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ABSTRACT

Our aim is to study the evolution of the orbit of a star under the influence of inter-
actions with an accretion disc in an AGN. The model considered consists of a low-
mass compact object orbiting a supermassive black hole and colliding periodically
with the accretion disc. Approximate calculations based mostly on the Newtonian
theory of gravity have been carried out by several authors, to estimate the effects of
circularization of initially eccentric orbits and their dragging into the disc plane. Here,
we present the first step towards a more adequate general relativistic approach in
which the gravitational field of the nucleus is described by the Kerr metric. The star is
assumed to move along a geodesic arc between successive interactions with an equa-
torial accretion disc. We solve relevant formulae for the geodesic motion in terms of
elliptic integrals, and construct a fast numerical code which, after specifying details of
the star—disc interaction, enables us to follow the trajectory of the star for many revo-
lutions and study the evolution of its eccentricity and inclination with respect to the
disc. Lense-Thirring precession of the orbit is potentially a very important effect for
observational confirmation of the presence of a rotating black hole in the nucleus.
Our approach takes effects of the Lense-Thirring precession into account with no
approximation.

Key words: accretion, accretion discs - black hole physics - relativity - celestial

mechanics, stellar dynamics - galaxies: active.

1 INTRODUCTION AND MOTIVATION

General interest in the study of star-disc interactions in the
nuclei of galaxies has greatly increased in recent years. This
is partly due to the fact that they appear important in
explaining the X-ray variability of active galactic nuclei
(AGN). Although it is generally believed that many galaxies,
and active galaxies in particular, harbour massive black holes
in their cores, there is no direct observational confirmation
for this paradigm. The origin of this difficulty is apparent: the
complicated plasma physics of the matter swirling around the
black hole makes it difficult to distinguish the effects of
general relativity - although they may be essential for the
mechanism of energy generation itself. A potentially very
important observable is X-ray data on the variability of
active galactic nuclei (for a recent review, see Wallinder, Kato
& Abramowicz 1992). Although our understanding of the
origin of X-rays is not satisfactory, it is often accepted that
they are generated in the inner regions of the accretion disc,

where general relativistic effects are significant. When trying
to describe these effects, it is useful to separate the details of
the radiation-generating mechanism (described in the local
frame comoving with the matter), i.e. the local physics of the
interaction, from observable effects as seen by a distant
observer. In our previous work (Karas, Vokrouhlicky &
Polnarev 1992, hereafter Paper I), we developed a code
which can be used in many astrophysically relevant situations
to calculate images of various effects occurring in the close
vicinity of the rotating (Kerr) black hole. Our code deals effi-
ciently with problems treated originally by Cunningham &
Bardeen (1973). All relativistic effects on photons (such as
gravitational and Doppler shifts of frequency, and bending of
light rays) were taken into account. As an example, we
applied the code to the ‘hotspot’ model of the periodic AGN
variability. This model explains the X-ray variability on a
time-scale of approximately 3 h in terms of a bright orbiting
spot (or spots) located on the accretion disc (Abramowicz et
al. 1992). We also discussed the case of a large number of

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993MNRAS.265..365V&amp;db_key=AST

BVNRAS, 265, ~365bV

rt

366 D. Vokrouhlicky and V. Karas

spots with different intrinsic characteristics, which may be
relevant to an explanation of the X-ray variability of AGN on
still shorter time-scales (Abramowicz et al. 1991).

In this paper we present a method for calculating the
evolution of the orbital parameters of a compact star orbiting
a massive black hole. Such a star may come from a binary or
a cluster tidally disrupted by the central black hole (Hills
1988; Novikov, Pethick & Polnarev 1992). It can be depo-
sited in a tightly bound orbit with a close pericentre where
relativistic effects are important. The star interacts with the
accretion disc only at the moment when it crosses the equa-
torial plane, and this interaction weakly affects its motion.
Cumulative effects of successive tiny interactions circularize
the trajectory and change the orbital plane into the plane of
the disc. Mutual star-disc interactions were discussed by
Syer, Clarke & Rees (1991) as a possible origin of the
fuelling and variability of AGN. In particular, they discussed
relative time-scales for circularization of the orbit and its
alignment with the disc plane, and the final radius of the
embedded orbit. Naturally, quantitative estimates depend on
poorly known details of the interaction (cf. Zurek, Siemigin-
owska & Colgate 1992). A compact star colliding with an
accretion disc is one of the viable models for the periodic
variability of AGN (Abramowicz 1992; Sikora & Begelman
1992; Rees 1993). At present we still lack a comprehensive
analysis of observational data which would suggest suitable
candidates for such objects. General relativistic precession of
orbital nodes (the Lense-Thirring effect) - if detected -
would strongly support models of AGN that involve rotating
supermassive black holes. Lense-Thirring precession affects
the inclined trajectory of a star, but it has been discussed only
in the special cases of free orbits with a large radius
compared to the gravitational radius of the central black hole
(Lense & Thirring 1918) and spherical orbits around an
extreme Kerr black hole (Wilkins 1972). We consider the
more general case of eccentric orbits that interact with the
equatorial disc, and we do not assume any particular value of
the angular momentum of the central black hole.

Star—-disc interactions are a complex problem. Because we
assume that the disc produces only a weak perturbation of
free motion of the star, we can attack the problem in several
steps. The present paper concentrates on an effective
method for calculating the free motion of the star between its
successive interactions with the disc. Simple examples of how
star—disc interactions may change the picture are given in the
final section, and they will be discussed in a forthcoming
paper in greater detail. Detailed calculation of the
Lense—Thirring frequency relevant for this model will be
given elsewhere (Karas & Vokrouhlicky 1993). Once the
motion of the star and its interaction with the disc are speci-
fied, we can apply the method of Paper I to compute the
shape of the light curve or resultant spectrum (see also Cun-
ningham & Bardeen 1973; Luminet 1979; Laor & Netzer
1989). Recently, Fabian et al. (1989), Kojima (1991) and
Laor (1991) applied an analogous approach to study line
profiles from accretion discs. For a more complete list of
references, see Paper 1.

Let us briefly describe the configuration of the model. We
consider a low-mass compact object (white dwarf, neutron
star or black hole) orbiting the central massive black hole of
the AGN. In our approach, we restrict ourselves to the
assumption that the orbiting object moves along a time-like

geodesic in the unperturbed background Kerr metric outside
the equatorial plane. Thus we implicitly assume that (i) the
orbiting object is sufficiently compact and/or far from the
central black hole (we neglect any coupling of the higher
multipoles of the star to the background curvature), and (ii)
its mass is very small compared to the mass of the central
black hole (we do not consider perturbations of the back-
ground metric). We also neglect the influence of radiating
gravitational waves. In several astrophysical situations, such
assumptions may not be appropriate - see, for example,
Carter & Luminet (1983), Luminet & Marck (1985) and
Carter (1992), who studied tidal squeezing of the stars by the
nearby black hole. Thorne & Hartle (1985) and Suen (1986)
developed a scheme for multipole-tidal interactions of rela-
tivistic objects. For the motion of black holes that are close in
distance and comparable in mass, see, for example, D’Eath
(1975a,b). We do not consider such extreme situations in this
paper. Kates (1980) has shown that the star will move very
nearly along a geodesic in the unperturbed background
metric for a sufficiently long time, provided that the ratio of
its mass and the characteristic reference length of the back-
ground metric is small. We have in mind situations where this
parameter is of the order of 105 or even less. This is import-
ant to note, because we will attempt to follow the trajectory
of the orbiting object for long periods of time. Next, we
assume that the accretion disc is in the equatorial plane of the
central black hole. We exclude thick-disc models from our
present considerations. Each time the object crosses the
equatorial plane, it interacts with the disc (provided that the
intersection is between the outer and the inner edges of the
disc). In other words, we assume that the trajectory consists
of arcs of free geodesic motion above (or below) the disc
plane and impulsive changes of the orbital parameters at the
moment of passage through the disc. The whole ‘physics’ of
the problem is compressed into the prescription governing
the. changes of the orbital parameters when crossing the
equatorial plane. The interaction is assumed to be very weak,
which implies that relative changes of energy, angular
momentum and other quantities characterizing the orbit of
the star are much less than unity in each single event. We
should note that the geodesic motion in the Kerr space-time
is integrable; thus a strong dependence of the shape of the
orbit on initial conditions, which is typical for chaotic
motion, cannot be expected in the Kerr space-time. An
alternative approach, which employs a statistical description
with appropriately averaged quantities, is in preparation.
The separation of dynamical and physical aspects, which we
introduce in the present paper, appears to be very advantage-
ous, and it allows us to employ a fast method to compute the
evolution of the orbital parameters.

2 THE MAPPING: DETAILS OF THE
CALCULATION

We consider the geodesic motion of a test particle (represent-
ing a star or a low-mass black hole) in the fixed Kerr back-
ground metric. We are interested only in short arcs of
geodesic motion, with the following boundary conditions: the
initial point (indexed ‘i’) lies in the equatorial plane (6=rm/2
in Boyer-Lindquist coordinates); the final point (indexed ‘)
is the nearest successive intersection of the orbit with the
equatorial plane. We employ a ‘mapping’, by which we mean
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an analytical algorithm to evaluate the final position (r;, ¢;)
from the initial position (r;, ¢;) with constants of motion
assumed to be given. In applications, we also need to know
the transformation from initial to final velocities dr/dz, d 6/d¢
and dg/dr to obtain the full starting information for the
physical model of the interaction of the orbiting object with
the accretion disc. The whole procedure is trivial in prin-
ciple, because the geodesic motion is separable in the Kerr
background metric and the equations of motion can be
reduced to a set of ordinary first-order differential equations
(Carter 1968). Our main task is to handle the problem effi-
ciently.

Carter’s equations involve squares of the velocities. As the
star crosses the equatorial plane, the latitudinal velocity
changes its sign periodically. In order to treat the case of the
radial velocity, we introduce the sign function # =sgn(dr/dz).
Thus our mapping is the analytical transformation

(r, ¢ m); - (r, ¢ M)

We will also be interested in analytical evaluation of the delay
in coordinate time that is necessary to pass from the initial to
the final configuration in the disc plane: (¢ — ¢). In particular,
this is important for reconstruction of the AGN photometric
curve, provided that its variability arises from similar perio-
dic processes to those described here (star—disc interactions)
(Karas & Vokrouhlicky 1993).

It is worth noting that the code based on this mapping
technique is optimized as far as both the speed and the
accuracy are concerned. The effective step of the method is
the whole orbital arc, and it cannot, in principle, be made
greater. Moreover, the exact analytical solution of the
problem is chosen as a sample function covering one integra-
tion step (instead of, for example, polynomials in
Runge-Kutta methods). We remark that the name ‘mapping’
comes from analogous methods developed in celestial
mechanics (e.g. Wisdom 1982; Murray 1986).

We use the standard notation for the Kerr metric (Bardeen
1973). Quantities with the dimension of length in geomet-
rized units are divided by the mass of the central black hole,
M, and they are thus made dimensionless. Time-like geo-
desics in the Kerr space-time can be integrated in the form

"rr’+a’) & +2ar(af - D) " 4’8 cos’6
L—t= 7 dr 7 46,
AR(r) 6 ©(0)

i

(1)

2 [ 2
"rO+2rHas—P) "®cot’ 6
¢f ¢l Jn AR<r)l/2 r Je @(0)1/2 de’ ( )

i

"o dr % de
= 3
J,i R(r)l/2 Jgi @(0)]/2 ( )
(Carter 1968). Here,
R(r)=(&2-1)r*+2r +[(#2-1)a®? —®2— Q] r?

+2H4r—a’Q, (4)
0(0)=Q —[a*(1 —&?)+ ®?sin"26] cos? 6,
Q=H—(®—asP, (5)
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and
S =r2+a? cos?6, A=r’+a®-2r,
A=(r*+a??—Aa?sin? 6.

The constants of motion, &= —p,, ® =p, and %, can be
expressed in terms of components of the four-momentum in
the locally non-rotating frame (LNRF):

SAV? . 2ar
e=I\7) Prsampt|
[( A ) (ZA )1/2 r, 6=mn/2

12
o6 7. 0

H=[(@—aéV+Z(p*V], o=npn- (7)

Components of the four-momentum in terms of direction
cosines in the local sky of an observer at rest with respect to
the LNRF are

pi=y, p'=yvcosa, p?=yvsina cosp,

p?=yv sin a sin g, (8)
where v is the tetrad velocity of the particle in the LNRF, and
the Lorentz factor

1

y=
1-v

Specification of the initial conditions as a result of the
star-disc interaction in the local frame comoving with the
disc matter requires another boost to the disc corotating
frame (DCF). In the case of a Keplerian thin disc in the equa-
torial plane, the linear velocity of the DCF with respect to
the LNRF is

rr=2ar'? + 4

It is known that integrals (1)—(3) can be reduced to standard
elliptic integrals, but only the simplest cases have been dis-
cussed in the literature. The explicit form of relevant for-
mulae depends on the values of the constants of motion and
initial conditions. We shall restrict ourselves to the most
interesting astrophysical case: stable, energetically bound
trajectories that cross the equatorial plane many times re-
peatedly. Thus we assume 0<&<1. We exclude singular
cases of orbits lying exactly in the equatorial plane (Q=0:
Bardeen, Press & Teukolsky 1972), or those intersecting the
rotational axis (® =0: Stoghianidis & Tsoubelis 1987); we
also exclude the case of the very fast rotating black hole,
a=1.1In the Schwarzschild case (a = 0) the geodesic is always
planar, while a # 0 leads to the Lense-Thirring precession of
the orbit and we have to take into consideration the dragging
of the nodes [Wilkins (1972) discussed this effect for spheri-
cal orbits in the extreme Kerr case].

First, we simplify the integrals (1)-(3) to a form that can be
directly found in standard tables of elliptical integrals
(Grobner & Hofreiter 1965; Byrd & Friedman 1971;
Gradshteyn & Ryzhik 1980). For this purpose, we need to
find the roots of R(r)and ©(6). The real roots are the turning
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points of the radial and latitudinal motions, respectively. We
specify the initial point of the geodesic as (£, 7, 7/2, ¢;), and
we look for the final position (4, r;, /2, ¢) which is in the
equatorial plane again. The polynomial R(r) governing the
radial motion is of the fourth order, with R(r)=0. In our
case, R(r)<0 for r~ % and r=0. Thus we can find two real
roots, 7,E€(0, r;) and rzE(r;, ©), and for the remaining two
roots we obtain the quadratic equation
aQ
@ =1) P +[(E> = 1) (ry+rp)+2] r——==0. (9)
Tals

Supposing that all roots are real we can denote them, in a
descending sequence, as r,>r,>r;>r,. We exclude the
possibilities of multiple roots because such situations are
singular in the sense that they occur for precisely arranged
values of & and ®. The probability that interaction with the
accretion disc will lead to such values is zero (in the measure
sense). Thus we have

_J dr 1 J dr
I,= 7
R 1= L [r=n)r=r)(r=r)(r=r]

In the case of two real and two complex roots (7, > r, and rs,
75, respectively), we obtain

.(10)

1 dr
I,= J , (11)
1-¢7 (”1")("’2)4“"%1) +X§
where
x1=Re(r;),  x,=Im(ry).

The latitudinal motion is governed by the polynomial
©,(u)=sin?0©(6) (equation 5). Solving the bi-quadratic
equation in u = cos 6,

A(1=&*)ut=[Q+a*(1-62)+ @] u?+ 0 =0, (12)

we obtain the roots u, >u_>0. The latitudinal motion is
only possible in the region 4 €(—u_, u_), and

du 1 du
Iﬂ:J 2= J . (13)
01" ofi=8 ) W= =)

Analogously, the azimuthal motion can be solved in the form
¢~ ¢=[2(a6—D®)A, +®B,] I,
+[2(a8-®)A_+®B_|I_+®J,, (14)

Finally, for the time coordinate we obtain

41— t=8(J,+2K,)+2[B,r.&+alad-d)A,] I,
t2[B.r &+alas—®)A_11_+481,+a%K,, (16)

with

2 2
redr rdr udu
J=|—=%, K,=|—5, K=|"—. 17
r J’RI/Z J’R]/Z 13 J’@ﬂ([u)lﬂ ( )

It is straightforward but moderately tedious to derive the
explicit form of the mapping. We give relevant formulae in
Appendix A.

3 THE EVOLUTION OF ORBITS: SIMPLE
EXAMPLES

There are several interesting issues closely related to our
problem that have not as yet been fully understood. In this
section we present simple examples of secular changes of the
orbital parameters of a star orbiting a supermassive (10°-10°
M,,) black hole and interacting with the accretion disc. In
particular, we study the eccentricity and inclination of the
orbit, as they are introduced in Appendix A. Differences
from previous estimates that have been made within the
framework of Newtonian gravity are found to be significant
for nearly unstable orbits. These differences can be very
subtle and can interfere with the details of the star—disc inter-
action, and thus at first we adopted an extremely simplified
(and perhaps unrealistic) description of the interaction. The
Lense-Thirring precession of the orbit was included fully
relativistically, with no approximation. This is important for
the particular example that we discuss below. The mass of
the black hole is assumed to be about 107 M, for definite-
ness. This means that the periodicity of the modulation of the
X-ray emission on a time-scale of several hours corresponds
to a radius of the orbit a factor of a few tens greater than the
gravitational radius of the black hole - rather close to the
horizon = where approximation methods for the
Lense-Thirring precession are no longer satisfactory. We
should note, for completeness, that, if the star—disc interac-
tion is switched off, the eccentricity of the orbit remains con-
stant in time and the value of the precession is exactly that of
the Lense-Thirring precession.

In the following examples, we tune the strength of
the star-disc interaction in such a way that the relative
change of orbital parameters is of the order of =107 in
each interaction, and we follow = 10° revolutions. Each of
the following figures shows the sequence of radial coordi-
nates 7 for successive intersections of the trajectory with the
disc - one point corresponds to one intersection, while two
intersections correspond to one revolution of the star. (Alter-
natively, instead of the number of intersections N we could
use coordinate time ¢ to label the x-axis; the figures remain
very similar in shape, but this alternative possibility appears
more adequate for plotting computed light curves which
should be related to the observer’s time at infinity.) The upper
and lower boundaries of the distribution of intersections are
current values of the apocentre and the pericentre, respec-
tively. Intersections are (seemingly randomly) scattered in the
whole range between these boundaries, due to the shift of the
pericentre and Lense~Thirring precession (if a#0). Fre-
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quencies corresponding to both of these effects are quantita-
tively studied by Karas & Vokrouhlicky (1993).

In the first example we assume that, as a result of the inter-
action, the difference in the azimuthal components of the star
and the disc material (evaluated in the DCF) is reduced:

Avy per = axAU, por, (18)

where a4 is a phenomenological parameter <1. Initially
retrograde orbits (those with I>90°) decrease the absolute
magnitude of their ®-component of angular momentum due
to interactions with the disc, and they either get captured by
the black hole or become prograde. Once they are prograde,
the star acquires angular momentum from the disc and
moves away from the black hole. Simultaneously, both the
eccentricity and the inclination decrease, and the orbital
period increases. The effect of energy dissipation due to
crashing through the disc is not considered in equation (18).
The model is of course inadequate when the inclination
reaches zero and the star becomes a part of the disc. Fig. 1 is
an example of such an orbit. As mentioned above, the unper-
turbed geodesic motion in the Kerr metric is integrable, and
thus we do not expect the characteristic time for circulariza-
tion or changing of the trajectory to the disc plane to depend
on particular values of the initial position or directions -of
velocity of the star.

Our second example is a modification of the model
studied by Syer et al. (1991). It is complementary to the
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previous one because energy dissipation is now considered,
while the difference in azimuthal velocity of the star relative
to the disc material is ignored. We suppose that the star hits
the disc supersonically and draws some of the material, with
a mass Am= py by A sin ™I out of the disc; here, oy,
and Ay, are the local density and thickness of the disc,
respectively, and A is the effective cross-section for the
star—disc interaction. The energy dissipated during the inter-
action is proportional to the kinetic energy acquired by the
disc material, A&, < Am(ypce—1). We assume that the
acceleration of the star that results from this interaction is
antiparallel to the velocity of the star, and the corresponding
change of the velocity is

A&y o — POdisc hdiscAeff< YbcE— 1 ) v

Av=— R
My Ypcrl

19
m*yECFUZ sin / (19)

(We should note that the last equation for the star-disc
drag becomes inappropriate and must be modified when
the motion of the star is subsonic and the disc material is
directly accreted on to the star. The motion is highly super-
sonic, with a Mach number of the order of 102-103, under
the conditions that we consider.) Naturally, o4, and Ay,
depend on the disc model. Because we do not want to enter
into these additional details, we assume that they, as well as
A, are constant. [We have also carried out computations
using the density profiles corresponding to the Novikov &
Thorne (1973) relativistic thin-disc model, which yield only

100

50
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60 80 100

10 °N

Figure 1. The sequence of successive intersections with the disc. We plot the radial coordinate r of the intersection on the ordinate and the
number of intersections N on the abscissa. For N 2 5 X 10* the upper and lower boundaries of the distribution of intersections in the figure get
closer to each other, which means that the eccentricity of the orbit decreases; simultaneously, as the orbit is circularized it is also dragged into the
plane of the disc. In this case, a=0 and a4 =0.9999. The initial pericentric distance is 7, the eccentricity is 0.7, and the inclination /=103°. The
arrow indicates the moment when the orbit changes its character from retrograde to prograde (1=90°).
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moderate modifications to the results.] Fig. 2 illustrates two
typical cases - both orbits are initially prograde with (a)
I'=35° and (b) I=80". In general, the final radius of the orbit
can be either larger (for small values of the initial inclination)
or smaller (for large values) than the initial pericentre. We

find that initially retrograde orbits became captured in this
model. This feature can be naturally explained as follows.
Dissipation of the orbital energy during each intersection
with the disc tends to increase the binding energy of the
orbiting object. In the case of originally prograde orbits,

o
o
M |
r
(]
O k
Sk
s}
o
SRS
SR
0 20 40 60 80 100
Q
(@}
Lap]
r
o
o
N
o
o
=

60 80 100

10 °N
Figure 2. As in Fig. 1, but for the second model of the star-disc interaction (equation 40). The initial pericentric distance is 30 and the
eccentricity e=0.83. Two initial inclinations are compared: (a) I=35°, (b) I=80°. The proportionality constant in (40) is taken as 105, The
originally less inclined orbit (a) settles on the circular orbit in the disc with a radius of = 53, while the more inclined orbit (b) becomes circular-
ized at a radius of =~ 17.7. We have verified, as an example, that if the initial pericentre is kept at 30 the results are not very sensitive to the initial
eccentricity, provided that itis 2 0.75.
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however, the orbiting object gains a sufficient amount of
angular momentum, which saves it from being captured by
the black hole. Finally, the object settles into a circular orbit
in the disc plane. An object that started with a retrograde
orbit, however, does not acquire enough angular momentum
during the period of nearly perpendicular intersections with
the disc. Due to continuous losses of energy, it is typically
captured by the hole.

To clarify previous results based on the relativistic treat-
ment, we have compared them with the corresponding New-
tonian ‘elliptic’ mapping (see Appendix A). To be consistent,
we have also reduced the formulae for the star-disc interac-
tion by eliminating the Lorentz factor ypcr in (19), and,
instead of the Lorentz boost from the LNRF to the DCF, we
have used the Galilean transformation. Fig. 3(a) shows the
fully relativistic model with the Schwarzschild background
metric, while Fig. 3(b) is the Newtonian analogue. We have
chosen formally the same initial eccentricity and inclination
in both figures: e=0.83 and I=130°. The orbit is initially
retrograde and in the relativistic case it is captured by the
central black hole. In contrast, this does not occur in the
Newtonian case, and the orbit is circularized to some definite
radius. (In a realistic case, however, the orbiting object can be
tidally disrupted before it is captured, but this depends on its
internal structure and we do not consider such a possibility
in the present paper.) Because the interaction of the orbiting
object with the disc is always chosen to be weak, the time-
scale for the precession of the pericentre is much shorter
than the time-scale for the evolution of the other orbital para-
meters. As a consequence, the points of intersection with the
disc fill the interval between the current pericentre and the
apocentre in the relativistic case (Fig. 3a). There is no preces-
sion of the pericentre in the Newtonian case, and thus only
an ‘adiabatic’ evolution of the orbital parameters is seen (Fig.
3b).

We also show the results of an integration with the nearly
extreme Kerr black hole. In this example, we have chosen
a=0.9981 for definiteness (Thorne 1974), the same initial
eccentricity and inclination, and the same initial apocentre
and pericentre (expressed in units of gravitational radii) as in
Fig. 2. We observe (Fig. 4) a slightly shorter circularization
time than in the corresponding Schwarzschild case, but the
qualitative features of the disc-orbit interaction remain
unchanged. They may be changed, however, when details of
the structure of the accretion disc are taken into account,
because the structure of the disc and the location of its inner
edge depend significantly on a. Again, we find that initially
retrograde orbits get captured by the black hole.

4 CONCLUSIONS

We have assumed that the low-mass compact object inter-
acts with the thin accretion disc twice per revolution -
exactly when it crosses the equatorial plane of the black hole
(the impulsive approximation). We have described the
relevant equations and we have employed them in a fast
numerical code to compute the evolution of the trajectory.
We have found that the effective time of circularization is
shorter than the time to change the orbital plane into the
plane of the disc. This conclusion is in accordance with the
previous results of Syer et al. (1991), based on Newtonian
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gravity. However, we have also observed short periods
during the evolution when eccentricity increases. In parti-
cular, this increase occurs in the model described by equa-
tion (18) during the transition period when the initially
retrograde character of the orbit is changed to a prograde
one.

The star-disc interaction is described by a phenomeno-
logical parameter characterizing the magnitude of the change
of orbital parameters in each collision. This phenomenologi-
cal description is satisfactory provided that the disc remains
thin and the orbital parameters are changed only at the
moment of transition of the star through the equatorial plane
of the central black hole. A description of the interaction that
would result from a detailed physical model is not crucial in
this case; we want to improve our understanding of the inter-
action in future work. Effects of the dynamical friction and
direct accretion acting on an object moving through the
gaseous medium have been studied by a number of authors
under various conditions (recently by Petrich et al. 1989). In
our highly supersonic and turbulent case, the approach out-
lined by Zurek et al. (1992) appears to be the most appropri-
ate one.

One can specify parameters of the model for the case of
NGC 6814, Each single long-duration observation by
EXOSAT or Ginga covers less than 30 revolutions of the orbit-
ing object. The characteristic time-scale for the precession of
nodes is much longer than the orbital one. The estimate that
adopts the maximum value of a=1 and a radius of the orbit
of 50 gravitational radii of the central black hole yields a
ratio of the Lense-Thirring to the orbital frequency of
=~(.005. This means that the orientation of the orbit is not
significantly changed during each observation. However, the
interval between EXOSAT observations and Ginga observa-
tions was certainly long enough, and a resulting change in the
orientation would suggest an opportunity to understand the
perfect stability of the orbital period detected by both satel-
lites and, at the same time, the puzzling change in the light-
curve profile. We do not want to speculate further on this
important subject until more reliable data are available.
Star-disc collisions are presumably crucial for the theory of
all AGN that harbour a dense star cluster in their core.

To conclude, adopting the model of star—disc interactions
as an explanation of the origin of the periodically variable
light curve, we see one important contribution from general
relativistic effects which is due to the pericentric shift and
Lense-Thirring precession. These effects drag the point on
the orbit where the star crashes through the disc. They also
modify the velocity at which the star hits the disc, as well as
the orientation of the orbit with respect to the observer. This
fact has two consequences: (i) additional periodicities corre-
sponding to the precession frequencies are present, and can
potentially be revealed in the power spectrum of the signal
from the source (Karas & Vokrouhlicky 1993); (ii) long-term
evolution of marginally stable and marginally bound orbits is
very different from that of orbits with identical initial para-
meters treated in the Newtonian theory of gravity. The first
consequence above suggests that it may be possible to detect
Lense-Thirring precession induced near the core of an
AGN. If the corresponding frequency is not present, we will
be able to conclude that the central black hole (if any) is non-
rotating, This would be extremely important information,
especially from the point of view of electromagnetic
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Figure 3. The graph (a) shows a similar orbit to those in Fig. 2, but now the initial trajectory is retrograde with an inclination of 130°. As
commented upon in the text, it is captured by the central black hole. The graph (b) shows the ‘Newtonian analogue’ of (a). Only the ‘adiabatic

evolution’ of the apocentre (upper curve) and the pericentre (lower curve) is seen, and there is no shift of pericentre.
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Figure 4. Orbits analogous to those in Fig. 2, but with a nearly extreme Kerr metric (a=0.9981). The initial pericentric distance is 15 (the

same as for the Fig. 2 orbits if expressed in units of the gravitational radius of the central black hole). The initial inclinations are again chosen to
be I=35°(a) and 1 =80° (b).
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scenarios of AGN that require a rotating black hole. The
second consequence is particularly important in describing
the capture of the star into a bound orbit around the central
black hole. Although many models assume a star to be
located on such an orbit, the very process of the capture is
not well understood.
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APPENDIX A: THE MAPPING ALGORITHM

This appendix outlines the explicit form of the mapping
(r, ¢ )~ (r, ¢; n); from Section 2. Although our approach is
straightforward, we believe that it has not yet been employed
by other authors. As we found it very advantageous for prac-
tical purposes, we describe derivations relevant for this work
in some detail. We constructed a numerical code, which
employs efficient routines for evaluation of elliptic integrals
and Jacobian elliptic functions (Press et al. 1986; Press &
Teukolsky 1990). The code achieves better precision and
about two orders of magnitude higher speed compared to
direct numerical integration of the geodesic equation in its
equivalent form of first-order differential equations. (We
used direct integration to check the code.) The two cases,
0<a<1 and a=0, are technically somewhat different, and
we discuss them separately.

Al Thecase0<a<1
The steps to be followed are described below.

(i) Evaluate the latitudinal integral between two successive
intersections with the equatorial plane:

2
Lo 1=87

where K (k) denotes the complete elliptic integral of the first
kind.
(ii) Distinguish the three cases that may occur:

K(u-/us)s (A1)

case I - four real roots of R(r)=0, r,<r<rs;

case II - four real roots of R(r)=0, r,<r<r;

case III - two real and two complex roots of R(r)=0,
R<r<r.

Denote n;=1(»n;= —1) if r is increasing (decreasing) at r;;
analogously, 7 for r;.
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(iii) Evaluate the increase of I, between each pair of radial
turning points:

xK (k) (cases I and II),
oI = 5 (A2)

—— K(k;) (case III),
Ipq(1-&7)

where
_("1_72)("3_"4) _(rl"’z)z_(P_‘I)2
kl_ Py k2_ )
(ry=r3)(ra—ry) 4pq

PP=(xi—nlP+x3 = —r)+x},

2
K= —-
‘/("1 =r3)(r,—r)(1-67)
(iv) Denote
xF (@, k) (cases I and II),
f= 1
—— F(@, k,) (case III),
Ipq(1-67)
o |mol,—nf it n7;>0,
I,= . (A3)
(m=ny) 0L +nf  if 9 <0.
Here,
(ry=r3)(ri—r) (case ),
. (rs—r)(r—r
sin? ¢ =
(r=r)(ri—n) (case 1),
(r=r)ri—r
tan’ E=liri—_r—2) (case III);
2 q(r—n)

F(g, k) is the incomplete elliptic integral of the first kind,
and m is the number of turning points in r between the two
successive intersections. In addition, one has to check
whether the trajectory still remains above the horizon if the
lower turning point is located below the horizon.

(v) The radial coordinate of the intersection is

(r —r3)‘r4+(r3—r4)r,o

caseI),
n—rit(n—r)o ( )

r= (A4)
(rn—r)n+(rn—n)ro

(case II),
rn—r—(rn—n)o

with
o=sn?(u, k)
and

u=%\/(71 —r3)(r

_r4)(1 _éoz) (1;4 _ir)9

or

_gno+tpn

»+q0 (case II), (AS5)

f
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with

_ sn’(u, k)
T +en(u, k)

and
u=Jpq(1-&%)(1,~1,).

Here, sn(u, k) and cn(u, k) are Jacobian elliptic functions.
At this point, we are able to compute the r-coordinates of the
intersections, which are sufficient to determine the evolution
of eccentricity and inclination of the orbit and the number of
revolutions before the trajectory is captured by the black
hole or escapes to £=1 (and then presumably to infinity);
¢-coordinates are also needed if we wish to study the pre-
cession. Finally, we need coordinate time to relate the
revolutions to time as measured by a distant observer. In case
III the orbit is in practice captured by the black hole after a
few revolutions. Thus we exclude this case from further
consideration.
(vi) Evaluate the following quantities.

CaseI:
L=wx.[(r,—r) (@, ny, k) +(ry —r,) F(o, kn)]"'ir, (A6)

2 2
Vi+r, 7 ) V2]+J,+2K,,
a

(A7)
with
U=F(g, k), V,=I(g, —a? k),
V- . <*Elg, k)

2(a’—1)(k}—a?)
+Qa2k2+2a2—a*—3k) V, +(k2—a?) U

4
a

—sn(U, k) en(U, k,) dn(U, k,) = a?sa(U. k)|

2_hTrs 2_’1(’4"’3)
a =, al——_a
r—r ro(ri—rs)
ro—r)rn—r
it gt

rs—ry)(r—r)
2

(re =r)(re = im =) —r)(1 - 67)

Case II:

Iy =w((ry=r3) (@, ny, ky) +(re —1y) Flo, ky)]+ I, (A8)

Ki=
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(ro=ri)(rs—rs

- )
* (ry _"3)(ri"r2)’

2_
J,+2K,=1<r2[(r . +2—2) u+2 22y,
a a

_ 2y
+2r2a%a a4a‘ Vitr, o ) V2:|+‘ir+2Kr’

(A9)
with U, V; and V, defined as above, and

2 Th 2_"3("1“”2)
a _—_’ al_—9
ryTrs r2(rl_r3)

(ri=r3)(ri—n)

.2
sin“g=
(ry=r)(ri—rs)

>

2
(re _"3)<72_”1)‘/(”1 —r3)(r,—r)(1 _ébz)

E(g, k) and TI(g, n, k) are incomplete elliptic integrals of the
second and the third kind, respectively, and dn(U, k) is a
Jacobian elliptic function. Integration constants /., J,and K,
are the values of the integrals in (15) and (17) evaluated
between r; and the last turning point. Thus they depend on
the number of turning points in r(m) and the sign of the
initial radial velocity (#,), and they can be given in terms
analogous to equation (A3). We skip explicit expressions,
because they are rather lengthy.

Ky =

(vii) Finally,
2
Jo=—————TM(=p, u_[u.) (A10)
e T
K, =D (K )~ Elu ), (AL1)

a\/l—é"7

with E (k) and I1(n, k) being complete elliptic integrals of the
second and the third kinds. Now we have all the necessary
quantities for complete mapping of relevant trajectories in
the Kerr metric.

A2 The Schwarzschild case (a=0)

We present the case of the Schwarzschild background metric
separately, even though the general formalism developed for
the Kerr metric can also be applied. The reason is two-fold. (i)
The formulae valid for the general Kerr metric often include
the angular momentum parameter a in the denominators (e.g.
equations A10 and All). These apparent singularities
cancel out in the limit a— 0, but they are the source of diffi-
culties in numerical evaluation. (ii) As the symmetry of the
space—time is now higher, and geodesics in the Schwarzschild
metric remain always planar, we can avoid integration of the
latitude 6, restricting ourselves to the current orbital plane of
the test particle spanning one loop of the trajectory above/
below the disc (the true orbital plane of the object is changed
due to the interactions with the disc). Thus we reduce the
order of the mapping by evaluating the integrals in polar
coordinates in the orbital plane. The orbital plane differs
from the disc plane by the current value of the inclination.

We consider the following coordinate systems: (i)
Schwarzschild spherical coordinates (r, 6, ¢); the latitude 6 is
measured from the axis of the disc plane and the polar angle
¢ is measured in the disc plane (the ¢=0 direction can be
chosen arbitrarily); (ii) (, &) polar coordinates in the current
orbital plane of the orbiting object, where the angle ¥ is
measured from the actual nearest preceding apocentre of the
unperturbed trajectory with the current orbital parameters.
Let us clarify better the concept of the ¥-origin, as it is
intimately connected with our technique. The analytic
integration of the geodesic motion in the Schwarzschild
space-time is advantageously carried out if the polar angle in
the orbital plane is measured from the nearest preceding
apocentre. In each step of the mapping procedure, we are
interested only in one orbital loop above/below the accretion
disc; then the interaction with the disc changes the orbital
parameters for the next loop. It is this orbital loop
where the free motion of the test particle in the Schwarzs-
child background is applied. However, the orbital loop that is
under consideration may not necessarily contain the apo-
centre of the orbit. Thus, apart from the true trajectory of the
object, we introduce a reference trajectory of the object, with
the same orbital parameters as the true one and coinciding
with the true trajectory only on the current segment. This
fictitious reference orbit defines the d-origin - it is measured
from the nearest preceding apocentre of the reference
trajectory.

The equations of motion covering a single mapping step
are as follows (e.g. Chandrasekhar 1983):

" du
0f—ﬂa(=n)=Jri Ta)? (A12)
& ™ dd
_ =0 94U Al
k=L fJgi uz(l_zu)a ( 3)

where
Ulu)=2u-u?+22 u—(1-62) 22,
and u = 1/r. Constants of motion are defined as &= — p, and
& =p, (note that angular momentum % is defined with
respect to the fictitious orbital plane, not with respect to the
disc plane like ® in the Kerr case). They are related to the
tetrad components for the four-momentum in the locally static
frames by means of equations (6) and (7). We define I=
(;/2) = B as the inclination of the fictitious orbit with respect
to the fixed reference disc plane (it can be equivalently
expressed using the LNRF tetrad components in the equa-
torial plane: tan I = p%/p#, cf. equation 8).

Again, we will concentrate on orbits characterized by
& <1 and &£ #0. The signs of the first and the last terms of
the polynomial U(u) guarantee at least one positive root of
the equation U(u)=0 and, as U(u=0)<0, we conclude that
this root corresponds to the apocentre of the orbit. The type
of the orbit is determined by the properties of the other two
roots of the equation U(u)=0. The roots cannot be real and
negative at the same time (Chandrasekhar 1983). We exclude
the possibility of multiple roots, as before. Hence we are left
with the two kinds of orbit characterized by

(1) the three positive real roots of U(u)=0, which we
arrange according to magnitude: u; <u, <u,, and

(2) one positive real root (#,) and two complex conjugated
roots (u,, u;) of U(u)=0.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993MNRAS.265..365V&amp;db_key=AST

BVNRAS, 265, ~365bV

rt

The item (1) still encompasses two types of orbit: (i) those
captured by the black hole in the sense that they have no
pericentre above the horizon (the apocentre of such orbits is
always less than 6, where the last stable orbit and presumably
the inner edge of the accretion disc are located in the
Schwarzschild case; hence we do not consider these orbits);
(ii) quasi-elliptic orbits bound between the turning points, u,
and u,; we will call them case I orbits. In the terminology
used by Chandrasekhar (1983), our case I orbits correspond
to the orbits of the first kind. We call the case II orbits those
of type (2) above. They have no pericentre, and fall unavoid-
ably to the black hole (they correspond to the orbits with
purely imaginary eccentricity in Chandrasekhar’s termino-
logy).

One can easily find a simple rule to distinguish both types
of orbit: #2< 12 implies the case II orbit. The case I orbits
are characterized by & 2> 12 and, simultaneously,

(1 —2ug)(1+ 2%u3)> &2,

where uy=1+|2|"'J£7=12. In what follows, we will
describe an algorithm for the mapping of these two types of
orbit in detail. We will pay special attention to the case I
orbits, as they will be shown to be the most important in
astrophysical applications.

A2.1 Casel orbits

In close analogy to the Newtonian case, equation (A12) is
advantageously integrated in terms of the relativistic ‘true
anomaly’

u(y)=wu(l+ecosy),

where

u1+u2 U, — U,
= ——— e=——,
2 7 u, +u,

The quantity e can be interpreted as the eccentricity of the
orbit. We do not write the explicit form of primitive functions
obtained by integration (Chandrasekhar 1983), but we give
formulae for the mapping that we need in our present work.
After some manipulation, we arrive at the following form of
the mapping:

o=ty (11— [Jd><1>aJ(1 —K0)(1-Ko,)+ niJ\PlIfa]z’

1-Kod,
(A14)
where now
¢=ui_u1’ ‘p=u2—ui,
U, — Uy U, — Uy
':I>a=sn2 (g w, k) R lPa=cn2 (g w, k) s
w=y1—-2u,—4u,, E=2(u,—u) o %
Mapping of the sign function 7 is given as follows:
i)tr—o(0 if =-1,
- sgn[o(y)+x—0(0)] if (A15)
sgnlo(x:) — ] if =1,

The orbit of a star around a black hole 377

where

yi=arccos(®—W),  x<(0,m),

o(x)=2w"'F (E"?X_-’ k) .

It is instructive to discuss the Newtonian limit of the
mapping formula (A14) in which the terms proportional to
some power of 1/c are neglected. This limit is now obscured
by the fact that we imposed the widely used ‘relativistic con-
vention ¢ = 1’, while now we want to suppress the terms con-
taining c¢ in the denominator. Careful book-keeping of ¢ in
the preceding equations suggests that the Newtonian limit
corresponds to the fictitious procedure w—1, k—0. As a
result, we obtain

we=—u;+ul +ul, (A16)
where the Newtonian boundaries are found to be
u,=2 Y121 +267%7%),  &V=4&2-1)

(we retain the negative value for the Newtonian energy of
bound orbits, as seen from the above definition of &N).
Equation (A16) is the correct expression for the ‘elliptic’
mapping. Formula (A16) is surprisingly simple, showing the
linearity of the elliptic mapping. Moreover, we also have the
simple rule #;=-—7;. By contrast, the full relativistic
mapping (Al14) for the orbits of case I is highly non-linear,
and the mapping in the u-coordinate is coupled with the
mapping of the n-function due to #; in equation (A14) and u
in equation (A15).

Let us turn to equation (A13), describing the mapping in
the t-coordinate. We start by expressing the indefinite integ-
ral on the right-hand side. Changing the O-variable to y
according to the relation

dy
2= o1 =k cosi(x/2)= — wA(y, k
e cos’(x/2)= — wA(y, k),

one arrives at the primitive function
2¢ 2 X o
T(x)=— n ,€ Lk
W wf[ﬂ(l—e) (2 ) )
1 Ty 4ue
+ , , k
(1-2u(1-e)] [2 2u(l-e)-1 ]

+ 1 { Ay, k) siny
2u*(1—€*)(1 +ek?) |2[e+cos?(x/2)]

=

+[1+2e(1+ k) +362K 7' (% e k)
+E(¥,k)—(1+sk2)f‘(”—;l,k)”!, (A17)

where

Uy

e= .
U, —uy

Now, the algorithm for evaluating the time-step associated
with the mapping is as follows:
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n,=—1: introducing ;= sgn[o(0)— o(y;) — 7], we obtain

T(x)— T(x) if §;=0,
t, _ti= . A18
‘ {2T(0> ~T(x)=T(x) i &i<0, (A1)
where y;is determined by the relations
sin sn )
LOS] X [ Cicn] [2 (o(x:)+ ) }
n,=1: introducing ;=sgn[o(y;) — n], we obtain
: 0-T if £;>
= {ﬂxl) () ifE20, (AL9)
T(x:)+ T(x) if <0,

and now ;is determined by the relations

{zlons} Xi= {f;lsn] [% (o(x:)— ), k}

The Newtonian limit of equation (A18)is

J1-¢ )+ e sin D, ]
1 b

2 1
h—t=—w— arctan |——
! Wy & [ n-& (e!sm ;| — ¢’ cos’ D,

(A20)

where
cos ;=P -, sin 9 = g1 —(® — WY,

and functions @ and W are defined as in (A14) and evalu-
ated for u; = u} and u, = uj.

A2.2 Case Il orbits

These orbits have no pericentre. They are captured by the
black hole in most cases, even though the interaction with the
accretion disc can in principle modify the orbital parameters
and change the type of the orbit. Consequently, we do not
perform the mapping in full detail - we skip the derivation of
the time interval (#—¢,), which will not be needed for this
type of orbit. We still need to describe the complete algo-
rithm for the mapping in the u-coordinate and associated
n-function. We were unsuccessful in finding a compact
expression for the mapping w;— us(u;; uy, u,) similar to that
presented in formula (A14), and thus in the following we give

the algorithm of the mapping in several steps (well suited for
programming).

(i) Evaluate the following quantities:

p=i1-2u;), e={3-I1-1277),
o=\l6p—17+4u’e,  y.=o6x6u-1, k§=%,
_Awt2w -1 1
e(l1-2u,) ’ © 1+4g2’
_ J1—¢ if u;=u,
S =J1—¢; if u;<p,

and the angle w;€(— /2, /2), which is defined by
sin®w;=1-2y3 e [2epe, +(6p—1) &],

where sgn(w;)=sgn(e,— k_).
(ii) Exclude the captured trajectories by evaluating

=K (k,)—F(w;, k)] 6713

the particle will be captured by the black hole before reach-
ing the equatorial plane if ¥;<m and n;= — 1. Otherwise we
continue to the following step.

(iii) Define
)-* =F(w7 k+) - ”inaln’

and

Ks| _ Zisn(As, k)
K CH(A*, k+) '
(iv) Finally, the mapping that we seek is given by
n:=&imi, (A21)

&i=sgn[K(k,)+ 4],

u;=p(1+ eTgn(u,- 7))

where we have used

Te=v3"5x; [2entae’’ +y. xly i —v-),
F=—{1-2(6u—1)y;".

These orbits are unstable in the sense that they reach the
singularity at =0, and thus in the Newtonian limit there are
no analogous orbits corresponding to this case.

Equations (A14) and (A21) give the mapping for astro-
physically interesting cases of geodesics in the Schwarzschild
geometry. '
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