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Traditional evaluation of collision probability between two bodies on bound heliocentric or planetocen-
tric orbits include assumptions that are often only an approximation of their real motion. In particular,
these approaches require (i) the orbital eccentricity and inclination of both target and projectile long-
term constant, and (ii) their longitude of ascending node and argument of pericenter precessing uni-
formly in time. Both conditions (i) and (ii) are satisfied for orbits with very small eccentricities and incli-
nations only. When either of these two elements is large, a tidal perturbation by planets, or the Sun in a
planetocentric configuration, makes these elements oscillate in a correlation with the non-linear evolu-
tion of the secular angles. Vokrouhlický et al. (Vokrouhlický, D., Pokorný, P., Nesvorný, D. [2012]. Icarus
219, 150–160) developed an approach which allows the orbit of the projectile undergo such a general
secular evolution. An assumption of the circular orbit of the target, however, was a significant drawback
of their method. Here, we extend Vokrouhlický et al.’s work to allow a general eccentric and precessing
orbit of the target (assuming though fixed orbital plane in space). We test predictions of our new
approach, as well as previous theories, against a direct numerical integration and estimate their validity.
A particular run is performed for E-belt projectiles impacting terrestrial planets. We conclude a surpris-
ingly good correspondence of the directly obtained impact record from the numerical simulation and the
estimate from our theory. Based on these results, we infer that the crater density from E-belt projectiles
on Mercury should be roughly comparable (or only slightly larger) to that on our Moon.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Planets, accompanied with their satellites, are not alone to re-
volve about the Sun. There is a myriad of smaller bodies, ranging
from asteroids and comets down to sizes of dust particles, orbiting
the Sun. Some of them may occasionally share the same region in
space where planets move, and thus could impact on them. Living
in large populations, these smaller bodies may also hit each other.
Evaluating the small, though non-zero, probability of these events
is often an important information in planetary studies. In this
work, we do not deal with an impact probability of a specific pro-
jectile over a short timescale. Rather, we have in mind an evalua-
tion of a mean impact probability averaged over a timescale
equal or longer than that characterizing a secular evolution of
the projectile orbit.

Öpik (1951) was the first to deal with this problem in the mod-
ern astronomical literature. This work assumed a target on a circu-
lar orbit fixed in space, sweeping through a population of projectiles
on bound heliocentric orbits with constant eccentricities and
inclinations. Öpik’s theory was later generalized for targets on
eccentric and inclined orbits by Wetherill (1967) and Greenberg
(1982) which themselves undergo a simple secular evolution, again
keeping the assumption of a long-term constant values of orbital
eccentricity and inclination. A slightly different approach was inde-
pendently proposed by Kessler (1981).

All these above mentioned approaches are frequently used to
determine a collision probability among members of a population
of small bodies or with respect to planets and their satellites. For
instance, all collisional evolution codes are based on either Wethe-
rill’s or Greenberg’s variants of the method, some occasionally use
the Kessler’s approach. All these standard theories assume the
orbital eccentricity e and inclination i during the secular evolution
of target and projectiles are constant. This assumption is not ex-
actly correct even for moderate values of e and i. Still, the varia-
tions of e and i are mostly small enough such that the population
average, and often other unknown parameters in the model, make
the results grossly justified. However, when either of the projectile
or the target orbits have high inclination and/or high eccentricity,
application of the traditional collision model is questionable. This
is because variations of e and i during the secular cycle may be
large, and the secular angles such as the longitude of node and
pericenter may exhibit a strongly non-linear evolution with time.
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About half a century ago elements of these dynamical phenomena
were introduced by Lidov (1961, 1962) in space geodesy and inde-
pendently by Kozai (1962) in planetary astronomy. Later, more
complex theories, allowing for instance a planet crossing, were
developed. These results were needed, because certain populations
of small bodies reside on such orbits and thus undergo the corre-
sponding orbital evolution: all classes of comets and their related
meteoroid streams, meteoroids in the sporadic complex, etc. As a
result, the traditional collision probability methods may provide
disputable results when evaluating their impact chances with the
Earth, for instance.

This situation motivated Vokrouhlický et al. (2012) to formulate
a generalized Öpik-type collision probability theory. In their model
the projectile orbit was allowed to undergo Lidov–Kozai oscilla-
tions, and with a simple generalization even more complex, secular
evolution. However, a persisting drawback was the assumption of
a circular and fixed orbit of the target. Here we extend this earlier
work and allow the target orbit be eccentric and uniformly pre-
cessing in space. While not so critical for Earth or Venus, this gen-
eralization makes our approach quite more suitable for evaluation
of impact probability on Mercury or Mars, as examples.

Mathematical preliminaries are introduced in Section 2.1. Sec-
tion 2.2 is a brief summary of the Lidov–Kozai dynamics, and the
core formulation of our collision probability model is given in Sec-
tions 2.3 and 2.4. In Section 3 we provide simple-configuration
runs which illustrate our main results and help justify our numer-
ical approach. Finally, Section 4 contains simulation motivated by
recent work of Bottke et al. (2012): projectiles originating in to-
day’s extinct extension of the main asteroid belt, known as the E-
belt, are propagated in the gravity field of the Sun and all planets.
We record direct impacts onto terrestrial planets as provided by
our numerical simulation and compare them with an estimation
from our theory. An emphasis is given to impacts on Mercury
which was not included in Bottke et al. (2012).
2. Theory

2.1. Reference frames and notation

In this section we introduce necessary mathematical concepts
and notation used throughout the paper. Obviously, both closely
follow the work of Vokrouhlický et al. (2012), allowing now an
eccentric orbit of the target.

We start with a description of the projectile orbit near the nodal
crossings of the target plane (for sake of definiteness we assume
both are on heliocentric orbits). Assume the projectile resides on
a general elliptic orbit described with osculating Keplerian ele-
ments: the semimajor axis a, the eccentricity e, the inclination i,
the longitude of node X, the argument of pericenter x and the true
anomaly f. The angular parameters i, X and x are defined with re-
spect to the inertial frame (X,Y,Z), whose reference plane (X,Y)
coincides with that of the target’s fixed orbital plane about the
Sun.1 The projectile orbit intersects the (X,Y) reference plane at the
ascending node, where f = fn = � x, and the descending node, where
f = fn = p �x. The description of the orbit near the nodal intersec-
tions benefits from introduction of the reference basis (er,e/,ez)
composed of the three orthonormal vectors with the origin at the
ascending or descending nodes. The vectors er and e/ point to the ra-
dial and longitude directions at the respective node, and the vector
ez along the Z axis of the inertial frame. Thus in our definition, the
radial and longitude directions, i.e. er and e/ vectors, at the descend-
1 We assume i – 0, otherwise a non-singular set of orbital elements would be
needed. As in Vokrouhlický et al. (2012) we keep a close similarity in notation to the
works of Öpik (1951) and Wetherill (1967) and thus we only consider a non-planar
case. 2 The unit vectors er and e/ are assumed at the point of the orbit with f = f0.
ing node are opposite to their values at the ascending node.
The heliocentric position vector r describing the elliptic orbit of

the projectile generally reads

rðf Þ ¼ rðf Þ½a cosðxþ f Þ þ b sinðxþ f Þ�; ð1Þ

with r(f) = ag2/(1 + ecos f) and g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

. The unit vector aT =
(cosX, sinX,0) is directed along the ascending node, and bT =
(�cos isinX, cos icosX, sin i) is in the orbital plane, normal to a.
As a result, at the ascending node we have a = er and
b = cos ie/ + sin iez, while at the descending node we have a = �er

and b = �cos ie/ + sin iez. Now expand r(f) near the ascending and
descending nodes, where the heliocentric distance is r = ag2/
(1 ± ecosx) respectively (the upper sign for the ascending node).
Introducing an infinitesimal increment df of the true anomaly,
f = fn + df, we obtain r(f) = rer + dr, with

dr ¼ rA1 df þ r
2

A2 df 2 þOðdf 3Þ: ð2Þ

Eq. (2) helps to locally describe the elliptic orbit of the projectile
with df = 0 at the respective node. The first term is the crudest rec-
tilinear approximation, while the second term describes the local
curvature of the elliptic orbit. The first- and second-order vectorial
coefficients read (the upper sign for the ascending node intersection
and the lower sign for the descending node intersection)

A1 ¼ �
e sinx

P
er þ ðcos ie/ � sin iezÞ; ð3Þ

A2 ¼ �2 1� 3
2P
þ g2

P2

� �
er

� 2
e sinx

P
ð� cos ie/ þ sin iezÞ;

ð4Þ

where P = ag2/r.
Next, we use a similar framework to describe motion of the tar-

get body. The target body is assumed to move on an elliptic helio-
centric orbit with the semimajor axis a0, the eccentricity e0 and the
argument of pericenter x0 in the (X,Y) reference plane. Without
loss of generality we set x0 = 0 in our coordinate system. Choosing
a certain value f0 of the true anomaly, the position vector r0 of the
target can again be described as r0(f) = r0 er + dr0 in its orbital vicin-
ity2 f = f0 + df (r0 is the target’s heliocentric distance for f = f0). We
now have

dr0 ¼ r0A10 df þ r0

2
A20 df 2 þOðdf 3Þ; ð5Þ

with

A10 ¼
e0 sin f0

P0
er þ e/; ð6Þ

A20 ¼ �2 1� 3
2P0
þ g2

0

P2
0

" #
er � 2

e0 sin f0

P
e/; ð7Þ

where P0 ¼ a0g2
0=r0 and g0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

0

q
. For further use we shall

express coefficients in A10 and A20 as a function of r0 rather
than f0. To that goal we have a relation e0sinf0 = g0 R± with
R� ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0� r1Þðr2� r0Þ

p
=r0, where r1 = a0(1 � e0) and r2 = a0(1 + e0)

stand for the perihelion and aphelion distances of the target orbit
respectively. The upper and lower sign in R± correspond to f0

values in the interval (0,p) and (p,2p) respectively, and need to
be considered separately.

Previous notation also helps us to express the orbital velocity v
of the projectile at the nodal intersection and the orbital velocity v0

of the target body. Using arbitrarily V0 = n0a0 as a velocity normal-
ization (n0 is the mean motion of the target), we use the linear term
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in Eq. (2) and differentiation by time to obtain

v ¼ V0

ffiffiffiffiffi
a0

r

r ffiffiffi
P
p

A1

¼ V0

ffiffiffiffiffi
a0

r

r ffiffiffi
P
p
� e sinx

P
er þ ðcos ie/ � sin iezÞ

� �
;

ð8Þ

where again the upper and lower sign correspond to the ascending
and descending nodes respectively. Similarly, for the target body we
have

v0 ¼ V0FA10 ¼ V0½R�er þ Fe/�; ð9Þ

where F = g0a0/r0.
Finally, the relative velocity V = v � v0 of the projectile with re-

spect to the target at the exact intersection condition

r0 ¼ r ¼ ag2

1� e cos x
ð10Þ

can be obtained from Eqs. (8) and (9). For further convenience we
shall express V in a local frame of rotated vectors (ea,eb,ez), where
ea is directed to the local apex of target’s motion, eb = ea � ez and ez

always along the Z axis of the inertial frame. Henceforth

ea ¼
R�er þ Fe/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
� þ F2

q ; ð11Þ

eb ¼
Fer � R�e/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
� þ F2

q ; ð12Þ

with also R2
� þ F2 ¼ 2ða0=r0Þ � 1. Thus the corresponding velocity

components Va = V�ea, Vb = V�eb and Vz = V�ez read

Va ¼
V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
� þ F2

q ffiffiffiffiffi
a0

r

r ffiffiffi
P
p

�R�
e sinx

P
þ F cos i

� �
� R2

� þ F2
� �" #

;

ð13Þ

Vb ¼
V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
� þ F2

q ffiffiffiffiffi
a0

r

r ffiffiffi
P
p

�F
e sinx

P
� R� cos i

� �
; ð14Þ

Vz ¼ �V0

ffiffiffiffiffi
a0

r

r ffiffiffi
P
p

sin i: ð15Þ
2.2. Secular evolution in the Lidov–Kozai model

As mentioned in Section 1, we shall use the Lidov–Kozai model
for the secular evolution of the projectile orbit. We shall only
briefly recall fundamental facts of this model studied thoroughly
in literature (e.g., Lidov, 1961, 1962; Kozai, 1962; Morbidelli,
2002).

We assume a single perturber (such as Jupiter in studies of mo-
tion of small bodies in the inner Solar System) on a circular orbit,
coplanar with the target. The target is assumed massless, such that
it leaves the orbit of perturber fixed. Vice versa, the perturber
makes the eccentric orbit of the target uniformly precess in their
common orbital plane.

The effect of the perturber on the projectile’s orbit are more
spectacular. A simple, first-order secular perturbation model, pro-
hibiting mean-motion resonances with the perturber, is obtained
by double averaging of the averaged perturbing function over the
mean longitude of the perturber and the projectile heliocentric
motions (Morbidelli, 2002). Eliminated orbital elements and sym-
metries of the problem provide three integrals of motion: (i) the
semimajor axis a of the projectile heliocentric orbit, (ii) the projec-
tion of the projectile’s orbital angular momentum on the Z axis,
and (iii) the value of the perturbing function P. The second integral
(ii) implies c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

cos i ¼ const:, which conveniently helps to
eliminate either of the two elements, eccentricity e or inclination
i, for the latter and a conserved quantity c. The situation with the
third integral (iii) is more complicated because its efficient evalu-
ation may need numerical methods. This is especially true if the
projectile’s orbit crosses that of the perturber (e.g., Bailey et al.,
1992; Thomas and Morbidelli, 1996; Gronchi and Milani, 1998,
1999; Morbidelli, 2002). While our method might be applied in
these situations as well, most work would need to be performed
numerically. We rather opt for a semi-numerical approach in spite
of crude approximations in developing P. In particular, of the mul-
tipole series representation used by Kozai (1962) we keep only the
lowest-order quadrupole term. Generalizations to higher-order
terms are straightforward at the expense of some algebraic effort.
In our approximation (iii) above implies first integral (e.g., Kozai,
1962; Kinoshita and Nakai, 2007)

1
g2 ½ð2þ 3e2Þð3c2 � g2Þ þ 15ðg2 � c2Þðk2 � h2Þ� ¼ C; ð16Þ

where k = ecosx and h = esinx. The topology of C-isolines in the
(k,h) space was extensively studied and does not need to be re-
minded in detail. When jcj is very close to unity the level curves
of constant C are very close to circles about the origin of (k,h) plane.
In this limit, the values of e and i are very small and they are well
conserved very during the whole Kozai cycle, which is in an accor-
dance with the assumptions of Opik’s and Wetherill’s collisional
theories. Decreasing the value of jcj causes the level curves of con-
stant C to transform from circles to ovals until reaching the critical
value jcj ¼

ffiffiffiffiffiffiffiffi
3=5

p
, where the topology adapts to a bifurcation of two

different stationary solutions at the h axis (i.e., k = ecosx = 0): (i)
for C > 2(3c2 � 1) the orbits circulate about the origin, but the vari-
ations may significantly increase the values e or i leading to very
eccentric or inclined orbits, and (ii) for C < 2(3c2 � 1) the orbits cir-
culate about the stationary points on the h axis. For a given c value,
the maximal values of e and cos i are limited by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

(for more
rigorous specification of the intervals of e and i for given c and C
see, for instance, Kinoshita and Nakai (2007), Eq. (31) and Eq. (32)).

2.3. Evaluating collision probability: target at a given heliocentric
distance

In this Section we assume the target body at a given heliocentric
distance r0 on its orbit and consider its collision probability with
the projectile. We follow the Öpik–Wetherill method recalled in
some detail by Vokrouhlický et al. (2012) (Section 3). In particular,
the collision probability P is composed of two independent parts:
(i) the probability P1 that during one cycle of secular evolution of
the projectile’s orbit its nodal crossing is sufficiently close to the
target’s orbit, and (ii) the probability P2 that the target itself is
close enough to the nodal crossing of the projectile’s orbit. Since
our assumptions about the target’s orbit are identical to those in
Wetherill, namely fixed eccentricity value e0 and uniformly pre-
cessing argument of pericenter x0, we can use Wetherill (1967) re-
sult for P2. Put in our variables, notably using Eqs. (13)–(15), we
obtain

P2 ¼
s

4a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
� þ F2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2

V2 � V2
a

s
; ð17Þ

where V2 ¼ V2
a þ V2

b þ V2
z is the relative velocity of the projectile

and the target at the exact intersection of their orbits and s is the
target’s radius (we assume projectile negligibly small, otherwise s
would have been a sum of target and projectile radii). Obviously,
P2 is to be evaluated at all possible nodal crossings of the projectile
and target orbits (see below). The major modification of Wetherill’s
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approach consists now in an evaluation of P1 (see also Vokrouhlický
et al., 2012). This is because we consider a more complex secular
evolution of the projectile’s orbit.

Determination of P1 is based on analysis of the orbit geometry
near the nodal crossing. This is because the target (and potentially
also the projectile) has a finite radius s and thus the impact occurs
not only at the exact orbit crossing expressed by Eq. (10) which we
rewrite as (upper and lower sign for the ascending and descending
node crossings)
að1� kÞ ¼ g2 ð18Þ
with a = r0/a. Eq. (18) yield circles with a displaced center in the
(k,h) space. The orbit-intersection conditions now correspond to a
crossing of these circles with the C = const. lines from Eq. (16)
describing the secular evolution of the projectile’s orbit. This simple
quadrupole approximation of the Lidov–Kozai model yields up to
eight such crossings (as compared to maximum of four crossings
for two ellipses of fixed eccentricities, e.g. Fig. 1 in Wetherill
(1967)).

Consider the local geometry of the target and projectile orbits
near the node of the latter. Eqs. (2) and (5), in which we shall retain
only linear terms, help us to describe the situation. The reference
longitude in the (X,Y) plane at which we construct the radial er

and longitudinal e/ vectors of the local reference frame (er,e/,ez)
is given by the chosen node of the projectile orbit. We, however,
displace the origin of frame to the position of the target at the same
Fig. 1. Secular evolution, impact geometries (radiant position) and intrinsic impact proba
and the eccentricity e0 = 0.2056. Projectile has the semimajor axis a = 0.4 AU, andinitia
perturbing planet on a Jupiter-like orbit, coplanar with the target is assumed. Top
(k,h) = e(cosx, sinx) plane (black curve underneath the color-coded pattern). Because t
characterizing the secular evolution of the projectile – suffice to independently tune t
configuration is given by our function p(r0) from Eq. (25). The color pattern with the col
probability for h ’ 0 values correspond to near pericentric impacts (see Appendix of Vokr
by observer at the target body; the abscissa is the longitude ‘ measured from the apex
infinite number of impact configurations, the small eccentricity of the projectile orbit m
according to the intrinsic collision probability as in the left panel. Bottom panel: The fo
shown in the top and left panel (black solid line; the abscissa is time in ky and the ordina
intrinsic collision probability from our method pfin (Eq. (28)) is the blue line, the Wetherill
(For interpretation of the references to color in this figure legend, the reader is referred
longitude. As a result the infinitesimal (rectilinear) arc of the target
orbit is given by

Dr0ðk0Þ ¼ r0A10k
0 þ Oðk02Þ; ð19Þ

where r0 is the heliocentric distance of the origin and k0 parameter-
izes the orbit. Note that, unlike in Vokrouhlický et al. (2012), A10

from Eq. (6) has now both longitudinal and radial components. This
is due to eccentricity of the target’s orbit. Similarly, the infinitesimal
arc of the projectile’s orbit reads

DrðkÞ ¼ ðr � r0Þ er þ rA1kþOðk2Þ; ð20Þ

in our reference system. Here r is the heliocentric distance of the
node crossing. Because generally r – r0, we have a radial displace-
ment of the projectile’s node expressed by the first term in Eq.
(20). Parameter k again serves to span different orbital locations
of the projectile. The square of the projectile-target distance is sim-
ply d2(k,k0) = [Dr � Dr0] � [Dr � Dr0]. We seek a minimum of
d2(k,k0) on the (k, k0) space, a task which leads to a simple system
of two linear algebraic equations in our rectilinear approximation
for both orbits. Solving them for k and k0 we obtain the minimum
orbital distance dmin

dmin ¼
ðr � r0Þ sin iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ b2Þ sin2 iþ ðc� b cos iÞ2
q ; ð21Þ

where b = r0R±/(a0g0) and c = �esinx/P. Note dmin is a function of
assumed fixed r0 and orbital parameters of the projectile with the
nodal distance r = ag2/(1 ± ecosx). All possibilities with dmin 6 s
bility. Massless target on Mercury-like orbit with the semimajor axis a0 = 0.3871 AU
l eccentricity e = 0.02, inclination i = 3� and argument of pericenter x = 0�. Single
and left: Secular evolution track of the projectile orbit is a small circle in the
he orbit of target is eccentric, true impacts are possible along the whole trajectory
he longitude of pericenter of the target. The intrinsic collision probability for that
or bar on the right gives p(r0) in (AU�2 y�1). The highly increased intrinsic collision
ouhlický et al., 2012). Top and right: Radiant positions of impact geometries as seen
direction, the ordinate is the latitude b (both in degrees). Even though there is an
akes their individual radiants collapse to merely the same position. Color coding

rmal collision probability pWeth (a,e�, i�;a0,e0) during a secular (Lidov–Kozai) cycle
te is the intrinsic collision probability in AU�2 y�1). The Lidov–Kozai cycle averaged
’s method based average intrinsic collision probability peff (Eq. (29)) is the green line.
to the web version of this article.)
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imply an impact on the target, with the limiting configuration given
by dmin = s, or

s
a
¼ q ¼ ½g2 � að1� kÞ�K; ð22Þ

with

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � c2

ð1þ b2Þðg2 � c2Þð1� kÞ2 þ ½hg� bcð1� kÞ�2

s
: ð23Þ

Here we used the Kozai integral c = gcos i to eliminate the inclina-
tion dependence, and replaced the eccentricity e and argument of
pericenter x with the non-singular (k,h) elements. We now seek
the (k,h) values which simultaneously satisfy Eqs. (22), (23), and
(16), or in other words those segments on the C-integral of orbital
secular evolution that provide minimum orbital distances dmin

smaller than the physical size s of the target. In general, there is a
number of such discontinuous segments each near the exact cross-
ing condition (18) with (16). The system of algebraic Eqs. (22), (23)
and (16) is too complex to allow an analytic solution. We thus
developed a simplified linearization method near the exact crossing
to solve them (for details see Vokrouhlický et al. (2012) Section 3.2).
Each of such segments is crossed in time Dt over the secular cycle of
duration TKozai, such that the partial probability P1 of impact is gi-
ven by relative duration of this window: P1 = Dt/TKozai. Summing up
over all exact intersection configurations, each characterized by
(ew, iw,xw) orbital elements of the projectile, we finally have

Pðr0Þ ¼
X Dtðr0Þ

TKozai

� �
H

P2ða; eH; iH;xH; r0Þ: ð24Þ

Here we used the principle of uncorrelated partial probabilities P1

and P2 discussed above. The final expression for the collision prob-
ability per unit of time is given by division by the orbital period Torb

of the projectile, thus

pðr0Þ ¼
Pðr0Þ
Torbs2 ¼

l1=2

2pa3=2s2 Pðr0Þ; ð25Þ

where l = GM, G is the gravitational constant and M the mass of the
center (the Sun). Note p(r0) has been also normalized to the cross-
sectional factor s2 of the target, such that it expresses the intrinsic
collisional probability (see Öpik, 1951; Wetherill, 1967; Greenberg,
1982). Convenient units of p(r0) are AU�2 y�1.

2.4. Evaluating collision probability: weighted composition of all
possible heliocentric distances of the target

In the previous Section we determined the projectile-target col-
lision probability for a particular heliocentric distance r0 of the tar-
get. In order to evaluate the final collision probability pfin, we need
to consider all possible values of the distance r0 in the range (r1,r2).
This basically requires assembling p(r0) from Eq. (25) with an
appropriate weighting, which should express an uniform circula-
tion of the longitude of pericenter of the projectile’s orbit.3 Observ-
ing that the true anomaly differential df of an elliptic orbit satisfies
df / dr0= r2

0jv � er j
	 


/ dr0= r2
0Rþ

	 

, we identify the necessary weight-

ing factor to be

Wðr0Þ ¼
a0g0

p
1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 � r1Þðr2 � r0Þ

p : ð26Þ

The explicit value of the constant in the right hand side of Eq. (26)
implies the normalization
3 See also discussion in Wetherill (1967) and Greenberg (1982). Note that the
apparently expected weighting factor dt / dr0/jv.erj, expressing how much time the
projectile spends in the interval (r0, r0 + dr0), is already contained in the P2

probability.
Z r2

r1

Wðr0Þdr0 ¼ 1: ð27Þ

Henceforth, we obtain the final intrinsic collision probability pfin

over all possible impact configurations as

pfin ¼
Z r2

r1

Wðr0Þpðr0Þdr0: ð28Þ

Note that the weighting factor W(r0) is singular at pericenter and
apocenter distances, lower and upper integration bounds in Eq.
(28). While finite, numerical evaluation of pfin requires some care.
Standard methods of integrable singularity removal are briefly re-
called in the A.
3. Testing the new approach: A comparison with Wetherill’s
theory and results of the N-body simulations

In this Section we test our approach against results from N-
body simulations and perform comparison with predictions of
the Wetherill’s method (Wetherill, 1967). Both now allow an
eccentric orbit of the target, but the latter assumes the eccentricity
and the inclination of the projectile orbit are secularly constant, of-
ten violated. On the other hand, our approach still assumes the or-
bit of the target fixed in the inertial space, a drawback which is to
be eliminated in the future work. We expect that at least for targets
on low-inclination orbits with respect to the local Laplacian plane
our results should be meaningful. It is mainly the effects of projec-
tile’s high-inclinations and eccentricities which are tested here.

The projectile’s orbit approximately follows a trajectory de-
scribed by a C-isolevel of a function in the left hand side of Eq.
(16) in the (k,h) parameter space (see Section 2.2). As recalled by
Vokrouhlický et al. (2012), the intersection conditions with a circu-
lar orbit of a certain radius r0, or simply at a given heliocentric dis-
tance r0, is geometrically given by the intersection of this trajectory
with two displaced circles given by Eq. (18) for both ascending and
descending node impacts. For a circular orbit of the target, r0 was
fixed, and we had exquisitely four or eight intersection configura-
tions (except for singular grazing cases). Now the situation is more
complicated, because the eccentricity of the target’s orbit makes r0

change during its orbital and secular cycles, and the radii of the cir-
cles by which this is represented in the (k,h) space pulsate (as well
as their centers shift). So for a given pair target-projectile we may
have the whole set of zero, four and eight intersections over their
secular evolution cycle. Obviously, mathematically this is all built
in the formulation in Sections 2.3 and 2.4, namely properties of
the collision probability p(r0) from Eq. (25) and the integration in
Eq. (28).

A comparison with Wetherill’s approach is not a priori given,
but we follow the approach in Vokrouhlický et al. (2012). This is
based on what in practical terms one would do without having
available our theory. Denote, as above in Eq. (24), (e�, i�, x�) orbital
eccentricity, inclination and argument of pericenter that the pro-
jectile’s orbit acquires during its secular evolution. Adding the qua-
si-constant semimajor axis a of the projectile’s orbit, and the
parameters a0 and e0 of the target’s orbit, one can formally deter-
mine collision probability pWeth(a,e�, i�;a0,e0) as if the obits would
satisfy assumptions of the Wetherill’s theory. Performing then an
average over the projectile’s secular cycle of length TKozai, thus

peff ¼
1

TKozai

Z TKozai

0
pWethða; e�; i�; a0; e0Þdt; ð29Þ

one obtains a proxy for the estimated, long-term collision probabil-
ity between the projectile and the target. However, peff may not be
equal to our value pfin from Eq. (28). In fact, it is the degree of their
difference that interests us in our tests.



4
http://www.boulder.swri.edu/	hal/swift.html (Levison and Duncan, 1994)
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3.1. Simple validation of our approach

We first validate our new approach using the simplest possible
setup, namely considering a target body and a single projectile. For
sake of definiteness the target is on a Mercury-like orbit with
a0 = 0.3871 AU and e0 = 0.2056. To make the situation as close as
possible to the assumptions of our theory, we assume a single per-
turbing planet, a Jupiter on a circular orbit at 5.2 AU heliocentric
distance. The heliocentric orbital planes of the target body and
Jupiter are identical, and both Jupiter and the Sun are given their
true masses. We the neglect mass of the target body in this section.

In the initial run we took the projectile orbit having the semi-
major axis a = 0.4 AU, eccentricity 0.02, inclination 3� and argu-
ment of pericenter 0�, implying c = 0.99843 and C = 3.98436. Such
a low-eccentricity and low-inclination orbit will undergo only very
limited variations due to Jupiter’s perturbation, whose major effect
will be near steady circulation of the orbital pericenter and node.
Indeed, as shown in the upper left panel of Fig. 1 the secular track
of the projectile orbit in the (k,h) plane is basically a small circle
around the center. The simple secular evolution makes the Wethe-
rill’s approach fully applicable and we expect a good correspon-
dence between our results and those based on Wetherill’s theory.
Fig. 1 confirms this conclusion since pfin ’ peff (bottom panel).
Their ’0.01% difference basically reflects the numerical accuracy
with which we evaluate both quantities (less so the very small
variations of orbital eccentricity and inclination of the projectile’s
orbit).

Next, we test a configuration where the orbit of the projectile
undergoes one of the possible evolutionary regimes described by
the Lidov–Kozai theory. In particular, we set the semimajor axis
a = 0.9 AU. We then consider an orbit with starting eccentricity
e = 0.1, inclination i = 55� and argument of pericenter x = 0�, alto-
gether implying c = 0.5707 and C = 0.07446 constants. Since
c <

ffiffiffiffiffiffiffi
0:6
p

, the secular evolution of the projectile’s orbit is character-
ized by large oscillations of both e and i as seen on the left top pa-
nel of Fig. 2. In this case the argument of pericenter circulates
about the origin. A more extreme situation occurs for e = 0.6,
i = 55� and x = 70� choice with c = 0.45886 and C = �2.80648, our
second choice of the initial orbit of the projectile. The secular evo-
lutionary track of this orbit is shown in the left top panel of Fig. 3.
Here the argument of pericenter oscillates in a limited interval of
values about 90� which defines a possible stationary point of the
Lidov–Kozai model.

Returning to the first choice of the initial orbit for the projectile,
we now focus on Fig. 2. The left top panel shows, apart from the
secular track of the projectile’s orbit (black curve), also intersection
conditions defined by Eq. (18) for all possible values of r0 in be-
tween the pericenter and apocenter of the target’s orbit. Each of
them is a gray circle, which altogether merge into a 2-D gray area.
Unlike in the case of a circular target’s orbit, where we have only
maximum of 8 intersection configurations, here we formally have
an infinite number of them. This is because r0 ranges a finite inter-
val of values and for each of them we have up to 8 intersections.
Some correspond to the grazing configurations for which 8 inter-
sections degenerate to only 4. However, as also discussed by Vok-
rouhlický et al. (2012), these situations are characterized by a
formally large impact probability. This is shown by the color-coded
symbols at the top panels of Fig. 2. The top right panel shows loca-
tion of impact radiants as seen by an observer on the target body
(zero longitude fixed at local apex direction). Again, while only a
finite number of 8 radiants exist for a circular orbit of the target,
we now have an infinity of possibilities (shown by the black rings).
Some of them, however, have higher impact probability since they
correspond to the grazing configurations of the target-impactor or-
bits and those are marked by red and yellow symbols. Finally, the
bottom panel shows pWeth(t) during one Lidov–Kozai cycle
spanning little more than 250 ky (black symbols). These values
are computed by Wetherill’s approach, assigning formally projec-
tile’s orbital elements (a,e�, i�) acquired during the orbital evolution
along the trajectory shown on the top left panel. These values are
sometimes zero for the cases when e� drops below a critical limit
such that the pericenter of the projectile’s orbit is above the apo-
center of the target’s orbit and no intersection configurations exist.
The Lidov–Kozai averaged collision probabilities defined by Eqs.
(28) and (29) are pfin ’ 2.58 AU�2 y�1 and peff ’ 2.16 AU�2 y�1,
showing only a minor difference in this situation. This is because
even in the Lidov–Kozai regime the impacts are possible only over
a limited interval of secular evolution cycle, during which eccen-
tricity and inclination values do not change significantly (Fig. 2).
A larger difference of the two approaches is exhibited by the appar-
ent impact radiants in the top right panel. The red dots correspond
formally to those obtained by Wetherill’s theory, the same way as
pWeth(t) is computed. These apparent, but fake, radiants span a
quite larger region on the local sky of the observer moving together
with the target than the true radiants shown by the black loops.

Fig. 3 shows the similar data for the second chosen initial orbit
of the projectile. In this case, the orbital argument of pericenter x
oscillates about the 90� stationary point of the Lidov–Kozai model,
so apparently assumptions of the Wetherill’s approach are strongly
violated. The three panels show again evolution of the projectile
orbit and intersection conditions in the (k,h) plane, radiant loca-
tions with respect to the apex system of the target and pWeth(t)
during one Lidov–Kozai cycle. The restricted evolution x makes
now only two radiant locations appear, though formally there is
again a continuum of possible radiants distributed along the
loop-like region. The averaged collision probabilities are pfin -
’ 6.54 AU�2 y�1 and peff ’ 5.72 AU�2 y�1. Again, their difference
is not large, essentially reflecting only small variations of eccentric-
ity and inclination values for impact configurations.

3.2. Comparison with N-body simulations

We further validate conclusions from the previous Section by
performing a comparison between the expected number of im-
pacts, based on the collision probability calculation, and their di-
rect record performed by numerical integration. We keep the
setup described above, namely considering the Sun and Jupiter as
massive bodies and a massless target on a Mercury-like orbit,
coplanar with that of Jupiter. In order to accelerate the impact rate
in our simple experiment, we assumed the target has ten times lar-
ger radius then Mercury (i.e., s ’ 1.63 � 10�4 AU). We considered
two sets of projectiles, each consisting of 500 test particles. Instead
of starting them from very nearby orbits, we distributed them
evenly during the Lidov–Kozai secular cycle of orbits shown in
Figs. 2 and 3 (top left panels). The initial data were actually created
with the help of integration described in Section 3.1, making an
output of orbital elements (e�, i�,x�) (recall a = 0.9 AU is secularly
constant). All integrations were performed using the SWIFT_RMVS3
package,4 that is able to record direct impacts onto the target. We
used 0.5 day integration timestep to resolve fast motion of the Mer-
cury-like target planet.

In our simplified model there are no other sinks of test particles
other than the impact on the target. Since the impacts are probabi-
listic, Poisson process, we have a simple estimator of the cumula-
tive impactor time profile: Nimp(t) = N0 [1 � exp (�t/T)] (N0 = 500
in our case). Here, T is a characteristic timescale, given by T = 1/
(s2 p), where p is the collision probability. We have three alterna-
tive formulations of p, namely pfin from our theory, peff from the
formal application of the Wetherill’s theory and also we introduce
.



Fig. 2. The same as Fig. 1, but now for the projectile with the semimajor axis a = 0.9 AU, the initial eccentricity e = 0.1, inclination I = 55� and argument of pericenter x = 0�.
Top and left: The evolution trajectory during one secular, Lidov–Kozai cycle (black line), defined by the Pðk; h; cÞ ¼ C integral from Eq. (16)), is now different from a simple
circle. Exact impact condition with the target body is graphically shown by the set of gray circles (both ascending and descending nodes) and they correspond to solutions of
Eq. (18) for all possible target heliocentric distances r0. Impacts are possible only in the region of black line crossing with gray circles. The color coding corresponds to the
individual values of collision probability p(r0) (see also the bar on the right). Maxima are for the pericentric configurations. Top and right: Radiant position in the apex
coordinate system – larger eccentricity of the projectile orbits makes the radiants span four loop-like regions on the local sky of the target-based observer. The set of red dots
are fake radiants formally constructed by Wetherill’s approach and combinations of (a,e�, i�) orbital elements of the projectile and (a0,e0) orbital elements of the target.
Bottom panel: The formal collision probability pWeth(a,e�, i�;a0,e0) during a secular (Lidov–Kozai) cycle shown in the top and left panel (black solid line). Zero values for no
crossing conditions between the projectile and target orbits. The Lidov–Kozai cycle averaged intrinsic collision probability from our method pfin (Eq. (28)) is the blue line, the
Wetherill’s method based average intrinsic collision probability peff (Eq. (29)) is the green line. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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pcirc for the circular orbit of the target based on Vokrouhlický et al.
(2012), so that we can compare the three estimators of the decay
timescale TP&V = 1/(s2pfin), TWeth = 1/(s2peff) and TVPN = 1/(s2pcirc)
with the numerically determined value, where pcirc is computed
formally as if the target had semimajor axis a0 and zero
eccentricity.

Fig. 4 shows results for projectiles on orbits similar to that of
Fig. 2. Our estimated decay timescale is TP&V ’ 14.63 Myr and
TWeth ’ 17.63 Myr. In case of the circular target there are no possi-
ble impacts, thus TVPN is formally infinite since pcirc = 0. The corre-
sponding Nimp(t) profiles (gray curves) are shown on the left panel
and compared with the recorded sequence of impacts (dark sym-
bols). An eye-based comparison would favor results from our re-
cent theory. Indeed, fitting the real impact record with the
Nimp(t) law would yield TFit = 15.46 ± 0.03 Myr. Additional support
for our conclusions comes from comparison of the predicted
impactor radiants and those determined from the numerical simu-
lation. This is shown on the right panel of Fig. 4. Our predicted
loop-like radiant distribution is indeed very well matched by the
location of numerically recorded radiants (black symbols).

Fig. 5 shows the same for projectiles on orbits similar to that of
Fig. 3. Since the collision probabilities were larger now, the decay
time constant is shorter and the population fades faster. We obtain
TP&V ’ 5.79 Myr, TWeth ’ 6.62 Myr and TVPN = 2.64 Myr, while the
fit to numerically-determined Nimp(t) provides TFit = 5.65 ± 0.01 -
Myr. Again, the radiant distribution shown on the right panel of
Fig. 5 indicates an excellent correspondence between the theory
prediction and the numerically recorded impacts. Both situations
provide a good illustration of differences between new and previ-
ous formalisms.
4. A real life application: Impactors from the E-belt

The examples discussed in the previous Section indicated valid-
ity of our results, as well as their numerical implementation in our
code, but what does it say about their ‘‘real-life’’ applicability. After
all, these cases were highly simplified: we used only one disturbing
planet in a fixed elliptic orbit, a coplanar massless target, which
implied that the particles (projectiles) conserved their initial Li-
dov–Kozai integrals c and C. In reality, though, the situation is dif-
ferent. All planets are massive and interacting, which complicates
the secular evolution of the projectile orbits. Moreover, as the pro-
jectile interact with the planets in a short-range close approaches,
their orbital semimajor axis is not conserved. Some may be
brought close to mean motion resonances with the target orbit.
All these effects invalidate, strictly speaking, assumptions of both
Wetherill’s and ours approaches. Still, we may be interested to
know how they perform in such a complex case.

Our ‘‘real-life case’’ is based on the recent work of Bottke et al.
(2012) who examined a decay of a putative past extension of the
main asteroid belt toward smaller heliocentric distances, bounded
basically by the outermost terrestrial planet. Bottke et al. (2012)
called this extension the E-belt and found several intriguing facts
in favor of this population out of which we mention two outstand-
ing: (i) the E-belt is a natural source of projectiles that impacted
terrestrial planets and the Moon during the Archaean period and



Fig. 3. The same as in Fig. 2, but now for the projectile’s orbit with semimajor axis a = 0.9 AU, initial eccentricity e = 0.6, inclination i = 55� and argument of pericenter x = 70�.
Top and left: The argument of pericenter x now circulates about the stationary solution offset from the center in the (k,h) plane and thus acquires values from a limited
interval of values around 90�. Top and right: Absence of x values near 180� makes number of radiant locations reduced to two, loop-like structures. Bottom panel: The
behavior of the secular-evolution trajectory, black line on the top and left panel, makes the Lidov–Kozai cycle be effectively half of that seen on Fig. 2. Hence, the
pWeth(a,e�, i�;a0,e0) values resemble those from the first part of the bottom panel on Fig. 2. Systematically higher eccentricity e� offers more chance for the impact
configurations, and thus the pWeth (a,e�, i�;a0,e0) = 0 interval is shorter. Consequently, also the values pWeth and peff are larger.

Fig. 4. Impact conditions for a population of N0 = 500 test particles distributed evenly along the secular-cycle trajectory shown by the black line on the top and left panel of
Fig. 2. Massless target body on a Mercury-like orbit with a0 = 0.3871 AU and e0 = 0.2056, and radius s ’ 1.63 � 104 AU (about ten times larger than that of Mercury). A single,
Jupiter-like planet feeds the secular evolution of the projectile population. Left: Cumulative number of impacts onto the target body as a function of time t since the beginning
of the numerical simulation. Blue symbols directly from the numerical run, while the black and gray lines are estimators from the collision impact approaches developed here
and the Wetherill’s method, i.e., Nimp(t) = N0 [1 � exp (�t/T)] with some T timescale. Our method gives TP&V = 14.63 Myr, Wetherill’s approach yields TWeth = 17.43 Myr. In
absence of other sinks all projectiles eventually hit the target. For the circular orbit of the target, there are no possible impact configurations. Right: Comparison of radiant
position as recorded directly from the numerical simulation (red symbols) and predicted from our approach (black lines, see also top and left panel on Fig. 2). The abscissa is
the longitude measured from the apex direction as seen by an observer on the target body, the ordinate is latitude in the same system (both in degrees). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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dominantly contributed to what is known as the Late Heavy Bom-
bardment (LHB), and (ii) the E-belt provides a natural source of to-
days small population of Hungaria asteroids.

Similarly to Bottke et al. (2012) we thus considered a popula-
tion of particles initially located in the E-belt and numerically inte-
grated the post-LHB evolutionary phase. This means planets are
assumed to have acquired their current orbits. On the contrary to
the work of Bottke et al. (2012), where planet Mercury was ne-
glected, we include it in our current simulation. We thus need to
use a considerably shorter integration timestep of 0.5 days. On
the other hand, the purpose of our simulation is rather illustrative,
so we do not need to develop the model in such a detail as Bottke
et al. (2012). For instance, we omit the pre-LHB evolution of the E-
belt objects. Luckily, Bottke et al. (2012) have shown that this
phase has only limited effects on both number of objects and their
orbital distribution in the E-belt. So our starting orbits of the E-belt
particles had a uniform distribution of semimajor axes between
1.7 AU and 2.1 AU, eccentricities e and inclinations i distributed
using a Maxwellian distribution with the peak values of 0.15, and
8.5� respectively, and the standard deviation values of 0.07, and
7� respectively. We eliminated bodies that would initially cross
the orbit of Mars, an expected result of the pre-LHB orbital



Fig. 5. The same as in Fig. 4 but for a population of particles distributed evenly along the secular-cycle trajectory shown by the black line on the top and left panel of Fig. 3.
Left: Because of the larger pfin and peff values, the characteristic timescale of projectile elimination is shorter now: TP&V = 5.79 Myr and TWeth = 6.62 Myr. While both are
similar, our value slightly better expresses the real track of the impacts (blue symbols). The formal result for the theory where the orbit of the target is circular is represented
by dark-gray line with the characteristic timescale TP&V = 2.64 Myr. In this case it represents the worst estimate of the impact dynamics. Right: As expected, radiants of
impacting particles are now fewer and located in only two quadrants on the sky. Directly recorded radiants (red symbols) correspond to their predicted locations (black loops)
quite well. The limited number of 4 impact configurations for the circular orbit of the target (dark-gray crosses) cannot express the exact structure of recorded radiants,
however it can provide approximate their position. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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evolution. Longitudes of node and pericenter, as well as the mean
anomaly, were distributed randomly between 0� and 360�. Alto-
gether we started 5000 E-belt particles. Initial values of osculating
(a,e, i) are shown on the leftmost panel of Fig. 6. All planets were
given their masses and initial orbits as of J2000.0 epoch. In order
to speed up the simulation, we multiplied planetary radii by a fac-
tor 5, increasing thus their geometric cross-section by a factor 25.
We used SWIFT_RMVS3 package to propagate orbits of planets and
particles for 500 Myr and recorded their fate. Few particles sur-
vived in heliocentric motion, while majority reached some of the
possible end-states: either impacted one of the planets or the
Sun, or was pushed onto Jupiter-crossing orbits and was ejected
from the Solar System. We output state vectors of all bodies every
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Fig. 6. Post LHB dispersal of the E-belt population. Upper panels show semimajor axis v
propagated orbits. Left: Initial data of 5000 particles in our simulation. Semimajor axis w
had Maxwellian distribution with maxima at 0.15 and 8.5�, and standard deviation of
eliminated (bottom panel). Middle: Population at 50 Myr. Planetary perturbations mak
eccentricities the characteristic decay timescale is long. At this moment still 46% of part
impact on the Sun or the planets, or ejection from the Solar System. Right: Population at 5
particles still survived). The surviving orbits converge to what is today observed as the
100 years, providing us a clue about their orbital evolution. In or-
der to resolve orbital behavior near the Sun, and thus not to miss
possible Mercury impacts, we set the minimum heliocentric dis-
tance 0.01 AU, about two solar radii. While some projectiles may
survive even closer approaches to the Sun, many would tidally or
thermally disintegrate.

Thanks to the increased planetary radii in our numerical exper-
iment we have recorded enough impacts onto terrestrial planets
directly from the numerical simulation. This information is consid-
ered as a ground truth, which is to be compared with predictions
from either of the two approaches discussed above. This is to be
done as follows. The projectile population N(t) decays with time t
according to
0 Myr 500 Myr
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s inclination, bottom panels show semimajor axis vs eccentricity of the numerically
as distributed uniformly in between 1.6 AU and 2.1 AU. Eccentricity and inclinations

0.07 and 7�, respectively. All particles having initially Mars-crossing orbits were
e the population dispersed. Because of the predominant high inclinations and low
icles survive. The remaining were eliminated by several possible orbital end-states:
00 Myr has seen depletion at lower inclinations and higher eccentricities (some 10%
Hungaria population.



Table 1
A summary of cumulative number of impacts on terrestrial planets at the end of
simulation, T = 500 Myr, obtained by different methods: (i) Ndirect denotes number of
direct impacts recorded by SWIFT code, (ii) NPV is a cumulative number of impacts
based on evaluation of intrinsic collisional probability at each time step using our
theory (Eq. (31)), (iii) NWeth is the same as NPV but using Wetherill’s theory, and (iv)
NVPN is the same as NPV but using only the circular orbit of the target.

Planet Ndirect NPV NWeth NVPN

Mercury 64 58.03 43.65 55.82
Venus 491 491.04 493.09 482.03
Earth 765 808.78 826.69 787.77
Mars 818 884.88 547.99 793.28
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dN ¼ �ðPtot þ P0Þdt: ð30Þ

Here PtotðtÞ ¼
P

i�p
i
finðtÞs2

i is the estimate of the composite proba-
bility per unit of time to impact one of the terrestrial planets
(hence the summation index goes from 1 to 4 spanning Mercury
to Mars). The total intrinsic collision probability with respect to
the specific target planet �pi

finðtÞ is itself given as a population
sum over the projectiles, i.e. �pi

finðtÞ ¼
PNðtÞ

j¼1 pi
finj, where the summa-

tion here goes over all projectile particles. Their individual intrin-
sic collision probabilities pi

finj with the target planet i are
computed by using Eq. (28) with their current osculating orbital
elements (a,e, i,x). Obviously, due to a more complex long-term
orbital evolution of the particles than described in Section 2.2 this
is only an approximation. Moreover, the right hand side of Eq.
(30) contains also a second part of the probability for particle
elimination, namely P0. This is because in our simulation there
are now more sinks than impacts on terrestrial planets. First,
there is a possibility to impact the Sun, but also some orbits
may be pushed to larger heliocentric distance, impact giant plan-
ets or be ejected from the Solar System. All these processes are
collectively described by P0. However, since we do not dispose
with an appropriate formulation of P0, we do not solve the Eq.
(30), rather we take its solution N(t) as directly given by the
SWIFT propagation. Still, we can estimate cumulative number of
planetary impacts until time T using (for the ith planet).
Fig. 7. Cumulative number of E-belt particles impacting terrestrial planets. Time origin a
planet had their radii multiplied by a factor 5 in our simulation, so the absolute number o
is however correct. Symbols are directly recorded impacts in our numerical simulation.
Wetherill’s approach, and blue line is prediction Ni

VPNðTÞ for the circular orbit of the target
reader is referred to the web version of this article.)
Ni
PVðTÞ ¼

Z T

0
dts2

i �pi
finðtÞ; ð31Þ
and similarly Ni
WethðTÞ by replacing �pi

finðtÞ with Wetherill’s direct
estimator �pi

Weth ¼
PNðtÞ

j¼1 pi
Wethj, and Ni

VPNðTÞ for the circular orbit of
the target with �pi

circðtÞ.
Fig. 6 shows snapshots of the projectile osculating orbits at

epochs 0 Myr, 50 Myr and 500 Myr. As expected from Bottke et al.
(2012), the E-belt particles are swiftly dispersed with longest lived
ones pushed on low-eccentricity orbits with high inclination. Even-
tually, a tiny residual of such a population survives till now as Hun-
garia asteroids. In course of Gys though, the remaining part of the E-
belt was eliminated. For instance, at 50 Myr (middle panel of Fig. 6)
only 46% of particles survived, and at 500 Myr (right panel of Fig. 6)
only 10% of particles survived. Most of the eliminated particles im-
pact the Sun, as typical for terrestrial planet crossing orbits, but
some hit the planets. Fig. 7 shows the cumulative record of planetary
impacts as obtained from our numerical experiment (symbols). We
also show the computed functions Ni

PVðTÞ for our theory (green line),
NWeth(T) for Wetherill’s theory (red line) and Ncirc(T) for circular orbit
of the target (blue line), and make them compared with the true im-
pacts. In spite of minor drawbacks both Ni

PVðTÞ and Ni
VPNðTÞ match

the real impacts better than NWeth(T), especially for Mercury and
Mars. Earth and Venus impact record is equally well reproduced
by Ni

PVðTÞ;N
i
VPNðTÞ and NWeth(T). The good coincidence between

Ni
PVðTÞ and Ni

VPNðTÞ in the case of these two planets is no surprise be-
cause of their very low eccentricity. It is somewhat more surprising
that Ni

VPNðTÞ still represents well the impact record on Mars and Mer-
cury (in the Mars case even better than Ni

PVðTÞ). This is obviously
only formal to a certain degree, because – as we discuss below –
the individual particle orbits evolve in a very complicated way
which does not satisfy assumptions of any of the approaches. The
good performance of the Vokrouhlický et al. (2012) approach is,
however, promising, because of much lower CPU requirements than
the current theory. A summary of cumulatiive number of impacts on
terrestrial planets at the end of the simulation, T = 500 Myr, obtained
by different methods is shown in Table 1.
t the reconfiguration of giant planets (start of the LHB Bottke et al., 2012). Terrestrial
f impacts is larger than in reality; their ratio – if corrected for small focusing effects –
Green line is prediction Ni

PVðTÞ from our theory, red line is prediction Ni
WethðTÞ from

s (see the text). (For interpretation of the references to color in this figure legend, the
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Interestingly, Mercury and Venus have the majority of E-belt
impact events skewed toward earlier epochs after LHB than Earth
and especially Mars. In quantitative terms, 50% of Mercury impacts
occur within the first 25 Myr, while 50% of Mars impacts extend
over 75 Myr after LHB. In total, Earth receives about 12 times more
impacts than Mercury. The ratio of geometric cross section of the
Earth and Moon is ’13.5 and since the post-LHB impact velocities
of the E-belt projectiles for Earth are ’20 km s�1 (Bottke et al.,
2012), the focusing factor plays a minor role in increasing flux on
the Earth with respect to the Moon. In reality, this factor would
have been about 1.5, but in our simulation the Earth radius was in-
creased such that the focusation plays virtually no role. From this
we infer that Mercury should obtain about the same number of
E-belt impacts as the Moon (maybe only 10–20% more). Obviously,
since the impact velocity on Mercury is larger – median value of
’42 km s�1 (Marchi et al., 2009) – equal size projectile would cre-
ate somewhat larger craters on Mercury than on the Moon. The ex-
act factor obviously depends on the scaling law used, but it could
be ’

ffiffiffi
2
p

. Assuming a collisionally evolved population of impactors,
there would be about ’

ffiffiffi
2
p 2:5 ’ 2:5 more E-belt produced craters

of a given size on Mercury than on the Moon. However, if rescaled
to the crater density, one has to take into account an about twice
larger surface area of the Mercury, the equal-size E-belt produced
craters would have only slightly larger density on Mercury than on
the Moon.

We find the Mars impact record interesting, since it has the
longest-lived tail of the E-belt bombardment. This is in fact
understandable, being just next to the E-belt population. We find
also interesting that here the formal application of the Wethe-
rill’s approach fails, while results from our theory – while not
being perfect – match the data better. This is perhaps because
the longer-lived orbits keep having high inclination and low
eccentricity, such that impacts on Mars are often nearly pericen-
tric. This increases the collision probability. Another planet,
where we observer largest difference between prediction from
our model and Wetherill’s approach is Mercury. Here again, imp-
actors that make it to Mercury’s heliocentric distance likely keep
having high-orbital inclination, a situation better described by
our approach.
5. Conclusions

We extended the collision probability theory for the high incli-
nation and high eccentricity projectile orbits presented in our pre-
vious paper Vokrouhlický et al. (2012). In particular, our present
form can handle the target on an elliptic orbit with uniform preces-
sion in space. Generalization to target orbits with non-zero inclina-
tion and regular node precession, sweeping thus a final volume in
space, is left for future work.

We tested our approach using simple projectile-target configu-
rations, mainly to demonstrate the principal phenomena and to
verify performance of our numerical code. We also ran a simplified
numerical experiment (planetary radii 5 times inflated) of the E-
belt population dispersal after planets acquired their final architec-
ture. A full-fledged planetary system, including planet Mercury
was used. This allowed us to compare directly recorded planetary
impacts with prediction of our collision theory even for this inner-
most planet. Surprisingly, even that the orbital evolution of the
individual E-belt particles is well beyond (and far more complex)
the assumptions about secular evolution in our approach, we note
rather fair performance of our theory.

The code providing intrinsic collision probability, position of
radiants and impact velocities based on our approach written in
FORTRAN 77 language is available at http://sirrah.

troja.mff.cuni.cz/	pokorny/Kozai/.
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Appendix A. A comment on numerical evaluation of Eq. (28)

Numerical evaluation of several integrals introduced in Sec-
tion 2 require specific care. This is because while finite, functions
in their integrands may be singular. For instance, the weighting
function W(r0) in the integrand of Eq. (28) diverges when r0 = r1

and r0 = r2, the limits of the integration. Obviously, in this case
the situation is simple and a standard parameter transformation
helps to remove the singularities (see Press et al., 1992, Chapter
4.4). We first split the integral into two pieces, integrating once
from r1 to a0 and next from a0 to r2. In the former case we use
the following substitutionZ a0

r1

pðr0Þdr0

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 � r1Þðr2 � r0Þ

p ¼
Z ffiffiffiffiffiffiffi

a0e0
p

0

2pðr1 þ t2Þdt

ðr1 þ t2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r1 � t2

p ; ðA:1Þ

while in the latter case, we haveZ r2

a0

pðr0Þdr0

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 � r1Þðr2 � r0Þ

p ¼
Z ffiffiffiffiffiffiffi

a0e0
p

0

2pðr2 � t2Þdt

ðr2 � t2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r1 � t2

p : ðA:2Þ

We adopted Romberg’s method for evaluation of these definite
integrals.

The main difficulty now resides in the a priori unknown and
potentially ill-behaved course of a function p(r0), while the rest
of the integral is easily evaluated using even a small number of
iterations of the Romberg scheme. The potential problems are
due to grazing pericentric or apocentric impact configurations for
a fixed impactor orbit and varied r0 value. These situations are typ-
ically badly behaved in the linear approximation of the two orbits
and result in singularity of apparent p(r0) (see, e.g., Appendix of
Vokrouhlický et al. (2012)). At this moment, we did not optimize
our code to deal in detail with all these caveat. Rather, we adopted
a pragmatic deal between efficiency and precision of the code. This
may degrade its performance at some singular configurations, but
overall provides useful tool for most of the situations.
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