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Abstract. The heating of a spinning artificial satellite 
by naturd radiation sources such as the Sun and the 
Earth results in temperature gradients arising across 
the satellite’s surface. The corresponding anisotropic 
emission of thermal radiation leads to a recoil force, 
commonly referred to as “thermal force”. A quan- 
titative theory of this effect is developed, based on more 
general assumptions than used so far, to model such 
radiation forces on spherically symmetric LAGEOS- 
like satellites. In particular, the theory holds for any 
ratio of the three basic timescales of the problem : the 
rotation period of the satellite, the orbital period 
around the Earth, and the relaxation time for the ther- 
mal processes. Thus, the simplifying assumption of a 
comparatively fast rotational motion is avoided, which 
will fail for LAGEOS within the next decade, owing to 
magnetic dissipation effects. A number of predictions 
about the future behaviour of non-gravitational long- 
term orbital perturbations of LAGEOS become poss- 
ible with the new theory. In particular the Yarkovsky- 
Schach thermal force effects are studied arising as a 
consequence of the solar radiation flux onto the satel- 
lite, periodically interrupted by eclipses. Starting on 
about year 2005, the orbital perturbation effects pre- 
dicted by the new theory are substantially different 
from those inferred in the fast-rotation case. This holds 
not only for the long-term semimajor axis effects, but 
also for eccentricity and inclination perturbations. 
Copyright 0 1996 Elsevier Science Ltd 

1. Introduction 

The passive artificial satellite LAGEOS is the celestial 
body with the most precisely known orbit. Current laser 

tracking technology allows an accuracy of the order of 
1 cm in determining its position. with the available data 
spanning about two decades. As a result, LAGEOS orbit 
analysis has led to valuable information on a number of 
geophysical processes, such as Earth rotation. geo- 
potential harmonics and their time variations, tectonic 
plate motions, and tides to be derived. At the same time. 
the tracking data have shown that dynamical models 
aimed at reconstructing/predicting the long-term evol- 
ution of LAGEOS’s orbital elements (or better, of their 
time derivatives, or e.ucitations) should include a number 
of tiny non-gravitational forces. related to the interaction 
of the satellite with the radiation and particle flux present 
in space. The study of these dynamical effects has pre- 
sented a number of complex problems, at the borderline 
between celestial mechanics and environmental physics. 

The most precisely determined orbital element is the 
semimajor axis a. Its changes (z 1 mmdayy’ for 
LAGEOS, over a value of about 12,270 km) can be trans- 
lated into a time series for the along-track component of 
the perturbing force acting ‘on the satellite. The data 
clearly show a secular decrease of a. corresponding to 
an average drag-like perturbing acceleration of 
-3.4 x lO_“m SK’, which must have a non-gravitational 
origin. This secular effect is modulated by long-periodic 
oscillations, for which a number of both gravitational 
and non-gravitational mechanisms have been suggested 
(Rubincam. 1982 : Barlier et al., 1986 : Milani et ul.. 1987 : 
Scharroo rf al., 1991). 

Rubincam (1987. 1988. 1990) proposed that the domi- 
nant role in generating the secular part of this perturbation 
is played by “thermal thrust” (or “drag”) effects---a recoil 
force due to thermal radiation anisotropically emitted 
from the satellite’s surface, which is differentially heated 
by external radiation sources. Due to the relatively fast 
rotation of LAGEOS, the temperature was considered as 
constant along any “parallel” on the satellite’s surface. 
and only latitude-dependent temperature changes were 
seen as relevant-giving rise to a “seasonal” variant of 
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the classical Yarkovsky thermal effect known in solar 
system dynamics for a long time (for a review, see Burns 
et al. (1979)). According to Rubincam’s analysis, up to 
70% of the secular semimajor axis decay and a significant 
portion (Z 50%) of the long-term oscillations are caused 
by this thermal effect, with the infrared radiation flux 
coming from the Earth as the source of differential heating 
of the satellite surface (hereinafter this will be referred to 
as the Yarkovsky-Rubincam effect). Soon afterwards, it 
was realized that the eclipse-related spikes apparent in the 
semimajor axis residuals may also be explained by a simi- 
lar effect, triggered by the eclipse-modulated visible sun- 
light flux (hereinafter this will be called the Yarkovsky- 
Schach effect; see Slabinski, 1988 ; Afonso et al., 1989; 
Scharroo et al., 1991). Other likely contributors to the 
observed semimajor axis residuals include neutral and 
charged particle drag, Earth-albedo radiation pressure, 
solar radiation pressure at the Earth’s penumbra cross- 
ings, and a possible anisotropy in the optical properties 
of the satellite’s surface. 

At the beginning of the 1990s it became clear that a 
further complicating factor should be taken into account 
if the dynamical models are aimed at a quantitative match 
of the orbital data, including not only the semimajor axis 
but also the eccentricity/perigee excitations (see, e.g. 
Tapley et al., 1993). Since thermal effects depend sensi- 
tively on the orientation of the spin axis and since this 
direction is not directly observed, one can either derive it 
from a dynamical model, or solve for it while fitting the 
along-track orbit residuals. Rubincam applied the latter, 
inverse method in analysing the LAGEOS data. First, he 
assumed a constant orientation of the LAGEOS axis, with 
the best-fitting solution corresponding well to the in-orbit 
injection data reported by the flight control centre at 
launch time. Later on, however, it was realized that the 
spin axis direction could not have remained the same since 
the time of launch. This was suggested by the unavoidable 
presence of disturbing torques, and also by the deficiencies 
of the constant-orientation model in reproducing the 
observed semimajor axis residuals. To derive the evolution 
in time of the spin axis direction, two approaches were 
again tried: (i) an empirical one, determining from the 
orbital data a set of best-fitting spin axis directions over a 
sequence of relatively short intervals of time, and fitting 
these successive positions with a regular curve (Ries et al., 
1993; Robbins et al., 1994); (ii) a theoretical one, based 
on a dynamical model for the torques which affect the 
rotation of the satellite (Bertotti and Iess, 1991). In the 
former approach, like in the original Rubincam work, 
there is no way to distinguish between the two senses of 
rotation about a given axis in space. This implicitly led a 
number of authors not to distinguish between the two 
corresponding sets of initial conditions, both of which 
were consistent with in-orbit injection data. 

However, the situation is different when the evolution 
of LAGEOS’s rotation is derived from a dynamical 
model, such as that developed by Bertotti and Iess. The 
differential equations derived by these authors for the 
components of the satellite’s rotation rate vector are not 
invariant with respect to a change in the sense of rotation, 
and therefore it is essential to choose initial conditions 
corresponding to the correct sense of rotation. This has 

been recently shown by Farinella et al. (1996), who have 
derived a satisfactory, self-consistent solution for the 
coupled evolution of LAGEOS’s spin axis and along- 
track orbit residuals. Using the same model for the spin 
axis evolution, Metris et al. (1996) have also tackled the 
problem of adjusting the dynamical parameters to fit the 
eccentricity/perigee excitations as well, and have come to 
the surprising conclusion that this is possible only pro- 
vided the value for the amplitude of the Yarkovsky- 
Schach effect is about 1.75 times greater than was expected 
from the previous thermal models of the satellite. This is 
one of the reasons which have prompted us to reanalyse 
the problem of how the thermal effects are modelled, and 
thus have led to this paper. 

Actually, there are several issues which appear worth 
further study. First, the original thermal models assumed 
a homogeneous satellite body, or anyway an unreal- 
istically simple structure for it. On the other hand, it has 
been recently shown by Slabinski (1996) that the real 
complex structure of the satellite results in the fact that 
its individual components (the retroreflectors, their ring 
mountings, the metallic interior) have different responses 
and sensitivities to the visible and infrared heating. In 
other words, their individual thermal histories are sig- 
nificantly different from the average ones inferred from 
the ideal homogeneous case. Slabinski’s work is a clear 
step forward in modelling these subtle effects, yet the 
theory still needs empirical corrections when applied to 
the observed orbital data. 

Second, all the previous analyses did not include the 
Earth-reflected sunlight as a heating source affecting the 
temperature distribution across the satellite surface. 
Metris and Vokrouhlicky (1996) recently determined the 
main effects of this additional radiation source. They con- 
cluded that the only significant perturbation, within 
the current accuracy of the tracking data, is a small addi- 
tional drag-like acceleration, with a constant value 
= -0.3 pm sA2. 

Third and most relevant here, all the previous thermal 
force models adopted the simplifying approximation of a 
fast rotation of the satellite, such that only the “seasonal” 
(latitude-dependent) component of the temperature gradi- 
ent is significant and therefore the perturbing force is 
always directed along the spin axis. Here “fast rotation” 
means that the spin period is much shorter than the ther- 
mal relaxation timescale of the satellite structure. This was 
a suitable assumption in the early years of the LAGEOS 
mission (as the initial rotation period was less than 1 s, 
compared to about 1 h for the thermal relaxation time). 
However, according to the Bertotti and Iess theory and 
the Farinella et al. solution mentioned above, LAGEOS’s 
rotation rate is decreasing exponentially with time under 
the action of magnetic torques, and in about 10 years the 
spin period will reach a value of 3000 s, comparable to 
the thermal lag time. As a consequence, a more complex 
thermal and dynamical model will then be required, with 
the resulting force depending also on the sense of rotation. 

Therefore, we have decided to develop a more general 
theory for the thermal effects acting on the LAGEOS 
satellite, which removes the fast rotation assumption. In 
other words, we shall not impose any a priori constraint 
on the ratio between the satellite rotation period and the 
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thermal lag time, but allow for any value of this parameter. 
In this situation, “diurnal” (i.e. longitudinal) temperature 
gradients on the satellite surface will no longer be negli- 
gible, and the net thermal force will tilt from the direction 
of the spin axis. The corresponding “equatorial” com- 
ponents of the thermal force are those which appear in 
the classical formulation of the Yarkovsky effect (see, e.g. 
Peterson, 1976 ; Burns et al., 1979). Note that because the 
thermal lag time is comparable to the revolution period 
of LAGEOS around the Earth, we will also have to allow 
for a wide range of values of the parameter r= Torb/Trot, 
namely the ratio of the satellite’s revolution period Torb to 
its rotation period T,,,. The only limitation of our theory 
is that it will not be applicable for r close to or smaller 
than unity, because the spin axis evolution of Farinella et 
al. (1996), which we are going to use, has been obtained 
by integration of the averaged Euler equations, which fails 
at the 1 :1 (r = 1) spin-orbit resonance (see Habib et al., 
1994). 

In this paper, we will develop a general theory for the 
satellite thermal response to the external heating sources, 
and then apply it to the specific case when the heating 
source is the Sun. In other words, we are going to gen- 
eralize the previous treatments of the Yarkovsky-Schach 
effect. A forthcoming paper will be devoted to a similar 
general treatment of the Yarkovsky-Rubincam effect, 
with the Earth IR radiation as the heating source. 

Before proceeding to the mathematical formulation of 
the problem, it is worth stressing a few general concepts. 
There are three natural timescales entering our analysis: 
(i) the satellite rotation period T,,,, (ii) the satellite rev- 
olution period Torb, and (iii) the thermal relaxation time 
zR. An even more general formulation would need to 
account also for the timescale characterizing the evolution 
of the spin axis direction and of the direction of the radi- 
ation source (the Sun in this paper). In our particular 
problem the latter timescales are much longer (one year 
or more) than the previously mentioned ones, hence we 
can consider fixed orientations of the satellite spin axis 
and of the heating source over the longest time among 

(T,,J,,b,Q 
Our goal is to derive expressions for the long-term 

orbital effects, that is for the averaged excitations of the 
mean orbital elements. It is thus an obvious requirement 
of our theory that the revolution period Torb will disappear 
from the final solution. But the averaging procedure is a 
somewhat delicate task. It would be a mistake to average 
directly the instantaneous perturbations over both the 
rotational and the orbital timescales, because by doing so 
we would obtain the fast-rotation results depending on a 
single parameter gR, defined as (a,/271) z zR/ Torb. A more 
careful treatment is needed so as the final results are 
defined on a larger domain, parametrized by the two quan- 
tities gR and r. Then, by taking the limit r-+co we must 
recover the fast-rotation approximation. 

The rest of this paper is organized as follows. In Section 
2 we give a general scheme for the treatment of LAGEOS’s 
thermal response to external heating sources (Section 2.1), 
and compute the corresponding thermal force due to the 
solar radiation both with and without the eclipse effects 
arising when the orbit crosses the Earth’s shadow (Sec- 
tions 2.2 and 2.3, respectively ; some technical details of 

the calculations have been moved to the Appendix). In 
Section 3 we apply this theory to the case of the LAGEOS 
satellite, and in particular we discuss how and when the 
generalized theory will modify the previous predictions 
on the long-term evolution of the orbital elements. 

2. Theory 

In the current context, we do not intend to follow Sla- 
binski (1996) in taking into account the detailed structure 
of the LAGEOS satellite when modelling the heat transfer 
processes which result into the Yarkovsky-type thermal 
effects. We rather use a simple model close to that of 
Afonso et al. (1989) (see also Rubincam (1987) or Afonso 
et al. (1995)), namely a spherical satellite with radius R 
and homogeneous physical properties. Like in the fast- 
rotation case, this is likely to provide a fairly accurate 
model for the time dependence of the thermal effects, 
but subsequent empirical readjustments of the numerical 
parameters appearing in the final expressions will be 
required to obtain a good fit of the observed orbital 
residuals. Also, in computing the long-term dynamical 
effects, we are going to neglect the eccentricity of the 
orbit-a reasonable approximation, since its value for 
LAGEOS is e -0.0044. 

2.1. Simple thermal model of LAGEOS 

The basic assumptions of our approach are : 

we develop a linear theory in the temperature departure 
AT from its equilibrium value T,, (i.e. terms of the order 
of (AT)’ are neglected) ; 
we use an energy balance equation at the satellite’s 
surface as an appropriate boundary condition for the 
heat transfer differential equation. 

Thus, we assume that a “weak” external radiative energy 
flux AO(t ;R,n), impinging onto the outer satellite surface 
element of normal n at the time t, causes a temperature 
perturbation AT(t ;r,n) in the satellite body, i.e. 

T(t;r,n) = T,+AT(t;r,n). 

The general heat transfer equation is 

(1) 

KV’[AT(t;r,n)] = PC, 
aAT(t ;r,n) 

at 

(see, e.g. Landau and Lifschitz, 1986). Here K is the ther- 
mal conductivity, p the density and C, the specific heat. 
This equation links the divergence of the heat vector q 
defined as 

q = -~V[AT(t;r,n)l (3) 

to the time changes of the temperature field AT. 
In our case the boundary condition just expresses the 

fact that energy is not piling up at the surface of the 
satellite, where as much energy is carried away by con- 
duction and re-emitted radiation as is being brought in by 
the solar flux. This energy budget condition takes the 
following form : 
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[ Ic aAT’;r.n)l + 4&aTiAT(t ;R,n) = crAQ(t ;R,n) (4) 

where E is the surface’s thermal emissivity, ~1 its absorption 
coefficient and cr the Stefan-Boltzmann constant. 

The system of equations (2) and (4) represents a fairly 
complicated mathematical problem and different approxi- 
mation methods can be envisaged for its solution. One 
possibility, not yet employed in the treatment of satellite 
thermal problems, would be to rewrite the Fourier equation 
(2) with the boundary condition (4) directly into the form 
of an equation for the surface temperature AT(t ;R,n), 
looking for a proper junction of the solution at the centre 
of the satellite. The latter must satisfy a system of Volterra 
integral equations of the second kind, as shown by Landau 
and Lifschitz (1986) in the case of a one-dimensional 
problem. This rigorous method, however, is quite complex 
and lies beyond the scope of this paper. 

In the following, we shall adopt a more direct approxi- 
mate method, introduced by Rubincam (1987). It provides 
a fairly simple, analytical solution of the satellite thermal 
problem and, very important in this context, also allows 
one to carry out the next step-the computation of orbital 
perturbations-analytically. Actually, this method leads 
to an exponential factor expressing the “thermal memory” 
of the body (see equation (7)), which corresponds to the 
temporal part of the eigenfunctions constituting the 
Green’s function of the diffusion problem (Morse and 
Feshbach, 1953). 

A suitable tool for solving the parabolic diffusion equa- 
tion (2) is the use of the Fourier transform (see Rubincam, 
1987). By labelling the Fourier-transformed quantities 
with a superscript F, the solution for the temperature 
change AT related to the variable heating flux Aa is 
approximately 

ATF(v) 1: &AQF(v)&, 
P R 

(here L means the complex unit) with 

(6) 

The exact numerical coefficients in these formulae are not 
essential because of our simplifying homogeneity assump- 
tion and the poor knowledge of the LAGEOS “mean” 
material constants. The fundamental property of solution 
(5) is its functional dependence upon frequency. 

The computation of the inverse Fourier transform of 
solution (5) leads to 

AT(t;R,n) = ~~,~~dl’A~(t.;R,n’)e-‘R(f-“) (7) 
P 

with the exponential damping kernel mentioned above. 
The effect of the satellite’s rotation is hidden by the fact 
that in the integrand of equation (7) one must consider 
surface elements n’ at the retarded times t’ which eventu- 
ally become identical with the surface element n at time t, 
appearing in the left-hand side of this equation. In our 
case, the uniform rotational motion is to be expressed by 
equation (11) below. 

Once the temperature field AT(t ;R,n) on the satellite 

surface is known, the recoil force (per unit mass) a caused 
by the emitted thermal radiation can be derived. If an 
isotropic (“Lambertian”) emission law is assumed, one 
gets 

a(t) = - f E T~SdA(B,(6)A~t;R,n(e,~)ln(e,~) (8) 

where the surface element is d&8,+) = R2 sin 8 d0 d4 (for 
the definition of the spherical angles 8 and 9 see Section 
2.2 and Fig. 1). The integral on the right-hand side of 
equation (8) has to be performed over the whole satellite 
surface. 

An alternative way to compute a is by interchanging 
the two successive integrations in equations (7) and (8). 
We thus obtain 

a(c) = - - lc ZTi 1 dt’ e-"R('-")h(t,t' ;R) (9) 
P f’ < f 

where the “kernel function” h(t,t’ ;R) is defined by 

h(t,r’ ;R) = *i,, dA(&@A@(t’ ;R,n’)n(@$). (10) 
l 

The integration domain Q.(t) in the previous integral is 
implicitly defined by the illumination condition 
A@(t ;R,n)>O. It can be easily expressed explicitly in the 
coordinates (0,d). Note that the integration on the right- 
hand side of equation (10) is performed over the domain 
Q,(t) given at the time t, whereas the flux projection 
A@(t’;R,n’) in the integrand is taken at the retarded time 
t’. 

We stress the different interpretations which can be 
made for the approaches based on equations (7) and (8) 
and equations (9) and (lo), respectively, to compute the 
thermal force. In the former case, which more closely 
corresponds to intuition, one first establishes at a given 
time t the temperature field on the satellite surface (equa- 
tion (7)) and then considers the contribution of all surface 
elements to the resulting thermal force (equation (8)). In 
the latter case, one starts by computing the first multipole 
moment of the illumination function AQ(t’;R,n’) (with 
the need to distinguish the time t and the retarded instant 
t' ; equation (9)) and then take into account the thermal 
relaxation processes characterized by an exponential 
damping (equation (10)). The second method is found to 
be much more suitable for the computation of the thermal 
force in the general non-stationary case (Section 2.3). 

2.2. Yarkovsky-Schach effect, with no eclipses 

We now introduce the following local reference frame : (i) 
the unit vector e,, characterizing the direction of the z- 
axis, along the instantaneous direction of the satellite’s 
spin axis (s), (ii) the unit vector e, characterizing the 
direction of the x-axis, chosen in such a way that the x-z 
plane contains the instantaneous direction towards the 
Sun (n,). We then define a system of spherical coordinates 
(e,$), attached to this reference frame in the usual manner. 



P. Farinella and D. Vokrouhlickjr: Thermal force effects on artificial satellites 1555 

-Y 
Fig. 1. Reference frame and geometrical quantities introduced 
in the text, s is the satellite’s spin vector, n, gives the direction of 
the Sun and n is the normal to a satellite surface element 

We thus have for instance n,- (sin B,,O,cos 0,)‘. Figure 1 
shows the geometrical quantities introduced above. 

sin eSa; 
ay=y- 

l+C$ 
(16) 

To define uniquely our problem we have still to specify 
two properties : (i) the rotation law of the satellite, and (ii) 
the external radiation flux. Consider a particular surface 
element dA(&,$,), parametrized by its position (0,&J at 
an arbitrary initial time t,,. Then the rotation of the satellite 
is expressed by the position of this element at any time t : 

with the normalizing factor y given by 

f#l(t) = 27cVJ + $0. I9 = eo. (11) 

Here, v, l/T,,, is the rotational frequency of the satellite. 
As for the surface illumination, we assume a homogeneous 
radiation field with intensity I,, specified by the solar 
direction n,. Then the scalar radiation flux through the 
surface element characterized by a normal vector n(0,4) 
is given by 

The spin-directed component az coincides with the usual 
fast-rotation expression (Afonso et a/., 1989 ; Farinella et 
al., 1990), while the equatorial components vanish in the 
same approximation (gI; -+co). However, as soon as the 
LAGEOS rotation is slow enough, i.e. T,,, 5 rR, the latter 
components will no longer be negligible. Their perturbing 
effects will be discussed in Section 3. 

A@(R,n) = Z,[sin 0, sin 0 cos C#J + cos 8, cos e]. (12) 

By definition A@ must be positive for an illuminated sur- 
face element, otherwise its value is zero. From the physical 
point of view, I, is the “effective value” of the solar 
constant, including its annual variations due to the Earth’s 
orbital eccentricity. Note that on the timescales 
( T,,,, Tort,, R T ) relevant for our problem, the radiation flux 
A@ does not depend explicitly on the time t, that is we can 
neglect the much slower, “adiabatic” changes (in the sense 
of “adiabatic invariants”) of the spin axis direction and 
the position of the Sun. This fact provides an important 
simplification of the problem in the case when the orbit 
undergoes no eclipse. 

The perturbing acceleration a from equations (14) to 
(16) does not contribute to the averaged along-track force 
because it does not depend on the satellite’s position along 
the orbit, hence it does not affect the semimajor axis 
evolution (since we are neglecting the eccentricity terms). 
However, it does contribute to the eccentricity/perigee 
excitation. Denoting Ah the real part and Ak the imagin- 
ary part of the excitation (i.e. h = e cos w and k = e sin o, 
w being the argument of perigee; see Tapley et at., 1993; 
Metris et al., 1996) we have 

Ah = $a(a . 6)+ O(e) OS) 

Ak = - $(a ri)+O(e) (19) 

An important implication of the possibility of sepa- where n-(2n/T,,,) is the mean motion and a the semi- 
rating slowly and rapidly variable processes is that, within major axis of the orbit. The two unit vectors in the pre- 
our model, the orbital timescale is totally absent in the vious equations are defined as ,follows: I is along the 
physical description of the satellite thermal processes, It direction of the ascending node, b lies in the orbital plane 
is thus natural to relate all the time periods to the basic and (a, 6) together with the orbital angular momentum 
timescale given by the satellite’s rotation, T,,,. As a result, vector form a direct triad of vectors. 

for the purposes of this section we can define the auxiliary 
quantities (oJ27r) = (zR/T,,J and t?‘= exp( - 2x/a& 
different from CR as defined in Section 1. Changing the 
integration variable in equation (7) using equation (1 I), 
we obtain for the temperature field AT 

AT(R,n) = 2zv;cpR(1 -WI 

x $lzz d@’ A@(R,n’) e-ak(Q-F) (13) 

where (1 -.?‘)-I is obtained as the sum of an infinite geo- 
metric series, which accounts for the finite interval over 
which the following integral has to be calculated here. This 
integral can be computed easily for any surface element 
n (we do not give here the corresponding lengthy but 
straightforward formulae). Equation (8) then yields the 
components of the thermal force per unit mass as 

a,= ycose, 

sin fI 
a,=yA 

I+C$ 

(14) 

(15) 
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2.3. Yarkovsky-Schach effect, including eclipses 

Contrary to the previous case, the problem with the sat- 
ellite’s orbit crossing the Earth’s shadow is no longer 
stationary, because the radiation flux A@ in equation (12) 
depends explicitly on time due to the interruption of the 
heating flux which occurs during eclipses. As a conse- 
quence, the thermal force is no longer constant along one 
satellite revolution around the Earth, and semimajor axis 
perturbations arise. To better explain our method of deri- 
vation in this case, we start with the special situation of a 
N: 1 spin-orbit resonance, i.e. with the ratio r between the 
orbital and rotational periods coinciding with an integer 
number N. We stress that this assumption has no specific 
dynamical meaning here, but it is just a convenient “trick” 
to simplify the mathematical derivation. At the end of this 
section and in more detail in the Appendix, we will 
describe how the results can be generalized to any real 
value of the parameter r. 

As mentioned in Section 2.1, the approach based on 
equations (9) and (10) for calculating the thermal force is 
more suitable in the non-stationary, shadow-crossing 
case. We thus start with the computation of the auxiliary 
vector quantity h(t,t ‘) (the first moment of the insolation 
A@). Moreover, instead of time we shall use as a variable 
the satellite longitude along the orbit ;1, measured from 
the ascending node and given by A= nt +&. With the 
resonance trick described above, we have 

f&L’) = 4(/X) + N(1’- n> (20) 

to be used in equation (10). Straightforward algebra leads 
to 

(21) 

Carrying out the remaining integration (9) is rather 
lengthy but not complicated, and leads to the following 
result for the three components of the thermal force per 
unit mass (in the same coordinate system we introduced 
in Section 2.2) 

a, = y cos 8, +Z(L) (22) 

(23) 

Note that now the thermal force depends explicitly on the 
satellite’s orbital longitude through the “shadow factors” 
r&n), which can be expressed as follows 

(25) 

+(l-e)-‘[eAl’“R(cosNA,+NgRsinNA1) 

- eA~‘aR(cos NA2 + Na, sin NAJ] (26) 

+ (1 - e)-‘[e”@R(sin NA, - NaR cos NA,) 

- eAl’“R(sin NA, - Na, cos NA,)]. (27) 

Here I,+,,,,,@) denotes the usual shadow function, equal to 
0 when the satellite is inside the geometric shadow and 1 
out of it, e z exp( - 2rc/aa) as before and the quantities A, 
and A2 are given by 

A, = 
1,-L, forL,<L 

;1,-R-Zn, forR,>R (28) 

and similarly for the index 2, with I, and I, denoting the 
orbital longitudes corresponding to entry into and exit 
from the Earth’s shadow, respectively. We observe that 
the polar force component a, again coincides with that 
obtained using the fast-rotation assumption (see, i.e. 
Afonso et al., 1989; MCtris et al., 1996). The equatorial 
components a, and ay average out in the fast-rotation case 
(N-+ao), as expected owing to the absence of longitudinal 
(“diurnal”) temperature gradients. 

Neglecting the eccentricity terms, the averaged along- 
track component of the perturbing acceleration a@,) is 
given by 

T = &Tdi[-sinlQ+coslC]*a(l)+O(e) (29) 
0 

(Milani et al., 1987), with the pair of unit vectors (5, 6) 
defined as above. 

We can also compute separately the along-track accel- 
eration terms related to the three components of the ther- 
mal force (equations (22)-(24)). For this purpose, we 
define the following auxiliary projection parameters 
(i= 1,2) 

Ax = s~cosL,+$sin,J (30) 

B;‘= -s~sin;li+s[cosLi (31) 

where sf = e,. I and $ = e,*b are the projections of the 
base vector e, onto the pair of vectors (A$). Analogous 
parameters can be introduced for the base vectors e, and 
e,. In the last case, we have e, = s, so that the A and B 
parameters correspond to the similar ones introduced by 
Scharroo et al. (1991) and M&is et al. (1996). 

Using equations (22), (25) and (29) we obtain 

T = 2 aRcos4 
-----[[A?-Af+a,(B?-E)] 

z 27c l+a2, (32) 

for the mean drag-like acceleration related to the spin- 
oriented thermal force component. Note that this result 
(i) does not depend on the parameter N, and (ii) coincides 
with the fast-rotation expression (see Scharroo et al., 
1991). 

In a similar way, the equatorial force components yield 
the following averaged along-track perturbing accel- 
erations : 

Y sin OS 

TX = % [l +(N- 1)2aa[1 +(N+ 1)2a$.J 
{[l +(N2+ 1)&l 

x(A:--Af)+a,[l-(N2-l)aa(B:-Bf)} (33) 
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T,, = L 
NaR sin 8, 

2n [1 +(N- l)“oa[l +(N+ 1)2&l 

x {[1 +(N’- I)a~(Ar-A,Y)+26R(B1Y-BZY)}. (34) 

Both the components TX and T, vanish in the fast-rotation 
approximation N-co, as expected. Note, however, that 
the former component is characterized by a much faster 
decay with rotational frequency (T,px (l/N2)) than the 
latter one ( Tycc( l/N)). Therefore, the semimajor axis per- 
turbation due to the T, component is more important for 
the LAGEOS case. We shall comment in more detail on 
the orbital effects associated with TX and TY in Section 3. 

We do not give here the laborious results for the eccen- 
tricity excitations in the eclipse case. However, we have 
verified that in analogy with the fast-rotation case (see 
Metris et al., 1996) the contribution of the extra terms 
due to the eclipses are negligible with respect to the con- 
tribution of the basic terms (equations (18) and (19)). 

In the rest of this section, we shall comment on the 
generalization of the previous results for any value of the 
ratio r between the revolution period Torb and the rotation 
period T,,,. The difficulty is only of a technical character, 
and is related to the infinite domain of integration on the 
right-hand side of equation (9). The simplest way to deal 
with this problem is that of determining a suitable time- 
scale for the periodicity of the vector h. In the case of the 
exact N: 1 resonance discussed above, we may take one 
revolution period as the natural “averaging scale”, and 
summing up the geometrical series due to the presence of 
the exponential factor in the integrand we obtain 

x e-“R(l-‘)h(U’ ;R) (35) 

(we have again used the satellite’s orbital longitude I 
instead of the time t as the independent variable). Alter- 
natively, we can assume a rational representation of the 
parameter r, i.e. r_= N/M. Because the rational numbers 
are dense in the set of real numbers, by continuity our 
results will hold also for the general situation of any real 
value of Y. Because the auxiliary vector h(t,t’) from equa- 
tion (10) takes now the form 

h(t,t’ ;R) = f R21,, (36) 

we realize that in this case the suitable timescale for its 
periodicity is M x Torb, rather than Torb itself. Thus we 
modify the previous equation (35) into 

xe -“+‘)h(;l,X;R). (37) 

Then we must take the time span A4 x To,,, as the average 
interval for the along-track perturbing acceleration. 
Clearly, the method is applicable if the final averaged 
result depends on the parameter r only, and not on the 
individual values of N and M. Lengthy calculations con- 

firm this property and show that the final result is identical 
with that given in equations (32)-(34), provided the 
integer number N is substituted by the ratio r (see the 
Appendix for technical details). Note that formally this 
procedure is not justified when M is too large, as M x Torb 
may become comparable to the timescales over which the 
orbital plane and the spin axis evolve; but in practice this 
cannot change the above conclusion if the latter timescales 
are long enough. 

Of some interest might be also the long-term excitation 
of the mean orbital inclination I (see Farinella et al., 1990 ; 
Tapley et al., 1993). We shall not repeat the details of the 
computation procedure, which is the same as sketched 
above, and give only the final results, separately for the 
inclination excitations due to the three components of the 
thermal force. The spin-oriented force component yields 

dl 0 z 

(38) 

Here, A, = (2, + i2)/2 - rt is the solar longitude measured 
along the satellite orbit from its node and Ash = (2, - A,)/2 
the angular width of the Earth’s shadow measured in the 
orbital plane. This result is identical with that given by 
Farinella et al. (1990), an obvious consequence of the fact 
that this force component exactly coincides with the result 
of the fast-rotation approximation for the thermal effects. 
As for the contributions of the equatorial thermal force 
components, they are 

dl Y C-1 (ex . e)sin& 

dt X=~[l+(r-l)20~[l+(r+1)2$RlSm 

x{[l+(r2+l)~ZR]cosJ.,-~~[l-(?-l)$jsin&} (39) 

dI Y (-) dt ,=& 

x([l+(r2-l)~2R]~~~;2,-2~Rsin~,}. (40) 

3. Application to LAGEOS perturbations 

In the framework of LAGEOS orbital studies, thermal 
effects have been discussed for the first time by Rubincam 
(1982). In that paper, Rubincam correctly identified the 
thermal effects due to the Earth’s IR radiation as a poten- 
tially important perturbation mechanism, although he did 
not give any detailed treatment for them. He also reported 
a suggestion of M. Schach that solar heating combined 
with eclipse passages may result in a net perturbing along- 
track force, and gave a qualitative description of this 
effect. Interestingly, this phenomenon had been already 
discussed and measured by Boudon et al. (1979), in the 
framework of the French acceIerometeric mission CAC- 
TUS. 

In this paper, we limit our discussion to the orbital 
effects related to the interruption of the solar heating 
during the eclipse passages, i.e. to the Yarkovsky-Schach 
effect. From a physical point of view, the effect is due to 
the simple fact that the satellite cools down after it enters 
the Earth shadow, causing a change of the thermal force, 
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Fig. 2. Shadow factors +(A) appearing in the three components 
of the thermal force, plotted over one satellite revolution around 
the Earth. We have assumed a rotational period equal to the 
orbital one. The tiZ(A) factor appearing in the polar component 
is shown by the solid curve, whereas the dashed and dash-dotted 
curves represent the +x(1)/(1 + o2R) and the oR~y(~)/( 1 + a2R) fac- 
tors appearing in the equatorial components, respectively. The 
Earth’s shadow is assumed to be centred at L = rc, and the 
thermal lag parameter CT~ has been set to 2.4 rad 

and heats up again after the satellite exists the shadow. In 
other words, following Rubincam (1982) we may say that 
the finite thermal lag corresponds to a “rotated position” 
of the effective Earth shadow, implying that the aiong- 
track component of the thermal force does not average 
out over one revolution. In our formulation, the cooling 
and heating of the satellite due to the shadow passages 
results in the presence of the “shadow factors” $(A) given 
by equations (25)-(27) in equations (22)-(24) for the 
instantaneous thermal force. 

In Fig. 2 we plot these factors for Y = 1, i.e. the exact 
spin-orbit resonance, and for a thermal lag parameter 
gR = 2.4rad, a value close to that of LAGEOS according 
to the analysis of Metris et al. (1996). We centred the 
shadow position at A = rc with & = 2.6, which cor- 
responds approximately to the maximum width of the 
shadow for LAGEOS’s orbit. The solid curve for $=(A) 
can be compared with Fig. 5 in Afonso et al. (1989) while 
the shadow factors related to the two equatorial force 
components have never been derived before. Although 
qualitatively similar, the three shadow factors are different 
in the details. 

Figure 3 shows the dependence of the $A,! ;N) function 
on the parameter N, i.e. on the number of spin cycles 
completed during one satellite revolution around the 
Earth. In Part (a) the thermal lag parameter OR has been 
set again at 2.4 rad, the value estimated for LAGEOS by 
Mttris et al. (1996). Besides having a decreasing ampli- 
tude, for higher values of N the curves approach a periodic 
function, with only a temporary influence of the eclipse 
passage. These properties lead to a rapid decrease of the 
mean value for increasing spin rates, in agreement with 
the expectation that the equatorial contribution to mean 
along-track perturbation should average out during one 
revolution when the rotation is fast enough. The quali- 
tative features shown by the plots can be easily understood 

h 

(b) 1.0 , I 
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Fig. 3. The shadow factor $&. ;N)/(l +N%K) associated with 
the X-component of the thermal force has been plotted vs. 1 for 
different values of N, the ratio between the orbital and the 
rotational period : N = 1 (curve 1), 3 (curve 3) 5 (curve 5) and 
10 (curve 10). The parameters in the upper part (a) of the figure 
are the same as in Fig. 2, whereas in part (b) we have taken 
gR = 0.3 rad 

by considering that the force is approximately oriented 
towards the region on the satellite’s surface with the lowest 
temperature, and that during a rotational cycle this region 
migrates on the satellite surface; at the same time, the 
eclipse entry/exit suddenly changes the intensity of the 
heating flux which causes a temperature gradient to arise 
on the surface. Because the large value of the thermal 
inertia parameter (TV in part (a) of Fig. 3 partially hides 
this phenomenon, in part (b) we have plotted the same 
quantity but changed the value of dR to 0.3rad. We 
observe that for a fast rotation (large N), the shadow 
passage excites a high-frequency and strongly damped 
wave pattern related to the satellite rotation. However, 
soon this pattern decays to the stationary value of the 
shadow factor, due to the low thermal lag parameter crR. 

The Yarkovsky-Schach effect is well known to provide 
a significant contribution to the peaks/dips occurring in 
the sequence of observed LAGEOS semimajor axis 
residuals when the orbit crosses the Earth’s shadow 
(Afonso et al., 1989; Scharroo et al., 1991 ; Farinella et 
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Fig. 4. Predictions of the averaged along-track acceleration on 
LAGEOS due to the Yarkovsky-Schach thermal effect vs. time 
(in days), starting on Jan. 1, 2005. The solid curve (1) has been 
derived from the generalized theory derived in this paper, includ- 
ing the effect of the equatorial thermal force components, while 
the dashed curve (2) corresponds to the usual fast-rotation 
approximation. Very large differences arise as the satellite’s spin 
rate slows down due to magnetic dissipation. At the end of the 
time span considered in this plot the 1 : 1 spin-orbit resonance is 
reached, and the Bertotti-Iess dynamical theory used to predict 
the evolution of LAGEOS’s rotational state ceases to be appli- 
cable. Following M&is er al. (1996), we have adopted the par- 
ameter values y = - 175 pm se2 and uR = 2.4 rad 

al., 1996). Because here we are primarily interested in the 
future influence of the equatorial thermal force 
components, we have plotted in Fig. 4 the averaged along- 
track Yarkovsky-Schach perturbing acceleration starting 
from Jan. 1,2005. Before this date the LAGEOS rotation 
is fast enough that only the polar force component (which 
remains unaltered in the fast-rotation case) plays a sig- 
nificant role. 

The dashed curve in this figure shows the predictions 
obtained from the current fast-rotation case, which 
according to our results in about a decade will start to fail 
in a very substantial way (peaks instead of dips and vice 
versa). 

After that, the generalized theory accounting for the 
equatorial thermal force components TX and T, will be an 
essential tool for LAGEOS orbital studies. Our simulation 
has been stopped after about 7 years, i.e. when the 1 :l 
spin-orbit resonance will be approached (i.e. rz l.l), 
according to the Farinella et al. (1996) rotational evol- 
ution predictions. When this will happen, a more complex 
non-averaged theory will be needed to model the (possibly 
chaotic) subsequent spin evolution (Habib et al., 1994). 
However, it is clear that the equatorial thermal force com- 
ponents will continue to play an important role in LAG- 
EOS’s long-term orbital evolution. 

Figure 5 shows our predictions for the eccentricity exci- 
tation effects due to the Yarkovsky-Schach effect. MCtris 
et al. (1996) have recently shown that these effects account 
far a significant portion of the observed orbit residuals. It 
is thus important to understand whether the two 
additional force components will, in the future, sig- 
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Fig. 5. Predictions on the excitation of LAGEOS’s orbital eccen- 
tricity vector due to the Yarkovsky-Schach thermal effect vs. 
time (in days), starting on Jan. 1, !999. (a) Real component (h) 
and (b) imaginary component (k), both expressed in milli- 
arcseconds per year. The solid curves have been derived from 
the generalized theory derived in this paper, including the effect 
of the equatorial thermal force components, while the dashed 
curves correspond to the usual fast-rotation approximation. 
Note that the differences between the two sets of predictions are 
small for the real part but substantial for the imaginary part of 
the eccentricity excitation. The same parameter choice as in the 
previous semimajor axis predictions has been used here 

nificantly modify the results obtained with the fast- 
rotation approximation. 

The results shown in Fig. 5 suggest that there will be 
only a minor contribution of the equatorial thermal force 
components to the real eccentricity excitation component 
(which is affected in a dominant way by the spin-oriented 
force component), but that the opposite will hold for the 
imaginary component. 

Finally, in Fig. 6 we have plotted the predicted incli- 
nation excitation due to the Yarkovsky-Schach effect, 
which was the subject of the Farinella et al. (1990) study 
in the fast-rotation approximation case. As before, that 
case (dashed curve, label 2) is now compared to the more 
general one with the equatorial components accounted 
for. We have used here two different parameter choices 
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Fig. 6. Predictions of the averaged inclination excitation on 
LAGEOS due to the Yarkovsky-Schach thermal effect vs. time 
(in days), starting on Jan. 1, 2000. The solid curves (1 and 1’) 
have been derived from the generalized theory derived in this 
paper, including the effect of the equatorial thermal force com- 
ponents, while the dashed curve (2) corresponds to the usual fast- 
rotation approximation. Again significant differences appear 
as the satellite rotation period approaches the 1 :I resonance 
with the revolution period (at the end of the plotted time span). 
The following parameter values have been used here: 
y = - 175pmsm2, uR = 2.4 rad for curves 1 and 2 (in agreement 
with Mttris et al. (1996)), and y = - 82 pm s-‘, eR = 1.45 rad 
for curve 1’ (following Scharroo et al. (1991)). Both these com- 
binations match equally well the along-track residuals, but they 
show slightly different patterns in the inclination series 

(corresponding to the solid curves 1 and l’), to illustrate 
a point which may become important. Our results indicate 
that an analysis of the inclination effects in the future may 
allow us to decorrelate the two parameters appearing in 
the thermal force model, i.e. the normalizing factor y and 
the phase lag crR. As we remarked in Section 1, the exact 
values of these parameters depend in a fairly sensitive way 
on the detailed thermal properties and structure of the 
satellite. As pointed out by M&is et al. (1996), the same 
purpose may be achieved by an analysis of the eccentricity 
excitation components. But other perturbing effects over- 
lap the thermal ones in a different way for different orbital 
elements, so the inclination data will possibly supply 
important additional information. 

4. Conclusions 

The main results obtained in this paper can be summarized 
as follows : 

1. We have developed a fairly general theory for the ther- 
mal effects on the dynamics of LAGEOS-type artificial 
satellites, avoiding the usual fast-rotation approxi- 
mation and applicable for any ratio between the 
rotational, orbital and thermal relaxation timescales. 
In this paper we have studied in particular the Yar- 
kovsky-Schach perturbation effects arising from the 
solar heating of the satellite and its interruptions by 
eclipses. The second paper of this series will deal with 

the Yarkovsky-Rubincam effect caused by Earth IR 
radiation heating. 
In the case of LAGEOS, a growing influence of the 
components of the thermal force not aligned with the 
spin axis is predicted in the near future, due to the 
rapid despin of the satellite by magnetic dissipation 
effects. Applying the theory developed here will be 
essential after about year 2005 to correctly model the 
Yarkovsky-Schach perturbations affecting the long- 
term semimajor axis decay of LAGEOS’s orbit. 
Important future discrepancies from the fast-rotation 
case are predicted also for the perturbations affecting 
the imaginary part of the eccentricity excitation and 
the inclination excitation of LAGEOS. These effects in 
some cases are sensitive to the individual values of 
two thermal parameters, which cannot be decorrelated 
from an analysis of the semimajor axis residuals only. 
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Appendix 

As announced in Section 2.3, this appendix is devoted to some 
technical details of the averaging method used to derive the long- 
term along-track force. The method itself is outlined in Section 
2.3, and is based on taking a rational approximation for the r 
parameter : r = N/M, with N and M integer numbers. Since the 
component of the perturbing acceleration directed along the spin 
axis does not depend on N and/or r, we will limit our discussion 
here to the other two components. 

First, we define the auxiliary functions 

C(r,?, = 
1 -2 cos(27tr) 

1 - 2? cos(2nr) + t?’ (AlI 

S(r,e) = 
P sin(2nr) 

l -2P cos(23rr) + t?*. 6421 

Then, we proceed to perform the double integration, over the 
averaging timescale and the thermal relaxation timescale, to 
obtain the long-term perturbing acceleration. We treat sep- 
arately the two equatorial components of the thermal force. 
After several rearrangements of the integrals. they can be 
reduced to 

T, = - 2’, ~~~d~[-sinIP+cos16].e., 

x [C(r.e)$,JI) + $r,@$,(1)1. (A4) 

Here the y coefficient is the same as in equation (17), and the 
shadow factors tic and tis are defined as 

$J,I) = { 1 - e[cos(2nr) - rug sin(27tr)]}$,had(i) 

+ e*I’Q[t; (I ;r,u,)cos rA, + [,+(A ;r,o,)sin rA,] 

- e*z’“R[[;(l;r,o,)cos rA,+[:(A;r.a,)sin rA,] (AS) 

cl/,(i) = {ru, -e[sin(2nr) + ruR cos(2nr)]}$,,,,(l) 

-e”l:“R[i;;(I;r,a,)sinrA,--C:(l;r,a,)cosrA,] 

+e*+‘R[~;(~ ;r,c,)sin rA,--t:(n;r,o,)cos rA2]. (A6) 

We also introduced 

[,-(A ;r,eI1) = 
cos(27cr) - ruR sin(2nr), for A, > /1 

1, for&<1 
(A7) 

and 

[)+(A ;rruR) = 
{ 

sin(2nr) + ruR cos(2nr). for I, > 1 

ruR, for 1, <i, . WV 

For integer values of the parameter r the previous results can be 
simplified into those given in equations (32H34). A straight- 
forward integration of equations (A3) and (A4) yields 

sin 19, 

TX = $ [1 +(r- l)2u~[l +(r+ l)‘&J 

x{[l+(?+l)u~(A:‘-Af)+uR[l-(r’-1)&B:--BF)} (A9) 

Y ruR sin 8, 

“= 211 [1 +(r- l)%a[l +(r+ I)%~ 

x {[l+(r*- 1)&A:--Ar)+2u,(Br-Bl)} (AlO) 

as given in Section 2.3 and used in the subsequent analysis of 
the LAGEOS orbital effects. 


