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ABSTRACT

We study the effects of planetary late migration on the gas giants’ obliquities. We consider the planetary instability
models from Nesvorný and Morbidelli, in which the obliquities of Jupiter and Saturn can be excited when spin–
orbit resonances occur. The most notable resonances occur when the s7 and s8 frequencies, changing as a result of
planetary migration, become commensurate with the precession frequencies of Jupiter’s and Saturn’s spin vectors.
We show that Jupiter may have obtained its present obliquity by crossing of the s8 resonance. This would set strict
constraints on the character of migration during the early stage. Additional effects on Jupiter’s obliquity are
expected during the last gasp of migration when the s7 resonance was approached. The magnitude of these effects
depends on the precise value of the Jupiter’s precession constant. Saturn’s large obliquity was likely excited by
capture into the s8 resonance. This probably happened during the late stage of planetary migration when the
evolution of the s8 frequency was very slow, and the conditions for capture into the spin–orbit resonance with s8
were satisfied. However, whether or not Saturn is in the spin–orbit resonance with s8 at the present time is not clear
because the existing observations of Saturn’s spin precession and internal structure models have significant
uncertainties.
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1. INTRODUCTION

It is believed that the orbital architecture of the solar system
was significantly altered from its initial state after the
dissipation of the protosolar nebula. The present architecture
is probably a result of complex dynamical interaction between
planets, and between planets and planetesimals left behind by
planet formation. This becomes apparent because much of what
we see in the solar system today can be explained if planets
radially migrated, and/or if they evolved through a dynamical
instability and reconfigured to a new state (e.g., Malhotra 1995;
Thommes et al. 1999; Tsiganis et al. 2005).

While details of this process are not known exactly, much
has been learned about it over decade by testing various
migration/instability models against various constraints. Some
of the most important constraints are provided by the terrestrial
planets and the populations of small bodies in the asteroid and
Kuiper belts (e.g., Gomes et al. 2005; Levison et al. 2008;
Minton & Malhotra 2009, 2011; Morbidelli et al. 2010;
Nesvorný 2015). Processes related to the giant planet
instability/migration were also used to explain capture and
orbital distribution of Jupiter and Neptune Trojans (e.g.,
Morbidelli et al. 2005; Nesvorný & Vokrouhlický 2009;
Nesvorný et al. 2014b) and irregular satellites (e.g., Nesvorný
et al. 2007, 2014a). Some of the most successful instability/
migration models developed so far postulate that the outer solar
system contained additional ice giant that was ejected into
interstellar space by Jupiter (e.g., Nesvorný 2011; Batygin
et al. 2012; Nesvorný & Morbidelli 2012). The orbits of the
four surviving giant planets evolved in this model by
planetesimal-driven migration and by scattering encounters
with the ejected planet. In this work, we use this framework to
investigate the behavior of Jupiter’s and Saturn’s obliquities.

The obliquity, ε, is the angle between the spin axis of a
planet and the normal to its orbital plane. The core accretion
theory applied to Jupiter and Saturn implies that their

primordial obliquities should be very small. This is because
the angular momentum of the rotation of these planets is
contained almost entirely in their massive hydrogen and helium
envelopes. The stochastic accretion of solid cores should
therefore be irrelevant for their current obliquity values (see
Lissauer & Safronov 1991 for a discussion), and a symmetric
inflow of gas on forming planets should lead to 0ε ≃ . The
present obliquity of Jupiter is 3 .1Jε = ◦ , which is small, but not
quite small enough for these expectations, but that of Saturn is

26 .7Sε = ◦ , which is clearly large.
Ward & Hamilton (2004) and Hamilton & Ward (2004)

noted that the precession frequency of Saturn’s spin axis has a
value close to s 0.6928 ≃ − arcsec yr−1, where s8 is the mean
nodal regression of Neptune’s orbit (or, equivalently, the eighth
nodal eigenfrequency of the planetary system; e.g., Applegate
et al. 1986; Laskar 1988). Similarly, Ward & Canup (2006)
pointed out that the precession frequency of Jupiter’s spin axis
has a value close to s 2.9857 ≃ − arcsec yr−1, where s7 is the
mean nodal regression of Uranus’s orbit. These findings are
significant because they raise the possibility that the current
obliquities of Jupiter and Saturn have something to do with the
precession of the giant planet orbits. Specifically, Ward &
Hamilton (2004) and Hamilton & Ward (2004) suggested that
the present value of Saturn’s obliquity can be explained by
capture of Saturn’s spin vector in a resonance with s8. They
proposed that the capture occurred when Saturn’s spin vector
precession increased as a result of Saturn’s cooling and
contraction, or because s8 decreased during the depletion of the
primordial Kuiper Belt. They showed that, if the post-capture
evolution is conveniently slow, the spin–orbit resonance (also
known as the Cassini resonance, see Section 2) is capable of
increasing Saturn’s obliquity to its current value.
While changes of precession or s8 during the earliest epochs

could have been important, it seems more likely that capture in
the spin–orbit resonance occurred later, probably as a result of
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planetary migration (Boué et al. 2009). This is because both s7
and s8 significantly change during the instability and
subsequent migration. Therefore, if the spin–orbit resonances
had been established earlier, they would not survive to the
present time. Boué et al. (2009) studied various scenarios for
resonant tilting of Saturn’s spin axis during the planetary
migration and found that the present obliquity of Saturn can be
explained only if the characteristic migration timescale was
long and/or if Neptune’s inclination was substantially excited
during the instability. Since Neptune’s inclination is never large
in the instability/migration models of Nesvorný & Morbidelli
(2012; hereafter NM12), typically i 1N < °, the migration
timescales presumably need (note that Boué et al. 2009 did
not investigated these low-i cases in detail) to be very long (see
Section 3.3). Interestingly, these very long migration time-
scales are also required from other constraints (e.g., Morbidelli
et al. 2014; Nesvorný 2015). They could be achieved in the
Nesvorný & Morbidelli (2012) models if Neptune interacted
with an already depleted planetesimal disk during the very last
stages of the migration process. As for the obliquity of Jupiter,
Ward & Canup (2006) suggested that the present value is due
to the proximity of the spin precession rate to the s7 frequency.

In fact, the obliquities of Jupiter and Saturn represent a much
stronger constraint on the instability/migration models than was
realized before. This is because the constraints from the present
obliquities of Jupiter and Saturn must be satisfied simulta-
neously (McNeil & Lee 2010; Brasser & Lee 2015). For
example, in the initial configuration of planets in the NM12
models, the s8 frequency is much faster than the precession
constants of both Jupiter and Saturn. This means that the s8
mode, before approaching Saturn’s precession frequency and
exciting its obliquity, must also have evolved over the
precession frequency of Jupiter’s spin vector. This leads to a
conundrum, because if the crossing were slow, Jupiter’s
obliquity would increase as a result of capture into the spin–
orbit resonance with s8. If, on the other hand, the general
evolution at all stages were fast, the conditions for capture of
Saturn into the spin–orbit resonance with s8 may not be be met
(e.g., Boué et al. 2009), and Saturn’s obliquity would stay
small.3

A potential solution of this problem would be to invoke fast
evolution of s8 early on, during the crossing of Jupiter’s
precession frequency, and slow evolution of s8 later on, such
that Saturn’s spin vector can be captured into the spin–orbit
resonance with s8 during the late stages. This can be achieved,
for example, if the migration of the outer planets was faster
before the instability, and slowed down later, as the outer Solar
System progressed toward a more relaxed state. As we show in
Section 3.1, the jumping-Jupiter models developed in NM12
provide a natural quantitative framework to study this
possibility.

In Section 2 we first briefly review the general equations for
the spin–orbit dynamics. Then, in Section 3, we investigate the
behavior of the spin vectors of Jupiter and Saturn in the
instability/migration models of NM12. We find that the
constraints posed by Jupiter’s and Saturn’s obliquities can be
satisfied simultaneously in this class of models, and derive

detailed conditions on the migration timescales and precession
constants that would provide a consistent solution.

2. METHODS

2.1. Parametrization Using Non-singular
Spin Vector Components

Consider a planet revolving about the Sun and rotating with
angular velocity ω about an instantaneous spin axis character-
ized by a unit vector s. With solar gravitational torques applied
on the planet, ω remains constant, but s evolves in the inertial
space according to (e.g., Colombo 1966)

s
c s c s

d

dt
( · )( ), (1)α= − ×

where c denotes a unit vector along the orbital angular
momentum, and

GM

b

J q

l

3

2
(2)

3

2α
ω λ

=
+
+

⊙

is the precession constant of the planet. Here, G is the
gravitational constant, M⊙ is the mass of the Sun,

b a e1 2= − , where a and e are the orbital semimajor axis
and eccentricity, J2 is the quadrupole coefficient of the planetary
gravity field, and C MR2λ = is the planetary moment of inertia
C normalized by a standard factorMR2, whereM is planet’s mass
and R its reference radius (to be also used in the definition of J2).
The term q m M a R( )( )j j j

1

2
2= ∑ is an effective, long-term

contribution to the quadrupole coefficient due to the massive,
close-in regular satellites with masses mj and planetocentric
distances aj, and l m a n MR( ) ( )j j j j

2 2ω= ∑ is the angular

momentum content of the satellite orbits (nj denotes their
planetocentric mean motion) normalized to the characteristic
value of the planetary rotational angular momentum.
For both Jupiter and Saturn, q is slightly dominant over J2 in

the numerator of the last term in Equation (2), while l is
negligible in comparison to λ in the denominator. Spacecraft
observations have been used to accurately determine the values
of J2, q, and l. On the other hand, λ cannot be derived in a
straightforward manner from observations, because it depends
on the structure of planetary interior. Using models of planetary
interior, Helled et al. (2011) determined that Jupiter’s Jλ is
somewhere in the range between 0.2513 and 0.2529 (here
rescaled for the equatorial radius R = 71,492 km of the planet).
This would imply Jupiter’s precession constant Jα to be in the
range between 2.754 and 2.772 arcsec yr−1. These values are
smaller than the ones considered in Ward & Canup (2006), if
their proposed small angular distance between Jupiter’s pole
and Cassini state C2 is correct.
Similarly, Helled et al. (2009) determined Saturn’s preces-

sion constant Sα to be in the range between 0.8443 and
0.8447 arcsec yr−1. Again, these values differ from those
inferred by Ward & Hamilton (2004) and Hamilton & Ward
(2004), if a resonant confinement of the Saturn’s spin axis in
their proposed scenario is true. This difference has been noted
and discussed in Boué et al. (2009). If Helled’s values are
correct, Saturn’s spin axis cannot be presently locked in the
resonance with s8. However, it seems possible that of Sα
derived in Helled et al. (2009) may have somewhat larger
uncertainty than reflected by the formal range of the inferred λ

3 Note that the present obliquities of Uranus and Neptune are not an important
constraint on planetary migration, because their spin precession rates are much
slower than any secular eigenfrequencies of orbits (now or in the past).
Therefore, the secular spin–orbit resonances should not occur for these planets,
and giant impacts may be required to explain their obliquities (e.g., Morbidelli
et al. 2012, and references therein).
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values. Also, the interpretation is complicated by the past
orbital evolution of planetary satellites which may have also
contributed to changes of Sα (and Jα ). For these reason, and in
the spirit of previous studies (e.g., Ward & Hamilton 2004;
Ward & Canup 2006; Boué et al. 2009), here we consider a
wider range of the precession constant values α for both Jupiter
and Saturn.

Assuming α constant for a moment, a difficult element
preventing a simple solution of Equation (1) is the time evolution
of c. This is because mutual planetary interactions make their
orbits precess in space on a characteristic timescale of tens of
thousands of years and longer. In addition, during the early phase
of planetary evolution, the precession rates of planetary orbits
may have been faster due to the gravitational torques from a
massive population of planetesimals in the trans-Neptunian disk.
In the Keplerian parametrization of orbits, the unit vector c
depends on the inclination I and longitude of node Ω, such that
c I I I(sin sin , sin cos , cos )T W W= − . Traditionally, the diffi-
culties with the time dependence in Equation (1) are resolved
using a transformation to a reference frame fixed on an orbit,
where c (0, 0, 1)T = .

The transformation from the inertial to orbit coordinate
frames is achieved by applying a 3-1-3 rotation sequence with
the Eulerian angles I( , , )W W− . This transforms Equation (1) to
the following form

s
c s c h s

d

dt
[ ( · ) ] , (3)α= − + ×

where now the planetary spin vector s is expressed with respect
to the orbit frame, and c is now a unit vector along the z-axis. In
effect, the time dependence has been moved to the vector
quantity h ( , , 2 )T   = − with

I I acos ˙ sin sin ˙ , (4 ) W W W= −

I I bsin ˙ sin cos ˙ , (4 ) W W W= +

I csin 2 ˙ , (4 )2 W=

and the over-dots mean time derivative.
A further development consists in introducing complex and

non-singular parameter I ısin( 2)exp( )Wζ = (ı 1= − is the
complex unit) that replaces I and Ω. First order perturbation
theory for quasi-circular and near-coplanar orbits indicates ζ for
each planet can be expressed using a finite number of the
Fourier terms with the si frequencies uniquely dependent on the
orbital semimajor axes and masses of the planets, and
amplitudes set by the initial conditions (e.g., Brouwer &
Clemence 1961). In the models from nonlinear theories or
numerical integrations, ζ can still be represented by the Fourier
expansion A ı s texp[ ( )]i i iζ ϕ= ∑ + (e.g., Applegate et al.
1986; Laskar 1988), with the linear terms having typically the
largest amplitudes Ai.

As discussed in Section 1, terms with present frequencies
s 2.9857 ≃ − and s 0.6928 ≃ − arcsec yr−1 are of a particular
importance in this work. The s7-term is the largest in Uranus’ ζ
representation, and the s8-term is the largest in Neptune’s ζ
representation, and these terms also appear, though with
smaller amplitudes, in the ζ variable of Jupiter and Saturn,
because mutual planetary interactions enforce all fundamental
frequency terms to appear in all planetary orbits. In terms of ζ,

Equations (4a)–(4c) become

ı
d

dt
ı a

2

1 ¯
, (5 )  

ζζ
ζ ζ+ =

−
−⎜ ⎟⎛

⎝
⎞
⎠

ı

d

dt

d

dt
b

1

2
¯

¯
, (5 ) ζ ζ ζ ζ= −

⎛
⎝⎜

⎞
⎠⎟

where ζ̄ is complex conjugate to ζ. For small inclinations,
relevant to this work, we therefore find that ı + ≃ d dt2( )ζ ,
and 0 ≃ .
Another important aspect is of the problem is that

Equation (3) derives from a Hamiltonian

s c s h st( ; )
2

( · ) · , (6)2 α= +

such that

s
s

d

dt
. (7)s= −∇ ×

This allowed Breiter et al. (2005) to construct an efficient Lie-
Poisson integrator for a fast propagation of the secular
evolution of planetary spins. In Section 3, we will use the
leap-frog variant of the Hamiltonian’s LP2 splitting from
Breiter et al. (2005). To propagate s through a single
integration step, Breiter et al. (2005) method requires that the
orbital semimajor axis, eccentricity and c are provided at times
corresponding to the beginning and end of the step. These
values can be supplied from an analytic model of orbit
evolution, or be directly obtained from a previous numerical
integrations of orbits where a, e and c were recorded with a
conveniently dense sampling.

2.2. Parametrization Using Obliquity and Precession Angle

The Hamiltonian formulation in Equation (6) allows us to
introduce several important concepts of the Cassini
dynamics. A long tradition in astronomy is to represent s
with obliquity ò and precession angle ψ such that sT =
(sin sin , sin cos , cos )ε ψ ε ψ ε . The benefit of this parame-
trization is that the unit spin vector is expressed using only
two variables. The drawback is that resulting equations are
singular when 0ε = .
The conjugated momentum to ψ is X cos ε= . The

Hamiltonian is then (e.g., Laskar & Robutel 1993)

X t X X

X

( , ; )
2

2

1 ( sin cos ). (8)

2

2

 
 

ψ α

ψ ψ

= −

+ − +

For the low-inclination orbits,  is negligible, while  and 
are expanded in the Fourier series with the same frequency
terms as those appearing in ζ itself. A model of fundamental
importance, introduced by G. Colombo (Colombo 1966;
Henrard & Murigande 1987; Ward & Hamilton 2004), is
obtained when only one Fourier term in  and  is considered.
This Colombo model obviously serves only as an approxima-
tion of the complete spin axis evolution, since all other Fourier
terms in  and  act as a perturbation. Nevertheless, the
Colombo model allows us to introduce several important
concepts that are the basis of the discussion in Section 3.

3
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In the Colombo model, the orbital inclination is fixed and the
node precesses with a constant frequency. Put in a compact
way, A ı stexp[ ( )]ζ ϕ= + is the single Fourier term, and
A Isin 2= and stW ϕ= + . Transformation to new canonical
variables X X′ = − and ( )Wφ ψ= − + , and scaling with the
nodal frequency s, results in a time-independent Hamiltonian

X X IX

I X

( , ) cos

sin 1 cos , (9)

2

2

 φ κ

φ

′ = ′ − ′

+ − ′

where s(2 )κ α= is a dimensionless parameter. Note that the
orbit-plane angle φ is measured from a reference direction that
is 90° ahead of the ascending node. The general structure of the
phase flow of solutions X C( , ) φ′ = , with C constant,
derives from the location of the stationary points. Depending
on the parameter values I( , )κ , there are either two ( κ κ∣ ∣ < ⋆)
or four ( κ κ∣ ∣ > ⋆) such stationary solutions (called the Cassini
states). The critical value of κ reads (e.g., Henrard &
Murigande 1987)

( )I I I( ) sin cos . (10)1

2
2 3 2 3 3 2

κ = +⋆

Therefore, for small I, 1

2
κ ≃⋆ . The stationary solutions are

located at 0φ = ° or 180φ = ° meridians in the orbital frame,
and have obliquity values given by a transcendental equation

Isin 2 sin ( ), (11)κ ε ε= − ∓

with the upper sign for 0φ = °, and the lower sign for
180φ = °.

In the present work, we are mainly interested in the Cassini
state C2 located at 0φ = °. For Jupiter, the C2 state related to
frequency s s7= is subcritical since 1

2
κ∣ ∣ < for all estimates of

Jupiter’s precession constant found in the literature. Only two
Cassini states exist in this regime, and s must circulate about
C2. In the case of Saturn, 1

2
κ κ∣ ∣ > ≃⋆ for s s8= , four Cassini

states exist in this situation, and s was suggested to librate in
the resonant zone about C2. The configuration of vectors in C2

can be inferred from Equation (11). If the inclination is
significantly smaller than the obliquity ò, we have

scosα ε ≃ − . Since the term on the left-hand side of this
relation is the precession frequency of the planet’s spin (see
Equation (1)), we find that the spin and orbit vectors will co-
precess with the same rate about the normal vector to the
inertial frame. Small resonant librations about C2 would reveal
themselves by small departures of the spin vector from this
ideal state. The maximum width εΔ of the resonant zone in
obliquity at the 0φ = ° meridian can be obtained using an
analytic formula (e.g., Henrard & Murigande 1987)

I
sin

2

1 sin 2

sin 2
, (12)

4

ε
κ ε

Δ =

where 4ε is the obliquity of the unstable Cassini state C4 (a
solution of Equation (11) at 180φ = ° having the intermediate
value of the obliquity).

Figure 1, top panel, shows how the location of the Cassini
states and the resonance width εΔ depend on κ, which is the
fundamental parameter that changes during planetary migra-
tion. For sake of this example we assumed orbital inclination
I 0 .5= ◦ (note that the overall structure remains similar for even
smaller inclination values considered in the next section, but
would be only less apparent in the figure). The C1 and C4

stationary solutions bifurcate when κ κ= ⋆ at a non-zero critical
obliquity value Iatan(tan )1 3ε =⋆ (e.g., Henrard & Muri-
gande 1987; Ward & Hamilton 2004). Note that εΔ is
significant in spite of a very small value of the inclination,
which manifests through its dependence on a square root of

Isin 2 in (12). The bottom panels show examples of the phase
portraits X C( , ) φ′ = for both sub-critical κ κ∣ ∣ < ⋆ and
super-critical κ κ∣ ∣ > ⋆ cases.

3. RESULTS

We now turn our attention to the evolution of Jupiter’s and
Saturn’s obliquities during planetary migration. We first
discuss the orbital evolution of planets in the instability/
migration simulations of NM12 (Section 3.1). We then
parametrize the planetary migration before (stage 1) and after
the instability (stage 2), and use it to study the effects on
Jupiter’s and Saturn’s obliquities. The two stages are
considered separately in Sections 3.2 and 3.3.

3.1. The Orbital Evolution of Giant Planets

NM12 reported the results of nearly 104 numerical
integrations of planetary instability, starting from hundreds of
different initial configurations of planets that were obtained
from previous hydrodynamical and N-body calculations. The
initial configurations with the 3:2 Jupiter–Saturn mean motion
resonance were given special attention, because Jupiter and
Saturn, radially migrating in the gas disk before its dispersal,
should have become trapped into their mutual 3:2 resonance
(e.g., Masset & Snellgrove 2001; Morbidelli & Crida 2007;
Pierens & Nelson 2008). They considered cases with four, five
and six initial planets, where the additional planets were placed
onto resonant orbits between Saturn and the inner ice giant, or
beyond the orbit of the outer ice giant. The integrations
included the effects of the transplanetary planetesimal disk.
NM12 experimented with different disk masses, density
profiles, instability triggers, etc., in an attempt to find solutions
that satisfy several constraints, such as the orbital configuration
of the outer planets, survival of the terrestrial planet, and the
distribution of orbits in the asteroid belt.
NM12 found the dynamical evolution in the four planet case

was typically too violent if Jupiter and Saturn start in the 3:2
resonance, leading to ejection of at least one ice giant from the
Solar System. Planet ejection can be avoided if the mass of the
transplanetary disk of planetesimals was large (Mdisk ≳ M50 Earth,
where MEarth is the Earth mass), but such a massive disk would
lead to excessive dynamical damping (e.g., the outer planet orbits
become more circular then they are in reality) and to smooth
migration that violates constraints from the survival of the
terrestrial planets, and the asteroid belt. Better results were
obtained when the Solar System was assumed to have five giant
planets initially and one ice giant, with mass comparable to that
of Uranus or Neptune, was ejected into interstellar space by
Jupiter (Nesvorný 2011; Batygin et al. 2012). The best results
were obtained when the ejected planet was placed into the
external 3:2 or 4:3 resonances with Saturn and M 20disk ≃ MEarth.
The range of possible outcomes was rather broad in this case,
indicating that the present Solar System is neither a typical nor
expected result for a given initial state.
The most relevant feature of the NM12 models for this work

is that the planetary migration happens in two stages (see
Figure 2). During the first stage, that is before the instability

4
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Figure 1. Top panel: parametric dependence of Cassini state C1, C2 and C4 obliquity (ordinate) on the frequency-ratio parameter κ (abscissa) in the Colombo model
(the C3 equilibirium has obliquity larger than 90° and it is not relevant for our discussion). The orbital inclination I has been set to 0◦. 5 value. The dashed line indicates
the critical value κ− ⋆ at which C1 and C4 bifurcate (Equation (10)). The gray area for κ κ∣ ∣ > ⋆ shows maximum width of the resonant zone around C2. Bottom panels:
examples of phase portraits X C( , ) φ′ = for two values of κ: (a) 0.4κ = − on the left, and (b) 0.6κ = − on the right. We use coordinates x sin cosε φ= and
y sin sinε φ= with the origin at the north pole 0ε = . The gray symbols show location of the Cassini equilibria and the curves are isolines X C( , ) φ′ = for suitably
chosen C values. The bold line in (b) is the separatrix of the resonant zone around C2 stationary solution.

Figure 2. Example of planetary migration and instability from Nesvorný & Morbidelli (2012). The plot shows the evolution of the semimajor axis (bold line), and the
perihelion and aphelion distances (thin lines) of the giant planets. The initial orbits of Jupiter, Saturn and the inner ice giant were placed in the 3:2 resonant chain. The
semimajor axes of the two outer ice giants were set to be 16 and 22 AU. The trans-Neptunian disk of planetesimals (not shown here) was resolved by 10,000 equal-
mass particles. The disk originally extended from 23.5 to 29 AU and had the total mass of 20 MEarth. The instability happened at t 5.6≃ Myr after the start of the
simulation. The third ice giant was subsequently ejected from the Solar system. Note that the migration rate before the instability (phase 1) is significantly larger than
the migration rate after the instability (phase 2).

5
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happens, Neptune migrates into the outer disk at 20 30≃ − AU.
The migration is relatively fast during this stage, because the
outer disk still has a relatively large mass. We analyzed several
simulations from NM12 and found that Neptune’s migration
can be approximately described by an exponential with the
e-folding timescale 10τ ≃ Myr for M 20disk = MEarth and

20τ ≃ Myr for M 15disk = MEarth. The instability typically
happens in the NM12 models when Neptune reaches 28≃ AU.
The main characteristic of the instability is that planetary
encounters occur, mainly between the extra ice giant and all
other planets. The instability typically lasts 105∼ years and
terminates when the extra ice giant is ejected from the solar
system by Jupiter. The second stage of migration starts after
that. The migration of Neptune is much slower during this
period, because the outer disk is now very much depleted.
From simulations in NM12 we find that 30τ ≃ Myr for
M 20disk = MEarth and 50τ ≃ Myr for M 15disk = MEarth.
Moreover, rather then being precisely exponential, the migra-
tion slows down relative to an exponential with fixed τ, such
as, effectively, the very late stages have larger τ values
( 100τ ∼ Myr) than the ones immediately following the
instability. Uranus accompanies the migration of Neptune on
timescales similar to those mentioned above.

The frequencies s7 and s8, which are the most relevant for
this work, are initially somewhat higher than the precession
constants of Jupiter and Saturn, mainly because of the torques
from the outer disk. The extra term from the third ice giant
initially located at 10≃ AU has much faster frequency than the
precession constants and does not interfere with the obliquity of
Jupiter and Saturn during the subsequent evolution. The s7 and
s8 frequencies slowly decrease during both stages. Their
e-folding timescales may slightly differ from the migration
e-folding timescales mentioned above, due to the nonlinearity
of the dependence of the secular frequencies on the semimajor
axis of planets. Our tests show that they are about (90–95)% of
the e-folding timescales of planetary semimajor axes.

From analyzing the behavior of frequencies in different
simulations we found that s8 should cross the value of Jupiter’s
precession constant during the first migration stage, that is before
the instability. The main characteristic of this crossing is that the
planetary orbits are very nearly coplanar during this stage. The
amplitude I in Equation (9) should thus be very small. It is not
known exactly, however, how small. In Section 3.2, we consider
amplitudes down to 0◦.005 (about 10 times smaller than the
present value of I58, where I58 is the amplitude of the 8th
frequency term in Jupiter’s orbit), and show that the effects on
Jupiter’s obliquity are negligible if the amplitudes were even
lower. The second characteristic of the first migration stage is that
the evolution of s8 happens on a characteristic timescale of

10 20≃ − Myr. Since the total change of s8 during this interval is
several arcsec yr−1, and the first stage typically lasts ∼10–20Myr,
the average rate of change is very roughly, as an order of
magnitude estimate, ds dt 0.18 ∼ arcsec yr−1Myr−1. The actual
value of ds dt8 during crossing depends on several unknowns,
including when exactly the crossing happens during the first
stage. Also, the changes of s8 could have been slower if the first
stage lasted longer than in the NM12 simulations, as required if
the instability occurred at the time of the Late Heavy
Bombardment (e.g., Gomes et al. 2005). In Section 3.2, we will
consider values in the range ds dt0.005 0.058< <
arcsec yr−1Myr−1, and show that the obliquity of Jupiter cannot

be pumped up to its current value if ds dt 0.058 > arcsec
yr−1Myr−1 (assuming that I 0 .0558 ≲ ◦ ).
Interesting effects on obliquities should happen during the

second migration stage. First, the s8 frequency reaches the
value of the precession constant of Saturn. There are several
differences with respect to the s8 crossing of Jupiter’s
precession constant during the first stage (discussed above).
The orbital inclinations of planets were presumably excited to
their current values during the instability. Therefore, the
amplitude I68 should be comparable to its current value,
I 0 . 06468 ≃ ◦ , during the second stage. We see this happening
in the NM12 simulations. First, there is a brief period during
the instability, when the inclinations of all planets are excited
by encounters with the ejected ice giant. The inclination of
Neptune is modest, at most 2≃ °, and is rather quickly damped
by the planetesimal disk. Also, the invariant plane of the solar
system changes by ;0◦. 5 when the third ice giant is ejected
during the instability. The final inclinations are of this order.
The current amplitudes are I 0 .06658 ≃ ◦ (s8 term in Jupiter’s
orbit) and I 0 .06468 ≃ ◦ (s8 term in Saturn’s orbit; see e.g.,
Laskar 1988).
Another difference with respect the first stage is that the

evolution of s8 is much slower during the second stage. If, as
indicated by the NM12 integration, s8 changes by
∼1 arcsec yr−1 in 100Myr, then the average rate of change is
very roughly ds dt 0.018 ∼ arcsec yr−1 Myr−1. The actual rate
of change can be considerably lower than this during the very
late times, when the effective τ was lower than during the
initial stages. Finally, during the very last gasp of migration,
the s7 frequency should have approached the precession
constant of Jupiter. We study this case in an adiabatic
approximation when the rate of change of s7 is much slower
than any other relevant timescale. We find that the present
obliquity of Jupiter can be excited by the interaction with the s7
term only if the precession constant of Jupiter is somewhat
larger than inferred by Helled et al. (2011), in accord with the
results of Ward & Canup (2006).

3.2. The Effects on Jupiter’s Obliquity During Stage 1

Since s8 remains larger than Sα during the first stage, we do
not expect any important effects on Saturn’s obliquity during
this stage. If Saturn’s obliquity was low initially, it should have
remained low in all times before the instability. We therefore
focus on the case of Jupiter in this section. From the analysis of
the NM12 numerical simulation in Section 3.1, we infer that
the s8 frequency crossed Jα during the first stage. The values of
ds dt8 and I58 during crossing are not known exactly from the
NM12 simulations, because they depend on details of the initial
conditions. We therefore consider a range of values and
determine how Jupiter’s obliquity excitation depends on them.
The results can be used to constrain future simulations of the
planetary instability/migration.
We consider Colombo’s model with only one Fourier term in

ζ of Jupiter, namely that of the s8 frequency.4 The inclination
term I58 in Jupiter’s orbit was treated as a free parameter. The
range of values was set to be between zero and roughly the
current value of ;0◦. 066. As we discussed in Section 3.1, it is
reasonable to assume that I58 was smaller than the current
value, because the orbital inclination of planets should have

4 We found that adding higher frequency terms, such as s6 and/or s7, into our
simulation does not change results.
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been low in times before the instability. The value of Jα was
obtained by rescaling the present value to the the semimajor
axis of Jupiter before the instability (a 5.45J ≃ AU). To do so
we used Equation (2) and assumed aJ J

3α ∝ − . No additional
modeling of possible past changes of Jα , for instance due to
satellite system evolution or planetary contraction, was
implemented. The s8 frequency was slowly decreased from a
value larger than Jα to a value smaller than Jα .

Motivated by the numerical simulations of the instability
discussed in Section 3.1, we assumed the initial s8 value of
−4 arcsec yr−1 and let it decrease to −1.2 arcsec yr−1 by the end
of each test. The rate of change, ds dt8 , was treated as a free
parameter. The integrations were carried for several tens of
Myr for the highest assumed rates and up to several hundreds
of Myr for the lowest rates. We recorded Jupiter’s obliquity
during the last 5 Myr of each run, and computed the mean
value finε . Jupiter’s initial spin axis was oriented toward the
pole of the Laplacian plane. (The value of finε reported in
Figure 3 was averaged over all possible phases of the initial
spin axis on the X C( , ) φ′ = level curve, with C defined by s
oriented toward the pole of the Laplacian plane.)

Figure 3 shows the results. For most parameter combinations
shown here the s8 resonance swept over Jα without having the
ability to capture Jupiter’s spin vector in the resonance. This
happened because ds dt8 was relatively large and I58 was
relatively small, thus implying that the s8 frequency crossed the
resonant zone in a time interval that was shorter than the
libration period. Captures occurred only in extreme cases
(largest I58 and smallest ds dt8 ). These cases ended up
generating very large obliquity values of Jupiter and are
clearly implausible. The plausible values of ds dt8 and I58
correspond to the cases where Jupiter’s obliquity was not
excited at all, thus assuming that Jupiter obtained its present
obliquity later, or was excited by up to 3≃ °. To obtain 3Jε ≃ °,
ds dt8 and I58 would need to have values along the bold line

labeled 3 in Figure 3, which extends diagonally in ds dt8 and
I58 space. An example of a case where the obliquity of Jupiter
was excited to near 3≃ ° value is shown in Figure 4.

3.3. Behavior of Obliquities During Stage 2

We now turn our attention to the second stage, when the
migration slowed down and the obliquities of Jupiter and
Saturn should have suffered additional perturbations. At the
beginning of stage, that is just after the time of the instability,
the s8 frequency is already lower than Jα , but still higher than

Sα , while the s7 frequency is higher than Jα . Since the s7 and s8
frequencies are slowly decreasing during the second stage, a
possibility arises that Jupiter’s obliquity was (slightly) excited
when s7 approached Jα (e.g., Ward & Canup 2006), and that
Saturn’s obliquity was strongly excited by capture into the
spin–orbit resonance with s8 (e.g., Hamilton & Ward 2004;
Ward & Hamilton 2004; Boué et al. 2009).

3.3.1. Jupiter

Ward & Canup (2006) suggested a possibility that Jupiter’s
present obliquity may be explained by the proximity of Jα to
the current value of the s7 frequency. They showed that, if

s(2 )J 7κ α= is sufficiently close to the critical value from
Equation (10), namely 1

2
≃ for small inclinations, the obliquity

of the Cassini state C2 may be significant. Thus, as s7
adiabatically approached to Jα , Jupiter’s obliquity may have
been excited along. As a supportive argument for this scenario
they pointed out that 0Jφ ≃ °, where the Cassini state 2 is
located.
To test this possibility we run a suite of simulations,

assuming an exponential convergence to the current value
s 2.9857 ≃ − arcsec yr−1. Specifically, we set s t s( )7 7= +
s s t[ (0) ]exp( )7 7 τ− − , where τ and s (0)7 are parameters. The
initial value s (0)7 at the beginning of the second stage was
obtained from the numerical simulation discussed in Sec-
tion 3.1. Here we chose to use s (0) 3.57 = − arcsec yr−1,
however we verified that the results are insensitive to this
choice. The e-folding timescale τ depends on how slow or fast
planets migrate. Given that the planetary migration is slow
during the second stage, we chose 100 200τ = − Myr. This
assures that the approach of s t( )7 to Jα is adiabatical. The
amplitude I57 is assumed to be constant and equal to its current
value (I 0 .05557 ≃ ◦ ).
Two additional parameters need to be specified: (i) Jupiter’s

initial spin state, and (ii) Jα . As for (i), the results discussed in
Section 3.2 indicate that Jupiter’s obliquity may have remained
near zero during the first stage, if I58 was too small and/or
ds dt8 was too fast, or could have been potentially excited to

3≃ °, if I58 and ds dt8 combined in the right way. Therefore,
here we treat the obliquity of Jupiter at the beginning of stage 2
as a free parameter. As for (ii), as we discussed in Section 1,
the present value of Jα somewhat uncertain. We therefore
performed various simulations, where Jα takes on a number of
different values between 2.75 and 2.95 arcsec yr−1. A similar
approach has also been adopted by Ward & Canup (2006).
Figure 5 reports the results. The top panel shows how the

obliquity C2ε of the Cassini state C2 depends on the assumed
value of Jα . This is calculated from Equation (11). The trend
is that C2ε increases with Jα , because the larger values of Jα
correspond to a situation where the system is closer to the
exact resonance with s7. If 2.8Jα < arcsec yr−1, as inferred

Figure 3. Final obliquity finε of Jupiter obtained in our integrations of crossing
of the s8 spin–orbit resonance. Jupiter’s obliquity is shown as a function of two
parameters: (i) the amplitude I58 of the Fourier term in Jupiter’s ζ variable (see
Section 2), and (ii) the rate ds dt8 at the time when s8 became equal to Jα . The
gray shading indicates the final obliquity (the scale bar on the right shows the
corresponding numerical value in degrees). The three bold isolines correspond
to 1finε = °, 2° and 3° (see the labels).
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from models in Helled et al. (2011), C2ε is too small to
significantly contribute to Jε . This case would imply that
Jupiter’s present obliquity had to be acquired during the
earlier stages and is possibly related to the non-adiabatic s8
resonance crossing discussed in Section 3.2. If, on the other
hand, 2.92 2.94Jα ≃ − arcsec yr−1, Jupiter would owe its
present obliquity to the proximity between Jα and s7. This

would imply that the obliquity excitation during the first
stage of planetary migration must have been minimal.
Figures 3 and 5 express the joint constraint on the planetary
migration also for the intermediate cases, where the present
obliquity of Jupiter arose as a combination of both effects
discussed here.
Figure 6 illustrates the two limiting cases discussed above. In

panel (a), we assumed that the parameters during the first
migration stage were such that the obliquity of Jupiter was
excited to its current value during the s8 crossing (such as
shown in Figure 4). Also, we set 2.77Jα = arcsec yr−1,
corresponding to the best theoretical value of Helled et al.
(2011). The Cassini state C2 corresponding to the s7 term is
only slightly displaced from the center of the plot, and does not
significantly contribute to the present obliquity value. In panel
(b) of Figure 6, we set 2.93Jα = arcsec yr−1. This value
implies that 2 .6C2ε ≃ ◦ . The present obliquity of Jupiter would
then be in large part due to the “forced” term arising from the
proximity of s7. The initial excitation of Jupiter’s obliquity
during the first stage would have to be minor in this case.

3.3.2. Saturn

In the case of Saturn, all action is expected to take place
during the second stage of planetary migration. Insights
gleaned from the numerical simulations discussed in Section 3.1
show that the s8 frequency should have very slowly approached

Sα , thus providing a conceptual basis for capture of Saturn’s
spin vector in a resonance with s8 (e.g., Hamilton & Ward
2004; Ward & Hamilton 2004; Boué et al. 2009). To study this
possibility, we assume that the I68 amplitude was excited to its
current value during the instability, and remained nearly
constant during the second stage of planetary migration. This
choice is motivated by the NM12 simulations, where the
inclination of Neptune is never too large. Note that Boué et al.
(2009) investigated the opposite case where Neptune’s
inclination was substantially excited during the instability and
remained high when the resonance with s8 occurred. This type
of strong inclination excitation does not happen in the NM12
models.

Figure 4. Example demonstrating the effect of s8 frequency sweeping over Jα . Here we set I 0.0258 = ◦ and ds dt 0.018 = arcsec yr−1 Myr−1. The left panel shows
Jupiter’s obliquity as a function of time. Obliquity Jε increases to ;2◦. 7 during the resonance crossing. The width of the Cassini resonance is small because I58 is small,
and the assumed rate ds dt8 is too large in this case to lead to capture. The right panel shows the spin axis evolution projected onto the (x,y) plane, where
x sin cosε φ= and y sin sinε φ= . The Cassini state C2 drifts along the x-axis during the integration (as indicated by the gray arrow), and reaches very large
obliquity values.

Figure 5. Final obliquity of Jupiter resulting from an adiabatic approach of the
s7-frequency toward Jα (the obliquity has been computed in the reference frame
associated with this frequency term in ζ). While today’s value of s7 is known
fairly accurately, Jα has a significant uncertainty. We therefore treat Jα as a free
parameter. The initial obliquity of Jupiter is also treated as a free parameter,
because it depends on the effects during the first migration stage (see Figure 3).
The key to the shading scale is provided by the vertical bar on the right (white
region corresponds to the final maximum obliquity smaller than 2◦. 5,
incompatible with Jupiter’s value). The bold curve corresponds to the 3◦. 45
isoline, estimated obliquity value today in this frame (e.g., Ward & Canup
2006). The arrows indicate parametric location of the two examples shown on
Figure 6. The upper panel shows the obliquity value of the Cassini state C2 as a
function of Jα .
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Here we assume that the planetary migration was very slow
during the second stage and parametrize s t( )8 as
s t s s s t( ) [ (0) ]exp( )8 8 8 8 τ= + − − with 80τ ⩾ Myr. The
initial frequency value at the beginning of stage 2, s (0)8 , is
estimated from the NM12 simulations. We find that
s (0) 1.38 ≃ − arcsec yr−1, and use this value to set up the
evolution of s t( )8 . We also assume a range of Sα values. This
has the following significance. As already pointed out by Boué
et al. (2009), the best-modeling values of Sα from Helled et al.
(2009) are not compatible with a resonant location of Saturn’s
spin axis. This is because the Cassini state C2 would be moved
to a significantly larger obliquity value ( 34⩾ °). So these values
of Sα would imply that Saturn’s spin circulates about the
Cassini state C1. On the other hand, the significant obliquity of
Saturn requires an increase when the s8 value was crossing Sα
value, as schematically shown in the left panel of Figure 4 for
Jupiter’s obliquity during the phase 1. Boué et al. (2009) tested
this scenario using numerical simulations and found it
extremely unlikely: initial data of an insignificant measure
have led this way to the current spin state of Saturn. Indeed,
here we recover the same result with a less extensive set of
numerical simulations.

Given the arguments discussed above we therefore tend to
believe that the precession constant of Saturn may be somewhat
smaller than the one determined by Helled et al. (2009). For
instance, R. A. Jacobson (2015, personal communication)
determined the Saturn precession from the Saturn’s ring
observations. The mean precession rate obtained by him is
0.725 arcsec yr−1 (formal uncertainty of about 6%). This value
would indicate Sα in the range between 0.769 and
0.864 arcsec yr−1. Both Ward & Hamilton (2004) and Boué
et al. (2009) report other observational constraints of Saturn’s
pole precession that have comparably large uncertainty. We
therefore sampled a larger interval of the Sα values to make
sure that all interesting possibilities are accounted for.

Our numerical simulations thus spanned a grid of two
parameters: (i) Sα discussed above, and (ii) τ, the e-folding
timescale of the s8 frequency that slowly changes due to
residual migration of Neptune and depletion of the outer disk.
The amplitude related to the s8 term in the inclination vector ζ

of Saturn is kept constant, namely I 0 .06468 = ◦ . To keep
number of tested free parameters low, we assumed initial
orientation of Saturn’s spin axis s to be near the pole of the
invariable plane. Specifically, we set its obliquity to 0◦. 1 in the
reference frame of the s8-frequency Fourier term in ζ. To
prevent fluke results, we sampled 36 values of longitude φ of
the Saturn’s pole in the same reference frame, incrementing it
from 0° by 10°. Each of the simulations covered a 1 Gyr
timespan. We recorded Saturn’s pole orientation during the last
150Myr time interval. We specifically analyzed if it passes
close to the current location of Saturn’s pole, namely,

27 .48ε ≃ ◦ and 31 .48φ ≃ − ◦ in the s8-frequency reference frame
(see Table 2 in Ward & Hamilton 2004). A numerical run was
considered successful if the simulated Saturn’s pole passed
through a box of 0 .2± ◦ in obliquity ò and 3± ° in longitude φ
around the planet’s values ( , )8 8ε φ during the recorded 150Myr
time interval. Note that the libration period of Saturn’s pole
around Cassini state C2, if captured in the spin–orbit resonance,
is ∼(50–100)Myr, depending on the libration amplitude. This
set our requirement for the timespan over which we monitored
Saturn’s pole position.
Figure 7 shows the results from this suite of runs. The shaded

region shows correlated Sα -τ pairs that provided successful match
to the Saturn’s pole position. We note that no successful solutions
were obtained for 0.812Sα > arcsec yr−1 and all successful
solutions correspond to the capture in the resonance zone around
the Cassini state C2. The absence of low-probability solutions in
which Saturn’s pole would circulate about the Cassini state C1 for
larger Sα may be related to the limited number of simulations
performed. No solutions were also obtained for 215τ > Myr.
This is because for such long e-folding timescales the resonant
capture process would be strictly adiabatic and the simulated spin
would not meet the condition of at least 30° libration amplitude
(see discussion in Hamilton & Ward 2004; Ward & Hamilton
2004). The area occupied by successful solutions splits into
two branches for 0.78Sα ≃ arcsec yr−1. This is because the
obliquity of the Cassini state C2 is 27 .4C2ε ≃ ◦ for the critical
value of Sα , and the solutions have a minimum libration
amplitude of 31≃ °.

Figure 6. Two examples of Jupiter’s spin state evolution during the 1 Gyr-long time interval after the planetary instability. The planet pole is shown in the Cartesian
coordinates x sin cosε φ= and y sin sinε φ= . The arrow shows evolution of the Cassini state C2 over the interval of time covered by the simulation. The gray star
shows the current location of Jupiter’s pole in these coordinates. Gray dots show the pole position output every 5 kyr during the simulation, the black circles highlight
the first and the last 30 Myr of the evolution. Two different parametric combination along the bold curve in Figure 5 were chosen: (i) 2.77Jα = arcsec yr−1 and

3.1iniε = ◦ in the left panel (a), and (ii) 2.93Jα = arcsec yr−1 and 1.3iniε = ◦ in the right panel (b).
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Figure 8 shows two evolution paths of Saturn’s spin vector
obtained in two different simulations. As mentioned above, in
both cases Saturn’s spin state was captured into the spin–orbit
resonance s8, and remained in the resonance for the full length
of the simulation. The final states of both simulations are a
good proxy for the Saturn’s present spin state. These two cases
differ from each other principally because the path in panel (b)
shows librations with a larger amplitude than the path in panel
(a). Note some of the solutions, such as (b) here, may attain a
significant librations amplitude. This is because with the
corresponding values of 100τ ≃ Myr the evolution is not
adiabatic and the librations amplitude is excited immediately
after capture. Therefore, the complicated evolution histories
proposed in Hamilton & Ward (2004) may not be needed.

4. CONCLUSIONS

We studied the behavior of Jupiter’s and Saturn’s obliquities
in models of planetary instability and migration that were
informed from NM12. Rather then investigating a few specific
cases directly from NM12, we considered the general concept
of a two-stage migration from NM12, and studied a broad
range of relevant parameter values. We found that, in general,
the two stage migration provides the right framework for an
adequate excitation of Jupiter’s and Saturn’s obliquities.
Moreover, we found that certain conditions must be satisfied

during the first and second stages of migration, if the final
obliquity values are to match the present obliquities of these
planets.
Our results indicate that Jupiter spin axis could have been

tilted either when (i) the s8 frequency swept over Jα during the
first migration stage (that is before the instability happened), or
when (ii) the s7 frequency approached Jα at the end of
planetary migration. For (i) to work, the crossing of s8 must be
fast, such that the capture into the resonance does not happen,
but not too fast, such that some excitation is generated by the
resonance crossing. To obtain full 3 .1Jε = ◦ during this stage,
the rate of change of s8 during crossing, ds dt8 , must be smaller
than 0.05 arcsec yr−1 Myr−1 (assuming that I 0 .0558 < ◦ ). Since
the evolution of s8 mainly relates to the radial migration of
Neptune and dispersal of the outer disk of planetesimals, this
result implies that both these processes would need to occur
relatively slowly. More specifically, parameters ds dt8 and I58
would have to have values along a diagonal line in the (ds dt8 ,
I58) plane with larger values of I58 requiring larger values of
ds dt8 (see Figure 3). Any model of planetary instability/
migration can be tested against this constraint. The models
where ds dt8 is too slow and/or I58 is too large, as specified in
Figure 3, can be ruled out, because Jupiter’s obliquity would be
excited too much by the s8 crossing.
Not much excitation of Jε is expected during the s8 crossing

if ds dt8 was relatively fast and/or if I58 was only a very small
fraction of its current value. If that is the case, Jupiter’s
obliquity would probably need to be excited during the very
last stages of migration by (ii). For that to work, Jupiter’s
precession constant Jα would need to be 2.95≃ arcsec yr−1

(assuming 0Jε = initially), which is a value that is
significantly larger than the one estimated by Helled et al.
(2011). This means that Helled’s model would need to be
adjusted to fit within this picture. Interestingly, results from the
upcoming Juno mission may constrain αJ to about 0.1% (e.g.,
Le Maistre et al. 2014). It is also possible, however, that
Jupiter’s present obliquity was contributed partly by (i) and
partly by (ii). If so, Figures 3 and 5 express the joint constraint
on ds dt8 and I58 during the first stage, and Jα .
As for Saturn, our results indicate that the capture into the

spin–orbit resonance with s8 (Hamilton & Ward 2004; Ward &
Hamilton 2004) is indeed possible during the late stages of
planetary migration, assuming that the migration rate was slow
enough. The exact constraint on the slowness of migration
depends on I68, which in turn depends how much Neptune’s
inclination was excited by the instability and how long it
remained elevated (Boué et al. 2009). Since in the NM12
models, Neptune’s orbital inclination is never large, we have
good reasons to believe that I68 was comparable to its current
value when the crossing of s8 occurred. Thus, using
I 0 .06468 ≃ ◦ , we find that the e-folding migration timescale τ
would need to be τ  100Myr. If 200τ > Myr, however, the
capture in the s8 resonance would be strictly adiabatic. This
would imply, if Sε was negligible before capture, that the
resonant state should have a very small libration amplitude (see
Hamilton & Ward 2004; Ward & Hamilton 2004). It would
then be difficult to explain the current orientation of Saturn’s
spin axis, which indicates that the libration amplitude should be
at least 30°. A more satisfactory solution, however, can be
obtained for 100 150τ ≃ − Myr, in which case the capture into
the resonance was not strictly adiabatic. In this case the 30⩾ °
libration amplitude is obtained during capture.

Figure 7. Bottom panel: distribution of solutions successfully matching
Saturn’s spin state in the parametric plane Sα (abscissa) vs. τ (ordinate), the
e-folding time of s8-frequency evolution during the phase 2. No successful
solutions were obtained in the white region of the plot. The darker the gray-
scale in the given bin, the more robust the solution is. The maximum value 36
corresponds to 36 sampled initial conditions of the simulations for each ( , )Sα τ
pair (see the side bar). When 0.78Sα ≃ arcsec yr−1, the obliquity of the
corresponding to Cassini state C2 is ;27◦. 4. Therefore the capture solution
corresponds to the minimum needed libration amplitude of Saturn’s spin in the
s8 reference frame. From this value the larger libration-amplitude solutions
bifurcate toward smaller/larger Sα values. The arrows indicate parametric
location of two particular examples shown on panels (a) and (b) of Figure 8.
Top panel: obliquity of the Cassini state C2 (solid line) and maximum width of
the associated resonant zone (gray area) as a function of Sα . We assume
inclination I I 0.06468= = ◦ and terminal value of the orbital precession
frequency s 0.6928 ≃ − arcsec yr−1.
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While the capture conditions pose a strong constraint on
the timescale of Neptune’s radial migration, as discussed
above, and additional constraint on Saturn’s precession
constant Sα derives from the present obliquity of Saturn.
This is because, again assuming that Saturn spin vector is in
the resonance with s8 today, the present obliquity of Saturn
implies that the Cassini state C2 of this resonance would have
to be located at (28 30)ε ∼ − °. This would require that

0.78 0.80Sα ≃ − arcsec yr−1. The value derived by Helled
et al. (2009) is larger, 0.8445≃ arcsec yr−1, and clearly
incompatible with this assumption. Direct measurements of
the mean precession rate of Saturn’s spin axis suggest that

0.81Sα ≃ arcsec yr−1, which is still slightly larger than the
range given above, but the uncertainty interval of this
estimate includes values below 0.8 arcsec yr−1 (R. A. Jacob-
son 2015, personal communication). Figuring out the exact
value of Saturn’s precession constant will therefore be
important. Once Sα is known, Figure 7 could be used to
precisely constrain the timescale of planetary migration.
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