resonances between the two participating binary sys-
tems. Obviously, the previously developed secular approach cannot
be used to tackle this problem and new tools are needed.

On the observational side, the case for such resonances has not
yet been established exactly. This is because it would require a
complete information about the architecture of the system. We miss
such a detailed knowledge for most of the triple systems, so it is not
surprising that the data about 2+2 quadruples are equally incom-
plete. Yet, strong hints and suggestions were recently published.
For instance, Ofir (2008) suggested that the system BI 108 in the
LMC field of OGLE survey is likely a doubly-eclipsing system in
2+2 architecture with orbital periods PA � 3.577 98 d and PB �
5.366 55 d for the two binaries. Ofir (2008) also noted that the pe-
riods are within �0.03 per cent near the 3:2 ratio and conjectured
that the system is in the corresponding dynamical resonant state.
This commensurability of the two periods in the BI 108 system
has been confirmed, and even strengthened, by Kolaczkowski et al.
(2013). While discussing also other possibilities for occurrence of
the two periods (see also Rivinius, Mennickent & Kołaczkowski
2011), these authors concluded that the resonant state of the
two interacting binaries is the most likely conclusion. Similarly,
Cagaš & Pejcha (2012) studied a double period, doubly-eclipsing
system CzeV343 with PA � 0.806 931 d and PB � 1.209 373 d.
Again, the ratio PB/PA is within �0.1 per cent equal to 3:2, sugges-
tive for a dynamically resonant configuration. We also note that in
both cases the longer-period orbit has been found slightly eccentric,
� 0.08 and � 0.18. Given the first-order of the 3:2 resonance, this
is a necessary pre-requisite of the physical resonance between the
two binaries. On the other hand, the two systems are unresolved
and, worse, the long period of the putative revolution of the centre
of mass was not detected yet. It is not surprising then, that other
information, such as the mutual inclination of the binary orbital
planes, about the two systems is also not available.

Apart from these two strongest candidates for 3:2 resonant sys-
tems, we note that the analysis of the eclipsing binaries in the
OGLE-III SMC fields by Pawlak et al. (2013) revealed 15 candi-
dates for 2+2 quadruples. Two of them have the period ratio close
to 3:2 within 1–2 per cent. Finally, we note a rare case of a doubly
eclipsing unresolved Kepler system KIC 4247791. The photometric
and spectroscopic analysis of Lehmann et al. (2012) revealed that it
consists of two, possibly coplanar binaries on nearly circular orbits
with periods PA � 4.04973 d and PB � 4.10087 d. This is within
about a percent level close to their 1:1 ratio. However, as before,
the data of this interesting system do not presently allow to reveal
the mutual motion of the two binaries about their common centre
of mass.

With the possible caveat that the periods in the previously men-
tioned systems are near-commensurate by pure chance, we take the
move on the theory side and investigate conditions for mean motions
resonances in the 2+2 quadruple systems. It is interesting to note
that such a resonant configuration has not been studied in the past.

1 It is interesting to note that Brown (1937), in his series of pioneering
works, analysed these long-period variations for the system ξ UMa, which
is actually a quadruple in the 2+2 architecture. However, one of the binary
periods is much shorter than the other, so the short-period system may be
conveniently replaced with a single body from the dynamical point of view
and the system effectively treated as triple with sufficient accuracy.

This is for two reasons. First, as described above, the observational
hints about such resonances appeared in the literature only very
recently. Secondly, it has been actually customary that problems
of stellar orbital dynamics were originally built on analogues from
our planetary system. For instance, early studies of perturbations in
triple systems were directly developed from tools of Delaunay and
Hill-Brown theories of lunar motion (see Brown 1936a,b,c, 1937).
In our case, however, the problem is autonomous to stellar systems
and no planetary analogy exists. In this sense, while using classical
tools of perturbation theory, our approach is a novel contribution to
orbital mechanics.

As discussed above, the current observations motivate to study
mainly the 3:2 mean motion resonance between the orbital motions
of the two binaries. To set the stage and gain first insights with the
problem, we however start with simpler, but also stronger, 1:1 res-
onance. This case requires the least analytic labour because, unlike
the first-order resonances, like 3:2, it exists for circular, or near-
circular, orbits of the two binaries. Unless there were reasons for
the eccentricities to be triggered to large values by other dynamical
effects, the resonant problem can be very well approximated with a
one degree of freedom, time-independent Hamiltonian model (Sec-
tions 2 and 3). Even if the solution of the reduced model remains
in formal quadratures, not being expressible in terms of elementary
functions, the principal characteristics such as resonant equilibria
or resonant width can be easily determined (Section 4). The model
has been validated by the comparison with numerical integration
of original equations of motion (Section 5), which required the ad-
dition of periodic perturbations formulae (Appendix A) and some
analytical estimates of the secular evolution of eccentricities (Ap-
pendix B).

One of the most interesting aspects of the putative mean motion
resonances in the 2+2 stellar quadruples is that they very likely
originate from a capture (see Cagaš & Pejcha 2012). This is because
the volume occupied by the resonances in the orbital phase space
is extremely small. Thus, the probability that the systems happened
to be born in a resonant state is very low. Rather, the resonance
should have been established during the tidal evolution of PA or PB.
Therefore, the statistics of the occurrence of resonant cases could,
in an ideal situation when all other biases are removed, be linked
to parameters of the tidal evolution of the binary orbits. For this
reason, we also pay attention to the resonant capture conditions and
probability (Section 6).

2 DY NA M I C A L F R A M E WO R K

2.1 Variables and Hamiltonian

Consider a quadruple system made of two binary subsystems A
and B (Fig. 1 ). The binary A includes two stars having masses m1

and m2, with a relative position vector rA directed from m1 to m2.
Similarly, the relative position vector rB points from the star of the
mass m3, to the second component of the binary B, having the mass
m4. Then, the position vector R locates the centre of mass of the
subsystem B with respect to the centre of mass of A. Since all three
vectors are relative, they can be reckoned in any reference frame
with fixed directions of axes.2 By assumption, we attach the symbols

2 We have decided to abbreviate the notation used by Vokrouhlický (2016),
replacing his subscripts Aa, Ab, Ba, Bb with 1, 2, 3, and 4, respectively, and
omitting the subscript AB.
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Figure 1. Geometry of the planar quadruple system. True longitudes are
FA = fA + � A and FB = fB + � B.

so that, whenever the masses are different, m1 > m2, m3 > m4, and
MA > MB, where

MA = m1 + m2, MB = m3 + m4, (1)

are the total masses of binaries A and B. With this convention, the
system can be parametrized by three mass ratios

μA = m2

MA
, μB = m4

MB
, μ = MB

M
, (2)

where M = MA + MB, is the total mass of the system, with each of

the coefficients belonging to the interval (0, 1/2].
Attaching to rA, rB, and R momentum vectors pA, pB, and

P , we obtain a canonical set sometimes called ‘hierarchical Ja-
cobi coordinates’ (e.g. Milani & Nobili 1983; Beust 2003). Indeed,
the variables offer the advantages of the standard Jacobi variables,
widespread in hierarchical triples studies, being well adapted to the
hierarchy in question, having the momenta tangent to trajectories,
and achieving the reduction from N to N − 1 body problem in the
canonical framework.

The Hamiltonian function of the problem, as given by
Vokrouhlický (2016), may be decomposed into three distinct parts:

H = HK

(
rA, rB, R, pA, pB, P

) + Hint (rA, rB, R)

+Hc (rA, rB, R) . (3)

The principal term

HK = Hb + Hp, (4)

where

Hb =
[

p2
A

2 m′
A

− G
m′

AMA

rA

]
+

[
p2

B

2 m′
B

− G
m′

BMB

rB

]
, (5)

Hp = P2

2 m′ − G
m′M
R

, (6)

with gravitation constant G, and reduced mass parameters

m′
A = m1m2

MA
= μA(1 − μA)(1 − μ)M,

m′
B = m3m4

MB
= μB(1 − μB)μM,

m′ = MAMB

M
= μ(1 − μ)M, (7)

defines three decoupled two-body problems: the motion of m2 with
respect to m1 in the binary A, the motion of m4 around m3 in the
binary B (both the binaries in Hb), and the motion of the barycentre
of B with respect to the barycentre of A (inHp) – each one following
a Keplerian conic in the absence of other terms in H.

The union of three Keplerian motions is perturbed by the interac-
tions potential. There one may distinguish two parts: Hint and Hc.
The term

Hint = −G
m′M
R

∑
n≥2

χA,n

( rA

R

)n

Pn (γA)

− G
m′M
R

∑
n≥2

χB,n

( rB

R

)n

Pn (γB) , (8)

may be interpreted as defining the perturbations in a fictitious triple
including the barycentre of B and the ‘dipole’ m1, m2 (first line), or
in a fictitious triple system including the barycentre of A and the
‘dipole’ m3, m4 (second line). There, the Legendre polynomials Pn

have arguments

γA = cos SA = R · rA

R rA
, γB = cos SB = R · rB

R rB
, (9)

and the mass functions χ are

χA,n = μA (1 − μA)
[
μn−1

A − (μA − 1)n−1
]
,

χB,n = μB (1 − μB)
[
μn−1

B − (μB − 1)n−1
]
. (10)

Adding either line of equation (8) to HK, one might obtain a
typical, hierarchical three-body problem (e.g. Harrington 1969;
Breiter & Vokrouhlický 2015), yet the coupling of both lines through
R should not be forgotten in a non-linear approximation. But the
direct coupling between all members of A and B is contained in the
remainder Hc, whose leading term reads (Hamers et al. 2015)

Hc = −3 Gm′
Am′

B

4 R

( rArB

R2

)2

× (
1 − 5 γ 2

A − 5 γ 2
B + 2 γ 2 + 35 γ 2

A γ 2
B − 20γ γAγB

)
, (11)

with

γ = cos S = rA · rB

rA rB
. (12)

The readers should be warned that the analogical equation (10) in
Vokrouhlický (2016) contains an error, which makes it valid only
in the planar case.

The equations of motion resulting from the Hamiltonian (3) are
non-integrable, but if the binaries A and B are sufficiently distant
from each other, i.e. rA + rB � R, we can resort to perturbation
techniques, considering perturbed Kepler problems.

2.2 Preliminary simplifications

Experience suggests that mean motion related resonances are
strongest when the orbits are coplanar.3 Thus, we restrict the

3 Moreover, observational data about the quadruples in the 2+2 hierarchy
indicate near-coplanarity of many systems (e.g. Tokovinin 2008).
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discussion to the planar case, where all three angular momentum
vectors rA × pA, rB × pB, and R × P have the same direction (and
their scalar products are all positive).

In the plane perpendicular to the angular momenta, the third
components of the position and momentum vectors are null, and the
system has 6 degrees of freedom. The angles occurring in equations
(9) and (12) become related in an elementary manner:

S = SA − SB, (13)

which allows to formulate equation (11) in terms of only two of the
three angles.

Another simplification amounts to dropping from Hint the terms
with n > 3. This requires an explanation, because of an apparent
inconsistence with the order of magnitude ofHc from equation (11).
By analogy with Breiter & Vokrouhlický (2015), let us introduce
a small parameter ε defined by the square root of ratio of Hp to
Hb, i.e. ε = √

max (rA, rB)/R. Then we have Hb = O(1), Hp =
O(ε2), Hint(n = 2) = O(ε6), Hint(n = 3) = O(ε8), and Hint(n =
4) = O(ε10). If the normalizing canonical transformation is sought,
then non-linear terms in the Hamiltonian appear at O(ε9), as in
Breiter & Vokrouhlický (2015, Section 3.1). Having decided to
consider only linear perturbations in the present work, we will miss
the terms of order 9, hence there is no point in considering n = 4
terms inside Hint, which are of order 10.

This argument, however, does not apply to Hc – more precisely,
to its resonant term amplitude. The resonance introduces a denom-
inator of the order of the square root of the amplitude (Garfinkel
1970), which means that the effect might be O(ε5) – comparable
with the influence of Hint(n = 2).

Finally, we assume that the eccentricities of unperturbed orbits
in the subsystems A and B are small, although the ‘principal orbit’,
as we are going to call the one related with R, P remains elliptic.
The small eccentricity assumption means that we are going to retain
only the first powers of osculating eA and eB in the Hamiltonian,
and set the mean eccentricities eA = eB = 0 after the averaging
transformation. Let us emphasize that this particular approximation
is allowed only in the 1:1 resonance case, since all other mean
motion resonances, for example 3:2, require non-zero eccentricity
to appear.

Having restricted the motion to the planar and almost circular
case, we can introduce a subset of the modified Delaunay variables.
Selecting an arbitrary departure direction in the plane of motion,
we first position the pericentre of the principal orbit using the lon-
gitude of pericentre � (see Fig. 1), and define the position of the
barycentre of B on the orbit through the mean anomaly l. This leads
to the canonically conjugate coordinate-momentum set (λ, q, 	, Q),
where

λ = l + �, 	 = m′√GMa = m′na2,

q = −�, Q = 	
(

1 −
√

1 − e2
)

. (14)

The mean motion symbol n has a purely formal meaning, defined
through n2a3 = GM, as a function of the semi-axis a; actual rate
of l differs from n because of the perturbations, but we will use the
term ‘unperturbed principal period’ for the quantity

P = 2π

n
. (15)

For the binaries A and B, we introduce

λA = lA + �A, 	A = m′
A

√
GMAaA = m′

AnAa2
A,

qA = −�A, QA = 	A

(
1 −

√
1 − e2

A

)
, (16)

and

λB = lB + �B, 	B = m′
B

√
GMBaB = m′

BnBa2
B,

qB = −�B, QB = 	B

(
1 −

√
1 − e2

B

)
, (17)

where the osculating mean longitudes λA, λB and pericentres lon-
gitudes � A, � B are measured from the same departure direction
as � . The mean motions nA and nB are linked with the semi-axes
aA, aB through n2

Aa3
A = GMA, n2

Ba3
B = GMB; they may serve to

introduce the unperturbed periods

PA = 2π

nA
, PB = 2π

nB
. (18)

If f stands for the true anomaly of the principal orbit (an implicit
function of all canonical variables λ, q, 	, Q), the mutual position
angles are

SA = fA − f + �A − �,

SB = fB − f + �B − �,

S = fA − fB + �A − �B, (19)

where the true anomalies are functions of eccentricities and mean
anomalies

fA = lA + 2eA sin lA + O(e2
A), fB = lB + 2eB sin lB + O(e2

B).

(20)

Expressing the Hamiltonian in these variables, we find the Kep-
lerian part HK as a sum of

Hb = − (GMA)2
(
m′

A

)3

2	2
A

− (GMB)2
(
m′

B

)3

2	2
B

, (21)

Hp = − (GM)2(m′)3

2	2
. (22)

In the truncated perturbing potential

Hint = −G
m′M
R

3∑
n=2

χA,n

( rA

R

)n

Pn (cos SA)

− G
m′M
R

3∑
n=2

χB,n

( rB

R

)n

Pn (cos SB) , (23)

we retain the radius R = a(1 − e2)(1 + ecos f )−1 as an exact implicit
function of the canonical variables (14), whereas for the remaining
two radii

rA = aA (1 − eA cos lA) + O(e2
A),

rB = aB (1 − eB cos lB) + O(e2
B). (24)

The remaining part Hc can be transformed into

Hc = −3 Gm′
Am′

B

32 R

( rArB

R2

)2
(6 + 10 cos 2SA + 10 cos 2SB

+ 35 cos 2(SA + SB) + 3 cos 2(SA − SB)) . (25)

The last term in (25) has an argument with possibly vanishing
frequency, so we modify the set (16,17) introducing canonical res-
onance variables

ψ1 = λA − λB, �1 = 	A, (26)

ψ2 = λB, �2 = 	A + 	B. (27)

According to the small eccentricities postulate, for the mean vari-
ables ψ1 ≈ SA − SB, and ψ2 ≈ SB + f + � , with both equalities
exact if eA = eB = 0.
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3 LI N E A R SE C U L A R M O D E L

3.1 First averaging

In the first step, we average the Hamiltonian with respect to the angle
ψ2 – the one with the presumably shortest unperturbed period. In
other words, we perform a transformation of variables resulting in a
partial normalization of the Hamiltonian with respect to the leading
term Hb, which now reads

Hb = − (GMA)2
(
m′

A

)3

2�2
1

− (GMB)2
(
m′

B

)3

2 (�2 − �1)2 . (28)

Being more specific on the meaning of ‘partial’, we construct the
transformation so that the new Hamiltonian belongs to the kernel
of the Lie derivative

L2 = ∂Hb

∂�2

∂

∂ψ2
= nB

∂

∂ψ2
, (29)

instead of the complete

Lb = ∂Hb

∂�1

∂

∂ψ1
+ ∂Hb

∂�2

∂

∂ψ2
= (nA − nB)

∂

∂ψ1
+ nB

∂

∂ψ2
. (30)

Remaining in the linear approximation, we obtain the Hamilto-
nian in new variables through a simple averaging with respect to
ψ2. Actually, the new variables should have different symbols, but
we retain the old ones and distinguish the initial, osculating set
from the new ‘intermediate variables’ by the context. Thus, after
the averaging we obtain HK(�1, �2, 	) = HK(�1, �2, 	), and,

Hint = −GMm′

4R

χA,2a
2
A + χB,2a

2
B

R2
, (31)

Hc = −9 Gm′
Am′

B a2
Aa2

B

32R5
cos 2ψ1, (32)

so that L2H = 0. Note that in both Hint, and Hc, we have set
eA = eB = 0. Additionally, the ψ1 independent part of Hc has been
discarded. As a result, the intermediate �2 = 	A + 	B becomes
a new constant of motion (although both 	A, 	B, hence the semi-
axes aA, aB, remain variable). The transformation is defined by the
generating function S1, whose leading part, derived from Hint(n =
2) alone, is

S1 ≈ S1,A + S1,B, (33)

where

S1,ν = GMm′

8R3

χν,2a
2
ν

nν

[3 sin 2(F−λν)−18eν sin (2F−λν−�ν)

+ 4eν sin (λν−�ν) + 2eν sin (2F − 3λν + �ν)] , (34)

and ν stands for A or B. For brevity, we have retained the symbols λν ,
aν as implicit functions of ψ1, ψ2, �1, and �2. The true longitude
on the principal orbit is

F = f + �. (35)

3.2 Second averaging

The second transformation will normalize the Hamiltonian H with
respect to Hp, so that the new function H is independent on λ, i.e.
belongs to the kernel of

Lp = ∂Hp

∂	

∂

∂λ
= n

∂

∂λ
. (36)

Again, we remain within a linear perturbation theory domain, which
means that the Hamiltonian in new variables is obtained through an
elementary averaging with respect to λ, actually performed through
the substitution rule

1

2π

∫ 2π

0
Y dλ = 1

2π

∫ 2π

0

YR2

a2
√

1 − e2
df , (37)

for any function Y explicitly depending on the true anomaly f.
Thus, we find, in the new variables (named ‘mean variables’), the
Hamiltonian

HK = HK(�1, �2,	), (38)

Hint = −GMm′

4a3η3

(
χA,2a

2
A + χB,2a

2
B

)
, (39)

Hc = −9 Gm′
Am′

B a2
Aa2

B(2 + 3e2)

64a5η7
cos 2ψ1, (40)

where

η =
√

1 − e2. (41)

In the mean variables, the system has one degree of freedom, ad-
mitting four integrals of motion: 	 = const, Q = const, �2 = const,

and H(ψ1, �1, �2, 	) = const. In terms of mean Keplerian ele-
ments of the principal orbit, it implies constant a and e. The gener-
ator S2 of the second transformation is again the sum of two similar
parts

S2 ≈ S2,A + S2,B, (42)

where

S2,ν = −GMm′χν,2a
2
ν

4na3η3
(f − l + e sin f ) . (43)

3.3 The resonant Hamiltonian

A final fine tuning of the Hamiltonian aims at obtaining the simplest

possible form. Since H actually involves two constant action vari-
ables 	 and �2, we can use their values as free parameters defining
initial conditions. In particular, we are going to use 	 as a scaling
parameter: dividing the momenta and the Hamiltonian by the same
constant (let it be 	) conserves the structure of canonical equations
of motion, even if the transformation is not strictly symplectic (it
is not univalent). Under this scaling, we introduce dimensionless
momenta J = �1/	, W = �2/	, leaving the old angles under the
new names, so that the variables pair to be further studied is

ϕ = ψ1, J=�1

	
=m′

A

m′

√
MAaA

Ma
=m′

A

m′

(
MA

M

) 2
3
(

PA

P

) 1
3

, (44)

and, by the definition, we restrict the values of J to the range

0 < J � W = J + m′
B

m′

√
MBaB

Ma

= J + m′
B

m′

(
MB

M

) 2
3
(

PB

P

) 1
3

. (45)

This scaling will be followed by the introduction of a new indepen-
dent variable τ , related to time t through

nt = τ, n = (GM)2(m′)3

	3
, (46)
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so that �τ = 2π is equivalent to �t = P.

Summing up, the resonant Hamiltonian K is obtained from H by

dropping the �1-independent part Hb, dividing the rest by factor
n	, and substituting �1 = J	, �2 = W	, and ψ1 = ϕ. The result
is

K = K0 + K2 + K′
4, (47)

K0 = − A01

2J 2
− A02

2(W − J )2
, (48)

K2 = A21J
4 + A22(W − J )4, (49)

K′
4 = A4J

4(W − J )4 cos 2ϕ, (50)

where

A01 = (1 − μ)2(1 − μA)3μ3
A

μ3
= A,

A02 = μ2(1 − μB)3μ3
B

(1 − μ)3
= B,

A21 = − μ4

4η3(1 − μ)2(1 − μA)3μ3
A

= − μ

4η3A
,

A22 = − (1 − μ)4

4η3μ2(1 − μB)3μ3
B

= −1 − μ

4η3B
,

A4 = − 9(2 + 3e2)(1 − μ)2μ2

64η7(1 − μA)3μ3
A(1 − μB)3μ3

B

= −9(2 + 3e2)(1 − μ)μ

64η7AB
. (51)

Introducing a constant C, defined by

C = μB(1 − μB)

μA(1 − μA)

(
μ

1 − μ

) 5
3

, (52)

we may observe that

W

J
= 1 + C

(
PB

PA

) 1
3

, (53)

and
B

A
= C3. (54)

The complete equations of motion resulting from the resonant
Hamiltonian K are

dϕ

dτ
= ∂K

∂J
= A01

J 3
+ A02

(J − W )3

+ 4A21J
3 − 4A22(W − J )3

+ 4A4J
3(W − J )3(W − 2J ) cos 2ϕ, (55)

dJ

dτ
= −∂K

∂ϕ
= 2A4J

4(W − J )4 sin 2ϕ. (56)

In the next section, we analyse the properties of the resonant Hamil-
tonian (47) and the solution of equations (55) and (56) for the ‘res-
onant variables’ ϕ, J.

4 R E S O NA N C E P RO P E RT I E S

4.1 Equilibria

The system defined by K behaves in a pendulum-like manner, as
seen in Fig. 4. Regardless of the mass ratios, it admits four equi-
libria resulting from the condition dϕ

dτ
= dJ

dτ
= 0. Two of them, with

ϕ = 0, or ϕ = π, and a common value Ju are unstable. Other two,
with ϕ = π/2, or ϕ = 3π/2, and the momentum Js, are stable.
Thus, the motion with rA permanently perpendicular to rB (up to
some presumably small periodic perturbations) is stable, whereas
permanently parallel rA and rB are not.

Although in general Js 	= Ju, a kind of degeneracy occurs when
both binaries have the same total mass and the mass ratios in both
binaries are equal, i.e. μA = μB, and μ = 1

2 ; we will refer to such
systems as ‘symmetric’. The special case of four equal masses,
with μA = μB = μ = 1

2 , will be called ‘completely symmetric’.
Symmetric systems have the ratio C = 1, hence A = B in the
coefficients of the Hamiltonian K. According to equations (51), it
means that A01 = A02 and A21 = A22, leading to symmetry in the
coefficients of J and (W − J).

In symmetric systems, the right-hand side of equation (55) be-
comes null at the exact value

J∗ = Js = Ju = W

2
, (57)

thanks to the presence of the factor (W − 2J), independent of ϕ.
According to equation (53), with C = 1, it means that both types of
the equilibria are exactly defined by the ratio of unperturbed periods
PB/PA = 1.

For arbitrary masses, however, the situation is less favourable:
we have to face an algebraic equation of degree 13, which implies
the use of approximate methods. The first approximation to the
resonant values of the momentum is Js ≈ Ju ≈ J∗, derived as the
root of

∂K0

∂J
= 0, (58)

and easily found as

J∗ = W

1 + C
. (59)

Given the W, this value of J∗ refers simply to the equal unper-
turbed periods PA = PB, as follows from equation (53). For further
convenience, we can add that

W − J∗ = CW

1 + C
. (60)

In order to improve this estimate, we have applied a stan-
dard perturbation technique assuming that K0 = O(1), K2 = O(ε),
K2 = O(ε2), and substituting

J = J∗
(
1 + εJ1 + ε2J2

)
. (61)

The parameter ε serves only for the ordering purpose and ultimately
it is set to 1. The correction J1, common for both the equilibria, is
of the order of W6

J1 = 4C
(
A21 − A22C

3
)
W 6

3A3(1 + C)7
= C(1 − 2μ)W 6

3(1 + C)7A2η3
. (62)

The second correction is the sum

J2 = Jc ± Jp, (63)

where the first term, similar for both equilibria,

Jc = C(1 − 2μ)(−5 + 2C + 7(1 − C) μ)W 12

9A4(1 + C)14η6
, (64)

is typically negligible. The difference between the stable and unsta-
ble equilibrium locations is given by

Jp = 3(1 − C)C
(
2 + 3e2

)
(1 − μ)μW 10

16A3(1 + C)11η7
, (65)
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so that

Ju ≈ J∗
(
1 + J1 + Jc + Jp

)
, Js≈J∗

(
1 + J1 + Jc − Jp

)
, (66)

and Ju − Js = 2Jp ≥ 0.
As expected, all corrections vanish for symmetric systems, where

either (1 − 2μ), or (1 − C) become null. Readers should be warned,
that the above approximations fail if the system is too compact
(small W assumption violated) or if we leave the domain of stellar-
type systems (e.g. abnormally large values of C when μA is too
small)

4.2 Libration amplitude and period

4.2.1 Oscillator and pendulum approximations

Elementary estimates of the resonance strength and time-scale can
be obtained using a simple pendulum model. In order to construct
it, we first introduce a shifted momentum D = J − Js ≈ J − J∗, and
expand K in Taylor series of D, dropping all powers higher than 2.
Observing the orders of magnitude of subsequent terms, we retain
only

K∗(ϕ,D) = −3

2

(
A01

J 4∗
+ A02

(W − J∗)4

)
D2

+ A4J
4
∗ (W − J∗)4 cos 2ϕ. (67)

The half width of the libration zone � (an upper bound on the
amplitude of libration in J) is found by equating the Hamiltonian
values with ϕ = 0 and ϕ = π/2, i.e. K∗(0, 0) = K∗(π/2, �). The
result is

� = 2J 4
∗ (W − J∗)4

√
−A4

3
(
A02J 4∗ + A01(W − J∗)4

)

≈ C W 6

4A (1 + C)6η3

√
3

(
2 + 3e2

)
(1 − μ) μ

A (1 + C) η
, (68)

where the second line results from the substitution of equation
(59). Thus, the maximum amplitude of the libration in J is directly
proportional to the sixth power of W (hence to the squares of the
period ratios PA/P and PB/P).

Relating � to more easily observable quantities, we can use the
definitions (44) and (45) to establish the rule

δPA

PA
= 3

�

J∗
= −C

δPB

PB
, (69)

linking the amplitude of J with a relative change of period of the
binary A or B.4

Then, the maximum relative variation of the nominal period in
the binary A is

δPA

PA
= 3A

1
6

4

√
3

(
2 + 3e2

)
(1 − μ) μ

(1 + C) η7

(
PA

P

) 5
3

. (70)

For a completely symmetric system with a circular principal orbit
it simplifies to

δPA

PA
≈ 0.36

(
PA

P

) 5
3

. (71)

4 Strictly speaking, δPA/PA = −C(PB/PA)
1
3 δPB/PB, but in the vicinity of

resonance we assume that the reference periods are equal.

Figure 2. Maximum relative variation of period for a completely symmetric
(all masses equal) system as a function of period ratio PA/P.

The minimum libration period (or the upper bound of the libration
frequency) can be derived from the harmonic oscillator approxima-
tion in the vicinity of a stable equilibrium. To this end, we introduce
a new angle d = ϕ − π/2 and substitute cos 2ϕ ≈ −1 + 2d2 into
equation (67). After dropping a constant term, we obtain the Hamil-
tonian

Kh(d, D) = −3

2

(
A01

J 4∗
+ A02

(W − J∗)4

)
D2

+ 2A4J
4
∗ (W − J∗)4d2, (72)

generating the harmonic oscillations of d and D with a frequency

ω∗ =
√

−12A4

(
A01(W − J∗)4 + A02J 4∗

)

≈ 3

4

(
W

1 + C

)2
√

3
(
2 + 3e2

)
(1 − μ) μ

Aη7
. (73)

Recalling the time unit choice made in equation (46), we notice that
the dimensionless ω∗ actually gives the ratio of the principal orbit
period P to the small amplitude libration period P∗, so

P∗ = P

ω∗
, (74)

regardless of the time units used in P. Thus, in particular, we have
the minimum libration period

P∗
P

≈ 1.37

(
P

PA

) 2
3

, (75)

for a completely symmetric system with e = 0.

4.2.2 Complete secular model

Let us confront the estimates provided in Section 4.2.1 with the
numerical analysis of the complete secular equations of motion
(equations 55 and 56) derived from the Hamiltonian equation (47).

In order to find the maximum relative variations of orbital periods
due to the resonance, we numerically solve a system of equations⎧⎨
⎩

KJ (0, Ju) = 0,

KJ (π/2, Js) = 0,

K(0, Ju) = K(π/2, Js + �),
(76)

where KJ stands as an abbreviation for the partial derivative of K
with respect to the momentum J. Having fixed the mass ratios and
the momentum W, we find a unique quadruple (Js, Ju, �−, �+),
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Figure 3. Maximum relative variations of periods for m1 = 1.70 M�,
m2 = 1.54 M�, m3 = 1.46 M�, and m4 = 1.35 M�, as a function of
period ratios PA/P and PB/P.

where �± are the two real roots closest to the stable equilibrium
momentum Js: negative �− and positive �+. These quantities can
be converted into nominal periods by means of relations

PA(J ) =
(

μJ

(1 − μA) μA

)3
P

(1 − μ)2
, (77)

PB(J , W ) =
(

(1 − μ) (W − J )

(1 − μB) μB

)3
P

μ2
, (78)

resulting from the definitions (44) and (45). Thus, with a set of
solutions on some grid of the W values, we are able to trace a
parametric plot with the abscissa PA(Js)/P, and the ordinate

δPA

PA
= PA(Js + �±) − PA(Js)

PA(Js)
, (79)

where the upper branch will be given by �+ and the lower branch
by �−. Similarly, the relative variations of the binary B period are
computed according to

δPB

PB
= PB(Js + �±) − PB(Js)

PB(Js)
. (80)

The dots in Figs 2 and 3 represent the values obtained by this
recipe. Fig. 2 refers to a completely symmetric system with all four
masses equal and the eccentricity of the principal orbit e = 0. By
symmetry, the results for δPA and δPB are exactly the same, save for
the opposite signs, so only the plot for δPA/P is given. In the second
test case, shown in Fig. 3, the masses differ. The ratios μ = 0.358,
μA = 0.475, and μB = 0.193 refer to the KIC 4247791 system to
be studied in Section 5. Again, the principal orbit is circular. The

Figure 4. Top: Comparison of the numerical integration of the 1:1 resonant
system (black line) with the isocontours of one-dimensional Hamiltonian
K from equation (47) (grey lines) in the phase space of resonant vari-
ables: ϕ = λA − λB at the abscissa and J = �1/	 at the ordinate (J∗
� 0.0682836 from equation 57). The bold grey line is the separatrix de-
limiting the 1:1 resonant zone about the stable equilibrium at ϕ = 90◦.
Mean orbital elements, constructed by the procedure described in the text,
are used for the numerically constructed trajectory. Bottom: Time depen-
dence of the resonant angle ϕ = λA − λB indicating libration period of
about 32.3 yr. The initial data of the numerical run used mean orbital pe-
riods PA = 4.0747 d, PB = 4.0759 d, P = 400 d, zero eccentricities eA

and eB, and the eccentricity e = 0.25 for the relative orbit of the two
binaries. All stellar masses were set to 1.5 M� (completely symmetric
system).

maximum variation of PB is bigger than that of PA, because the
system has a smaller mass; the ratio of amplitudes is C−1 ≈ 4.22,
as expected.

The numerically found values are confronted with simple es-
timates (71) and (70), traced as the solid lines in Figs 2 and 3,
respectively. The 5

3 power law holds well in both cases and the
coefficients are sufficiently accurate. Of course, there is some de-
viation from the symmetry between positive and negative branches
in the numerically computed values for the second test case, absent
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Figure 5. Semimajor axes aA and aB (left) and eccentricities eA and eB (right) for the two binaries A and B in 1:1 resonance (aA, ∗ = aB, ∗ � 0.072 013 65 au).
The osculating values from numerical simulation of the full-fledged problem are shown in grey. The black lines are the mean elements, semimajor axes on
the left and eccentricities on the right, constructed using the analytical formulas for the quadrupole short-period effects given in the Appendix A. The mean
eccentricities were constructed to be zero; their small values are due to limitations of the quadrupole corrections. The initial data of the numerical run used
mean orbital periods PA = 4.0747 d, PB = 4.0759 d, P = 400 d, zero eccentricities eA and eB, and the eccentricity e = 0.25 for the relative orbit of the two
binaries. All stellar masses were 1.5 M�.

in the approximate rules (71) and (70), but it occurs on the level of
at most third significant digit.

5 C OMPARISON W ITH FULL-FLEDGED
N U M E R I C A L I N T E G R AT I O N

In order to justify the above-outlined theory and demonstrate it is
an adequate description of the resonant motion for specific systems,
we now compare its results with direct numerical integration of
the complete equations of motion of a 2+2 quadruple system. The
full-fledged simulation uses a Hamiltonian in the original Jacobi co-
ordinates (rA, rB, R) and the corresponding momenta ( pA, pB, P),
in a form more general than (3) – with the potential not expanded
in powers of the distance ratios. The system is propagated using the
Bulrisch–Stoer method with an adaptive time step to secure high
accuracy.

In the absence of the observed systems in an evident 1:1 res-
onance, we borrow some parameters from the study of Lehmann
et al. (2012). In particular, we consider a coplanar four-body system
in 2+2 architecture with orbital periods PA and PB near 4.0753 d,
the mean of the true values observed in KIC 4247791. As expected,
in order to be in the resonance, the modelled PA and PB need to
be closer to the representative value 4.0753 d for realistic values
of the outer period P. To start with, we take PA = 4.0747 d and
PB = 4.0759 d, instead of the observed values PA = 4.04973 d and
PB = 4.10087 d. The outer orbit period P is not known in the KIC
4247791 system, but it is possibly long. For sake of our illustration,
we take P = 400 d. If it were longer (or even much longer), it would
only mean that the resonance width is smaller, implying PA and
PB be closer to each other. The eccentricity of the outer orbit e is
0.25, but merely the same results are obtained for all reasonably
small e values (not approaching the stability limit of the quadruple

system). In order to illustrate different dynamical effects, we find it
interesting to first consider an equal-mass situation before we com-
pare its results with the cases where the best-fitting stellar masses
from Lehmann et al. (2012) are used. Specifically, we start with a
situation where all four masses of the stars in A and B systems are
1.5 M�.

Our aim is to consider binary orbits with zero mean eccentricities
eA and eB. However, we know the mutual interactions necessar-
ily excite small eccentricity values. At this moment, it is useful
to recall the relation between the mean and osculating orbital ele-
ments, briefly outlined in the Appendix A. Each of the orbital ele-
ments e = (aA, kA, hA, λA; aB, kB, hB, λB; a, K,H, λ) is subject to
the short-period perturbations δe. The osculating values eo are thus
composed of the mean values em and δe: eo = em + δe. What we
aim to work with, and compare to the simple Hamiltonian theory of
the resonance, are the mean elements em. For instance, the orbital
periods PA, PB, P (and the related semimajor axes), or the eccen-
tricity e mentioned above are the initial mean values. The same
way, our intended mean values of both eA and eB are zero. But to
practically set the initial conditions of our numerical run, we need
the initial osculating values of the elements and from them the Ja-
cobi coordinates and momenta. Therefore, we need to add δe to
our specified values of periods/semimajor axes and eccentricities.
These corrections have been worked out in the Appendix A. To
make the situation simplest, we use the initial mean λA = 180◦,
� A = 0◦, λB = 90◦, � B = 90◦, λ = 90◦, and � = 270◦. In this
configuration, the correction of secular angles (� A, � B, � ) are
zero, and only eccentricities are given small non-zero values (e.g.
eA = δkA from equation A6 and eB = δhB from equation A7). Ad-
ditionally, the longitudes λA and λB are such that the system starts
with the resonant angle ϕ = 90◦, corresponding to the stable equi-
librium if J = Js, or to the maximum difference between J and its
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Figure 6. The same as in Fig. 4, but now for a 2+2 system with the same
masses as in the KIC 4247791 system: m1 = 1.70 M�, m2 = 1.54 M�,
m3 = 1.46 M�, and m4 = 1.35 M� (see Lehmann et al. 2012). The
reference level for the resonant momentum is now J∗ � 0.0767632 (top
panel).

equilibrium value Js on a given orbit, which is actually the case.
The short-period corrections to the principal orbit elements are less
important, but also available in the Appendix (Section A2).

Setting the initial data, we numerically propagated the complete
system for time interval of 200 yr, outputting the Jacobi state vectors
(rA, rB, R; pA, pB, P) every 6 hr. These were straightforwardly
used to compute osculating orbital elements eo. However, as we
need to compare the mean, rather than osculating, orbital elements
to the analytical theory from Sections 3 and 4, we subtracted the
short-period perturbations δe provided in the Appendix A to obtain
the mean orbital elements em. Finally, the mean resonant variables J
and ϕ are computed using the mean orbital elements. The momen-
tum J was evaluated from aA and a, according to equation (44), and
ϕ as a difference λA − λB.

Figs 4 and 5 show the results. In the top part of Fig. 4, we
compare the phase-space trajectory of the numerically determined
resonant variables (ϕ, J) (black line) with the isocountours of
the resonant Hamiltonian K from equation (47). The correspon-

dence is very good, implying the resonant Hamiltonian is an
adequate model of the 1:1 resonance in this case. The small wiggles
in the numerical solution reflect imperfection in our construction of
the mean orbital elements, most likely because formulas for δe use
only the quadrupole short-period corrections. Both panels of Fig. 4
show that the resonant angle ϕ librates about the equilibrium at 90◦

with an amplitude of nearly 45◦. The libration period is �32.3 yr,
which favourably compares with the simple lower limit estimate �
27.4 yr from equations (73) and (74). The slightly longer value is
due to finite, and non-negligible, amplitude of libration. Because the
initial conditions were at ϕ = 90◦, the difference of the initial mean
periods PA and PB from their average value P̄A = P̄B � 4.0753 d
quantitatively characterizes the possible extent of the resonant state.
We find (PA − P̄A)/P̄A � 1.47 × 10−4. Indeed, the resonance width
� � 4.65 × 10−6 (see the top panel of Fig. 4), so that 3�/J∗ �
2.03 × 10−4. Using equation (69), we note that the fractional differ-
ence of the initial mean periods from their mean may be increased
by about 35 per cent to remain possibly locked in the 1:1 resonance,
but not more. As a result, the maximum fractional difference in pe-
riods PA and PB to characterize the resonant case is � 4 × 10−4, far
smaller than �1.2 × 10−2. Therefore, assuming the relative orbit
of the binaries A and B has a period of a year or longer, the system
KIC 4247791 is near, but not in the 1:1 mean motion resonance.

Fig. 5 shows time dependence of the semimajor axes and ec-
centricities of the binaries A and B. The grey symbols are the
osculating elements, the black symbols are the mean elements re-
sulting from subtraction of the short-period terms. As expected from
equation (A3), the short-period effects in semimajor axes aA and
aB have the shortest periods �PA and �PB, but their amplitude
is the largest when the outer orbit is at pericentre (this is because
of the ∝ (a/R)3 factor in equation A3). The short-period effects
in the eccentricities eA and eB have primarily the period P of the
outer orbit; this is because of the constant term in the square-root
factor in equation (A8). The mean values of the semimajor axes
fairly well follow the short-period-averaged trend of the osculating
values and oscillate with the period of �32.3 yr. This is obviously
the libration, resonant term. Its amplitude is about the same as that
of the short-period effects in this case. The mean eccentricities of
both A and B orbits remain very small, less than �1.2 × 10−5.
Their non-zero values reflect a slight inadequacy of our formulas
for the short-period perturbations, perhaps because contribution of
higher-order than quadrupole terms near the pericentre of the outer
orbit.

Figs 6 and 7 show the same as Figs 4 and 5, but now from a
numerical run where we used non-equal masses of the four stars in
systems A and B (otherwise, all initial data were the same). In partic-
ular, we used the best-fitting values m1 = 1.70 M�, m2 = 1.54 M�,
m3 = 1.46 M�, and m4 = 1.35 M� from Lehmann et al. (2012).
As it is typical for the quadruple systems in 2+2 hierarchy, the
masses are unequal, but not significantly different. Fig. 6 shows
that the resonant dynamics are not affected by such a small change
in masses of participating stars. However, a difference is seen in
the behaviour of eccentricities eA and eB in the right-hand panels
of Fig. 7 (the semimajor axes aA and aB are again basically the
same as before). This change with respect to the idealized equal-
mass case considered above is due to the activation of the octupole
term in the secular coupling of the two binaries (n = 3 term in
equation 23). The octupole term is well known to excite the ec-
centricities (see the Appendix B and Vokrouhlický 2016). Luckily,
the effect is quite small in our case due to two effects: (i) the mass
parameters μA and μB are not much different from one half, such
that the octupole strength factors 1 − 2μA and 1 − 2μB are small,

MNRAS 475, 5215–5230 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/475/4/5215/4810575
by MFF CUNI user
on 05 March 2018



Resonant dynamics of pair of binaries 5225

Figure 7. The same as in Fig. 5, but now for a 2+2 system with the same masses as in the KIC 4247791 system: m1 = 1.70 M�, m2 = 1.54 M�,
m3 = 1.46 M�, and m4 = 1.35 M� (see Lehmann et al. 2012). The reference semimajor axes are now aA,� � 0.073 8842 au and aB,� � 0.070 4590 au.
Non-equal masses in the binaries activate the secular octupole interaction. The principal consequence is the secular perturbation of the eccentricities eA and
eB as described in the Appendix B. The black curves are again the mean eccentricities determined by our procedure of quadrupole short-period perturbation
subtraction from the osculating values; red is our simplified solution (equation B10).

and (ii) the system is not too compact, namely the fraction aA/a
� aB/a � 0.037 is small (generally the factor by which multipolar
terms decrease). This implies that the simple approximation devel-
oped in the Appendix B provides fairly accurate result. Indeed, the
mean eccentricities of the A and B systems, constructed as usual
by subtracting the short-period terms from the osculating values
(black symbols in Fig. 7), are rather well matched by the prediction
(equation B10) from our simple theory outlined in the Appendix B.
The agreement will obviously become less satisfactory for more
compact quadruple systems, P/PA smaller, and/or cases with larger
differences masses of participating stars, 1 − 2μν larger.

Our previous analysis showed that making the system more com-
pact, namely assuming P smaller, would increase the resonant width.
Thence, a question arises – possibly of a theoretical, rather than re-
alistic nature – whether it could increase enough to match the orbit
periods observed in the KIC 4247791 system. For sake of a test, we
thus re-ran our previous simulation with the following modification:
(i) the orbital periods of binaries A and B were set PA = 4.100 871 d
and PB = 4.049 732 d (those observed in the KIC 4247791 system
Lehmann et al. 2012), and (ii) assumed the principal orbit with pe-
riod P = 45 d and eccentricity e = 0.1. Note that this period is well
above the limit required for the long-term stability of the system
(e.g. Mardling & Aarseth 2001; Sterzik & Tokovinin 2002). Again,
all stellar masses are as in the KIC 4247791 system. Results are
shown in Figs 8 and 9. Libration of the resonant angle ϕ (Fig. 8)
indicates that the system is locked in the resonance. In our example,
the libration amplitude is quite large, but pushing P to still smaller
values could make the libration amplitude smaller. The libration
period now decreased to �1.37 yr, as expected from a very compact
quadruple system. Since the system remains in the 1:1 resonance,
the semimajor axes aA and aB show the same pattern as before,
but the eA and eB are different. Quite stronger coupling of the two

binaries now implies that the amplitude of the short-period effects
is �0.025. This is larger than the forced eccentricity due to sec-
ular octupole coupling, which explains why the secular pattern is
not seen this time. Still, the eccentricities eA and eB remain small
enough.

We conclude that the observed orbital periods and stellar masses
reported for the system KIC 4247791 are not incompatible with
the 1:1 mean motion resonant state as such (assuming coplanarity).
However, the orbital period of their relative motion would need to be
short enough (≤45 d, say). It is to be seen if this requirement is not
in conflict with other observational data of this interesting system.
For instance, the very similar value of the systemic velocities of
the A and B systems reported by Lehmann et al. (2012) imply very
likely a quite longer period P. It is also not clear whether the short P
value would not produce unobserved eclipse time variations in the
Kepler photometry. So our simulation demonstrates a possibility of
a system to be locked in a 1:1 resonance even with about a per cent-
level difference in periods PA and PB, but it would actually apply
only if other observational facts corroborate this model (unlikely in
the case of KIC 4247791 system).

6 R E S O NA N C E C A P T U R E D I S C U S S I O N

A fundamental question concerning a resonance is the presence or
absence of some mechanism locking the system in such a particular
state. Without a capture mechanism, resonance may only appear
randomly, like a winning lottery ticket, or as a temporary phase
of evolution, like a particular number in a long countdown. Since
the systems in a 1:1 resonance do not seem to be prolific amongst
quadruple systems, let us inspect the problem according to the
classical scenario discussed by Henrard (1982).
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Figure 8. The same as in Fig. 6, but now for a 2+2 system with the same
masses and orbital periods as in the KIC 4247791 system: m1 = 1.70 M�,
m2 = 1.54 M�, m3 = 1.46 M�, m4 = 1.35 M�, PA = 4.100 871 d, and
PB = 4.049 732 d (see Lehmann et al. 2012). The relative orbit has been
given a period P = 45 d and eccentricity e = 0.1. The reference level for the
resonant momentum is now J∗ � 0.159 0715 (top panel).

Similarly to Henrard, we are going to use a one degree of free-
dom Hamiltonian with a slowly varying parameter, which makes
the system non-conservative, yet amenable to adiabatic approxima-
tion. For the qualitative discussion, we can use the pendulum-like
Hamiltonian (67) with two modifications: the momentum D is re-
placed with an explicit form (J − J∗), and the approximate value
(59) is substituted in all occurrences of J∗. The result is

K�(ϕ, J ; W ) = α

W 4

(
J − W

1 + C

)2

+ βW 8 cos 2ϕ, (81)

where W-independent coefficients are

α = −3

2

(1 + C)5A

C
, β = C4A4

(1 + C)8
. (82)

Further, let us assume that W, is the slowly varying parameter of
the Henrard’s model, with Ẇ = const. Since all other parameters

(in particular the mass ratios) are held fixed, the drift of W must be
related to secular change of the orbital period PB in equation (45).

At this point, we have to admit that technically the variability of
W as one of the canonical variables and not a physical parameter is to
some extent an abuse of the Henrard’s model, because it implies the
action of some force not having a potential function (so, impossible
to include in the Hamiltonian function). But the essence of heuristic
reasoning shown below is more general and actually agrees with
numerical tests we performed to validate the conclusions (numerical
integration of equations 55 and 56 with a slowly varying W).

According to Henrard (1982), the fate of motion, once it gets
close to the separatrix region, is determined by the values of energy
increments accumulated during the motion in the close neighbour-
hood of an upper separatrix (the values of momentum J∗ < J ≤
J∗ + �) and its lower counterpart (J∗ − � ≤ J < J∗). Since both
values can be well approximated by the integrals along the separa-
trices, we need a separatrix equation, giving J as a function of ϕ,
W, and the Hamiltonian value E� = K�(0, W/(1 + C); W ) = βW 8.
Solving a simple quadratic equation K�(ϕ, J ; W ) = E� for J, one
easily finds

J± = W

1 + C
±

√
2β

α
W 6| sin ϕ|. (83)

Then, the resulting energy increments are

B1 = −Ẇ

∫ 0

π

∂J+
∂W

dϕ = Ẇ

(
π

1 + C
+ 12

√
2β

α
W 5

)
, (84)

for the upper separatrix motion, and

B2 = −Ẇ

∫ π

0

∂J−
∂W

dϕ = Ẇ

(
− π

1 + C
+ 12

√
2β

α
W 5

)
, (85)

for the lower separatrix. Compared to the original Bi definition of
Henrard (1982), our integration limits differ in two aspects. First,
having 2ϕ in the Hamiltonian (81), we integrate over the interval of
the length π, which is a minor issue. More important is the swap of
the upper and lower limits that adjusts to the opposite direction of
motion along the upper and lower separatrices with respect to the
Henrard’s model. The readers should note that Henrard considered
the case, where the stable equilibrium is the local minimum of the
Hamiltonian function, whereas the stable equilibrium at ϕ = π/2 is
the maximum of our K�, which implies a different reasoning based
on the signs of B1 and B2.

Consider the decrease of PB as an expected outcome of tidal
interactions (or another dissipative mechanism) in the binary B.
The sign of each Bi is typically determined by (−Ẇ ), because in
the range of W values we consider, the second term in the brackets
is smaller than the first one. Thus, B1 < 0 and B2 > 0. In these
circumstances:

(i) Any trajectory originating above the upper separatrix with
ϕ = 0 will arrive at ϕ = π with the Hamiltonian value decreased by
|B1| (i.e. with B1 < 0 added) and migrate away from the separatrix
(in top panel of Fig. 4 – upwards). Capture does not occur.

(ii) A trajectory departing from a phase plane point below the
lower separatrix, say J � W/(1 + C) and ϕ = π, will arrive at
the vicinity of ϕ = 0 with the Hamiltonian value increased by B2,
hence, inside the libration zone. But then the motion below the
upper separatrix decreases the Hamiltonian value by |B1|, which
means a drift outwards the libration zone. The net effect

B1 + B2 = 24 Ẇ

√
2β

α
W 5, (86)
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Figure 9. The same as in Fig. 7, but now for a 2+2 system with the same masses and orbital periods as in the KIC 4247791 system: m1 = 1.70 M�,
m2 = 1.54 M�, m3 = 1.46 M�, m4 = 1.35 M�, PA = 4.100 871 d, and PB = 4.049 732 d (see Lehmann et al. 2012). The reference semimajor axes are now
aA,� � 0.073 9404 au and aB,� � 0.070 4749 au. The relative orbit has been given a period P = 45 d and eccentricity e = 0.1. Compactness of the system now
makes short-period effects stronger, exciting osculating eccentricities (grey symbols) up to few per cent. The mean eccentricities (black symbols) are about an
order of magnitude smaller, but non-zero.

inherits the sign of Ẇ , so the Hamiltonian value per one cycle is
decreased. Accordingly, after a short visit to the libration zone, the
trajectory continues the drift upwards, like in the case (i). Again,
capture does not occur.

(iii) For the same reasons as in case (ii), a trajectory with the
origin at the outskirts of the libration zone (but inside it) will exit
upwards.

Thus, when the dissipation decreases W, the capture into permanent
1:1 resonance does not occur in our model.

The case of Ẇ > 0 may eventually lead to a capture with proba-
bility (Henrard 1982)

Pc = B1 + B2

B1
, (87)

which is fairly small. For a completely symmetric system with
e = 0, and W < 0.3, it is below 0.02, and scales as W5. Moreover,
it is difficult to identify a proper physical scenario resulting in the
increase of W.

In a similar manner, we have verified that the case of mass transfer
between the components of one of the binaries (this scenario strictly
adheres to the assumptions of the Henrard’s model) results in B1 and
B2 having opposite signs, with a small sum B1 + B2, that leads to
the low probability of capture, proportional to W5. Thus, capture in
the resonance caused by the variation of μA or μB is also unlikely,
although it might happen for some particular values of μ̇A + μ̇B.

7 C O N C L U S I O N S

In the present work, we dealt with a resonant configuration of a
quadruple stellar system in 2+2 architecture. In particular, we con-

sidered the case where the mean orbital periods PA and PB are very
close to each other hence constituting 1:1 mean motion resonance.
As typical in orbital mechanics, the resonant problem has been re-
duced to 1-degree Hamiltonian case allowing semi-analytical esti-
mates of resonant width and several other interesting parameters. A
comparison with direct numerical integration of the complete prob-
lem allowed us to justify the simplified model. We found that phase
space occupied by the 1:1 resonance in 2+2 quadruple shrinks to
very small volume for realistic ratio of the outer orbit period P and
periods PA or PB of the binaries. Additionally, adiabatic changes
of PA or PB driving them towards the resonant configuration re-
sult in only very small probability of capture. Therefore, number of
existing 2+2 systems in the 1:1 resonance is expected to be very
small.

In spite of the negative result, techniques and tools developed here
are suitable starting point for the next paper where we plan to deal
with the more complicated situations of the first-order resonances
2:1 and 3:2 between PA and PB. As explained in the Introduction,
there are at least two observed quadruple systems that were sug-
gested to be locked in the 3:2 case. With the appropriate theoretical
tools available, we will be able to consider necessary parametric
conditions for the resonance to exist and likelihood of the system
to be captured in this state.
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MNRAS, 429, 2852
Lehmann H., Zechmeister M., Dreizler S., Schuh S., Kanzler R., 2012,

A&A, 541, A105
Mardling R. A., Aarseth S. J., 2001, MNRAS, 321, 398
Milani A., Nobili A. M., 1983, Celest. Mech., 31, 241
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A P P E N D I X A : SH O RT PE R I O D
P E RTU R BATI O N S

Linear, short period perturbations, albeit of low accuracy, can be
useful for the order of magnitude estimation, or help to establish
initial conditions for the numerical integration related to the spec-
ified mean orbit of the secular system. The expressions below are
derived from the generating function

S = S1 + S2, (A1)

where the term S1 is given by equation (33) and S2 by equa-
tion (42). It is worth noting that S1 = ε3S2, so the short peri-
odic terms resulting from the motion on the principal orbit should
dominate.

Then, for any function of canonical variables, its osculating vales
Yo are, approximately, given by the Poisson bracket with S
Yo = Y + {Y ,S} = Y + δY , (A2)

where the expressions to the right are functions of the mean variables
(solution of the system defined by K). Although using a simple sum
(A1) we ignore the coupling term {S1,S2}, the loss is negligible (of
the order ε10).

Once the Poisson bracket in (A2) has been evaluated (but not
earlier !), we can set the mean eccentricities eA = eB = 0, according
to the adopted model.

A1 Binaries a and b

Let ν refers to subscript A or B. Then the short periodic perturbations
in the semi-axes are

δaν = cν

3 n2a3 aν

2 n2
νR

3
cos 2(F − λν), (A3)

where cA = μ and cB = (1 − μ). For the mean longitudes,

δλν= − cν

n

nν

(
f − l + e sin f

η3
−21

8

na3

nνR3
sin 2(F − λν)

)
, (A4)

the first term in the bracket, resulting from S2 should generally
dominate, but for very small and/high eccentricity e, the second
term may become important. This is because the first term strictly
speaking vanishes for e = 0, and the second term may be strongly
amplified at the pericentre for large e value. It is of interest to note
that the first, long-period, term in equation (A4) has been extensively
used for analysis of eclipse time variations in hierarchical triple
systems (see e.g. Söderhjelm 1975, 1982; Borkovits et al. 2003,
2011, 2016; Rappaport et al. 2013). The second term has been
overlooked and only recently briefly mentioned in Nemravová et al.
(2016). Here, we give, for the first time, its formal derivation.

Due to the peculiarities of a perturbed small eccentricity orbit
(e.g. Cohen & Lyddane 1981), the perturbations in eccentricities
and longitudes of pericentres must be computed indirectly, through
non-singular variables

kν = eν cos �ν, hν = eν sin �ν. (A5)

There we find

ko,ν = δkν = cν

4

n2a3

n2
νR

3
(9 cos (2F − λν)

− 2 cos λν + cos (2F − 3λν)) , (A6)

ho,ν = δhν = cν

4

n2a3

n2
νR

3
(9 sin (2F − λν)

− 2 sin λν sin (2F − 3λν)) , (A7)

and the osculating eccentricities

eo,ν =
√

k2
o,ν + h2

o,ν =

= cνn
2a3

2
√

2 n2
νR

3

√
43 − 20 cos 2(F − λν) + 9 cos 4(F − λν).

(A8)

The osculating longitudes of pericentres actually evolve quickly –
the apsides rotate at the rate of nν , as seen from

tan �ν = ho,ν

ko,ν

. (A9)
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Osculating mean anomalies merely oscillate around 0 or π, as found
from

lo,ν = λν − �ν + δλν. (A10)

A2 Principal orbit

Perturbations in the semi-axis of the principal orbit are

δa = da,A + da,B, (A11)

da,ν = μν (1 − μν)
na2

νa
2

2 nνR3

[
nν

n

(
1 −

(
R

aη

)3
)

− 3a2η

R2
cos 2(F−λν)+9ea sin f

2Rη
sin 2(F − λν)

]
(A12)

= −μν(1 − μν)
3na2

ν

2nνa
cos 2(λ − λν) + O(e), (A13)

where equation (A13) can be used for sufficiently small eccentricity
of the principal orbit. Short periodic perturbations in the mean
longitude are

δλ = dλ,A + dλ,B, (A14)

dλ,ν = μν(1 − μν)
3a2

ν

4a2η4

[
f − l +

(
3 + η

4
+ 1

1 + η

)
e sin f

+ e2 sin 2f

2(1 + η)
+ e3 sin 3f

12(1 + η)

− na3η3

nνR3

(
3η

(
1 − aη(R − aη2)

2R2(1 + η)

)
sin 2(F − λν)

+ (R + aη2)e sin f

R(1 + η)
cos 2(F − λν)

)]
(A15)

= −μν(1 − μν)
9na2

ν

4nνa2
sin 2(λ − λν) + O(e). (A16)

For the eccentricity and the longitude of pericentre, we find

δe = de,A + de,B, (A17)

de,ν = −μν (1 − μν)
a2

ν

4a2e

[
1

η
− a3η2

R3

+ 3na4η

4nνR4

(
4

(
1 − R

a

)
cos 2(F − λν)

1

η
− e cos (F − 2λν + � ) + 5e cos (3F − 2λν − � )

)]
,

(A18)

and

δ� = d�,A + d�,B, (A19)

d�,ν = −μν (1 − μν)
3a2

ν

4a2η4

[
f − l +

(
1

e
+ 3e

4

)
sin f

+ 1

2
sin 2f + e

12
sin 3f

− na3η3

nνR3

(
3

4
sin 2(F − λν) − 1

8
sin 2(λν − � )

+ 5

8
sin (4F − 2λν − 2� ) − 1

4e
sin (F − 2λν + � )

+ 7

4e
sin (3F − 2λν − � )

)]
(A20)

The above expressions for δe and δ� are valid only for sufficiently
large eccentricity values (i.e. as long as the negative values of the os-
culating eccentricity do not appear). For small mean eccentricities,
non-singular variables

K = e cos �, H = e sin �, (A21)

should be used. Then, assuming the mean variables H = K = 0, we
obtain

Ko = dK,A + dK,B, Ho = dH,A + dH,B, (A22)

with

dK,ν = μν(1 − μν)
3a2

ν

4a2

[
cos λ

− n

4nν

(7 cos (3λ − 2λν) + cos (λ − 2λν))

]
, (A23)

dH,ν = μν(1 − μν)
3a2

ν

4a2

[
sin λ

− n

4nν

(7 sin (3λ − 2λν) − sin (λ − 2λν))

]
. (A24)

All the perturbation formulas can also be used as an analytical
filter of the observed elements. The approximate values of the mean
elements result from the subtraction

Y = Yo − δY , (A25)

where osculating values are substituted into the right-hand side.

A P P E N D I X B : SE C U L A R E VO L U T I O N O F
I N N E R E C C E N T R I C I T I E S

Secular interaction of the two binary systems A and B may be
solved analytically in the crudest approximation of nearly circular
and coplanar orbits. While very restrictive, it is useful to understand
some of our results in Section 5.

Denote eA, eB, and e vectors pointing to the pericentre of the
orbits A, B and mutual orbit with lengths equal to the appropri-
ate eccentricities eA, eB, and e. Such normalized Laplace vectors
represent half of Milankovitch-type non-singular variables used by
Vokrouhlický (2016) for description of the secular evolution of
the 2+2 quadruple systems. Retaining only the linearly-averaged
quadrupole (n = 2) and octupole (n = 3) interaction terms Hint in
equation (23), we obtain (see Vokrouhlický 2016, for details; ν = A
or B as before)

deν

dt
= ων k ×

[
eν − 2γν

η2
e
]

, (B1)

where k is the normal unit vector to the orbital plane of the quadru-
ple system. We also denoted (as usual η = √

1 − e2, cA = μ, and
cB = 1 − μ)

ων = 3

4

n2

nν

cν

η3
, (B2)

and

γν = 5

8
(1 − 2μν)

(aν

a

)
. (B3)

Assuming small inner eccentricities, the quadratic terms in eA

and eB have been neglected in the right-hand sides of equa-
tions (B1). For exactly equal-mass binaries A and B, thence
1 − 2μA = 1 − 2μB = 0, these equations are autonomous and
provide a trivial time evolution of eA and eB: a constant circulation
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in the plane normal to k with frequencies ωA and ωB. A small mis-
match in masses of the binaries activates the role of the octupole
interaction and makes time evolution of eA and eB coupled to the
time evolution of their relative-orbit pericentre vector e. Neglect-
ing terms of the order of eccentricities eA and eB in the right hand
side of de/dt , we conclude that e steadily circulates about k with
frequencies ωAB, whose quadrupole approximation provides

ωAB � 3

4

n

a2η4

[
μA (1 − μA) a2

A + μB (1 − μB) a2
B

]
. (B4)

In order to proceed with secular eccentricity solution of the inner
systems A and B, we set k = (0, 0, 1) and e = (K,H, 0), where
K = e cos � and H = e sin � . As mentioned above e is constant
and � = ωABt + � 0. Denoting eν = (kν, hν, 0), we now write
equation (B1) in the following form:

dkν

dt
= −ων

[
hν − 2

eγν

η2
sin �

]
, (B5)

dhν

dt
= ων

[
kν − 2

eγν

η2
cos �

]
. (B6)

This is a simple system describing two-dimensional forced har-
monic oscillator with proper frequency ων . Assuming, in partic-

ular, initial conditions at origin, notably eν = (0, 0, 0) for t = 0,
we obtain

kν(t) = −e�,ν [cos (ωνt + �0) − cos � ] , (B7)

hν(t) = −e�,ν [sin (ωνt + �0) − sin � ] , (B8)

where

e�,ν = 2
eγν

η2

1

1 − ωAB
ων

. (B9)

This is the forced eccentricity by the presence of the octupole term
in the interaction of systems A and B, replacing the zero-eccentricity
stationary state in the quadrupole model.

From equations (B7) and (B8), we easily obtain secular evolution
of the system A eccentricity

eν(t) =
√

2e�,ν

√
1 − cos (ων − ωAB) t . (B10)

The eccentricity reaches a maximum 2e�,ν . A consistency of the
solution obviously requires that this quantity remains small.
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