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ABSTRACT

The Kuiper Belt is a population of icy bodies beyond the orbit of Neptune. The complex orbital structure of the
Kuiper Belt, including several categories of objects inside and outside of resonances with Neptune, emerged as a
result of Neptune’s migration into an outer planetesimal disk. An outstanding problem with the existing migration
models is that they invariably predict excessively large resonant populations, while observations show that the non-
resonant orbits are in fact common (e.g., the main belt population is ;2–4 times larger than Plutinos in the 3:2
resonance). Here we show that this problem can be resolved if it is assumed that Neptune’s migration was grainy,
as expected from scattering encounters of Neptune with massive planetesimals. The grainy migration acts to
destabilize resonant bodies with large libration amplitudes, a fraction of which ends up on stable non-resonant
orbits. Thus, the non-resonant-to-resonant ratio obtained with the grainy migration is higher, up to ∼10 times
higher for the range of parameters investigated here, than in a model with smooth migration. In addition, the grainy
migration leads to a narrower distribution of the libration amplitudes in the 3:2 resonance. The best fit to
observations is obtained when it is assumed that the outer planetesimal disk below 30 au contained 1000–4000
Plutos. We estimate that the combined mass of Pluto-class objects in the original disk represented 10%–40% of the
estimated disk mass ( M 20disk MEarth). This constraint can be used to better understand the accretion processes in
the outer solar system.
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1. INTRODUCTION

Studies of Kuiper Belt dynamics first considered the effects
of outward migration of Neptune (Fernández & Ip 1984) that
can explain the prominent populations of Kuiper Belt Objects
(KBOs) in major resonances (Malhotra 1993, 1995; Hahn &
Malhotra 1999, 2005; Chiang & Jordan 2002; Chiang
et al. 2003; Gomes 2003; Levison & Morbidelli 2003;
Murray-Clay & Chiang 2005, 2006). Adding to that, Petit
et al. (1999) invoked the dynamical effect of large planetesi-
mals scattered from the Neptune region and showed that it can
explain the general depletion and excitation of the belt. With
the advent of the notion that the early solar system may have
suffered a dynamical instability (Thommes et al. 1999; Tsiganis
et al. 2005; Morbidelli et al. 2007), the focus broadened, with
the more recent theories invoking a transient phase with an
eccentric orbit of Neptune (Levison et al. 2008; Morbidelli
et al. 2008; Batygin et al. 2011; Dawson & Murray-Clay 2012;
Wolff et al. 2012). The consensus emerging from these studies
is that the Hot Classical (hereafter HC), resonant, scattered, and
detached populations (see Gladman et al. 2008 for the
definition of these groups), formed in a massive planetesimal
disk at 30 au, and were dynamically scattered onto their
current orbits by migrating (and possibly eccentric) Neptune
(Levison et al. 2008; Morbidelli et al. 2008; Dawson &
Murray-Clay 2012). The Cold Classicals (CCs), on the other
hand, probably formed at >40 au and survived Neptune’s early
“wild days” relatively unharmed (Kavelaars et al. 2009;
Batygin et al. 2011; Wolff et al. 2012).

In our previous work, we considered two unexplained
features of the Kuiper Belt. First, we examined the wide
inclination distribution of the HCs and resonant populations
(Figure 1; Nesvorný 2015a). We found that this is key to

understanding the emergence of the Kuiper Belt. Specifically,
the inclination distribution implies that Neptune’s migration
must have been long range (Neptune starting below ;25 au),
and slow (exponential e-folding timescale τ 10Myr). This is
because Neptune needs to be given sufficient time to raise the
orbital inclinations by close encounters with the disk objects.
Second, we showed that the concentration of CCs near 44 au,
known as the Kuiper Belt kernel (Petit et al. 2011), can be
explained if Neptune’s otherwise smooth migration was
interrupted by a discontinuous change in Neptune’s orbit when
Neptune reached 28 au (Nesvorný 2015b). The kernel forms
in this model as bodies previously collected in Neptune’s 2:1
resonance are released at 44 au when Neptune jumps. Taken
together, these results provide support for the planetary
migration/instability model developed in Nesvorný & Morbi-
delli (2012), where Neptune slowly migrates from 25 au to
28 au, jumps by 0.5 au by being scattered off of another
planetary body during the instability, and then continues
migrating to the original edge of the massive planetesimal disk
at 30 au (see also Gladman et al. 2012; discussion in
Section 13).
Nesvorný (2015a) pointed out an outstanding problem with

previous simulations of the Kuiper Belt formation (e.g., Hahn
& Malhotra 2005; Levison et al. 2008), including their own
model. They called it the resonance overpopulation problem.
This problem arises when the number of resonant objects in the
3:2 resonance, N3:2, is compared to the number of HCs (NHC).
According to observations, Plutinos in the 3:2 resonance are
;2–4 times less numerous than the HCs (Gladman et al. 2012;
Adams et al. 2014). Thus, NHC/N3:2 ;2–4. The populations
in the 2:1 and 5:2 resonances are probably somewhat smaller
than N3:2 (e.g., Volk et al. 2016). In contrast, the simulations of
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Nesvorný (2015a), where Neptune was slowly and smoothly
migrated from <a 25 auN,0 to 30 au, give N NHC 3:2∼0.2–0.5
(Figure 2).3 A possible solution to this problem, suggested in
Nesvorný (2015a), is the jumping Neptune model, in which
Neptune radially jumps by being scattered off of another planet
(Figure 3). While the jumping Neptune model was primarily
motivated by the formation of the Kuiper Belt kernel (Petit
et al. 2011; Nesvorný 2015b), it can also help to reduce the
resonant populations, because bodies captured in resonances

before Neptune’s jump are released when Neptune jumps, and
thus do not contribute to the final statistics.
Here we conduct numerical simulations of the jumping

Neptune model and find that Neptune’s jump helps, but is not
sufficient to reconcile the model with observations. We
therefore investigate other solutions to the resonance over-
population problem. We find that the problem can be resolved
if Neptune’s migration was grainy due to a presence of Pluto-
class objects in the planetesimal disk that was driving the
planetary migration. The principal difference between the
smooth and grainy migration modes is that in the latter case
Neptune’s resonances exhibit a random walk in the semimajor
axis (in addition to the smooth radial drift). This acts to reduce
the resonant populations, because resonant orbits with large
libration amplitudes can become unstable. At the same time, it
helps to increase the HC population, because orbits evolve
from Neptune’s resonances onto stable non-resonant orbits
more easily than in the smooth case. Specifically, we find that
NHC/N3:2∼2–4 is obtained in the grainy migration model if
the planetesimal disk is assumed to have contained

Figure 1. The orbital elements of KBOs observed in three or more oppositions.
Various dynamical classes are highlighted. The HCs with > i 5 and Neptune
Trojans are denoted by larger dots, and the CCs are denoted by smaller dots.
Note the wide inclination distribution of the HCs in panel (b) with inclinations
reaching above ;30°. The solid lines in panel (a) follow the borders of
important mean motion resonances. For Neptune Trojans, we show an
approximate location of stable librations. The low-inclination orbits with

< <a40 42 au are unstable due to an overlap of the secular resonances n7 and
n8 (Kněžević et al. 1991; Duncan et al. 1995).

Figure 2. The orbital elements of bodies captured in the Kuiper Belt in a model
with smooth migration, =a 24 auN,0 and t = 30 Myr (from
Nesvorný, 2015a). The bodies captured on orbits in the main belt region are
denoted by larger symbols. Note the very large population of Plutinos
(a;39.5 au) obtained in this model. There are nearly three times as many
Plutinos as the HCs in the plot, while observations indicate that in reality there
should be ;2–4 times fewer Plutinos than the HCs. This clearly illustrates the
resonance overpopulation problem.

3 Nesvorný (2015a) reported a few special cases with a smooth migration
where N N 1HC 3:2 , possibly in better agreement with observations. These
cases correspond to very long migration timescales (τ�100 Myr). While this
could help to resolve the resonance overpopulation problem, these very long
migration timescales lead to several problems elsewhere. For example, the
inclination distribution of HCs and Plutinos in the 3:2 resonance obtained with
τ�100 Myr is wider than indicated by observations, and the total
implantation efficiency into the Kuiper Belt is ;5×10−3, which is probably
excessive. We therefore believe that the very long migration timescales do not
provide a viable solution to the resonance overpopulation problem.
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∼1000–4000 Plutos, or ∼1000 bodies twice as massive as
Pluto. Sections 2 and 3 describe our method and results,
respectively. The broader implications of this work are
discussed in Section 4.

2. THE INTEGRATION METHOD

The integration method with smooth migration of Neptune is
explained in Section 2.1. The migration parameters were
chosen to match the orbital evolution of planets obtained in the
self-consistent simulations of the planetary instability/migra-
tion in Nesvorný & Morbidelli (2012; hereafter NM12). The
initial distribution of disk particles is defined in Section 2.2.
Then, in Section 2.3, we introduce massive objects in the outer
disk and let Neptune react to individual scattering events.
Section 2.4 explains how we used the Canada–France Ecliptic
Plane Survey (CFEPS) detection simulator to compare our
modeling results with observations.

2.1. Smooth Migration

Our numerical integrations consist of tracking the orbits of
four giant planets (Jupiter to Neptune) and a large number of
test particles representing the outer planetesimal disk. To set up
an integration, Jupiter and Saturn were placed on their current
orbits. Uranus and Neptune were placed on inside of their
current orbits and were migrated outward. The initial
semimajor axis aN,0, eccentricity eN,0, and inclination iN,0
define Neptune’s orbit before the main stage of migration/
instability. In most of our simulations we used =a 24 auN,0 ,
because the wide inclination distribution of HCs and resonant

populations requires that Neptune’s migration was long range
(aN,025 au; Nesvorný 2015a). We also set =e 0N,0 and

=i 0N,0 . All inclination values reported in this article are
referred to the invariant plane of the solar system.
The swift_rmvs4 code (Levison & Duncan 1994) was

used to follow the evolution of planets (and massless disk
particles; see Section 2.2). The code was modified to include
fictitious forces that mimic the radial migration and damping of
planetary orbits. These forces were parametrized by the
exponential e-folding timescales, ta, te, and ti, where ta
controls the radial migration rate, and te and ti control the
damping rate of e and i. Specifically, the semimajor axis of
Neptune changes from aN,0 to its current average of

=a 30.11 auN,c as

( ) ( ) ( ) ( )t= + - -a t a a a texp , 1aN N,c N,0 N,c

and the eccentricity and inclination of Neptune evolve
according to

( ) ( ) ( ) ( ) ( )t t= - = -e t e t i t i texp and exp . 2e iN N,0 N N,0

The expressions for ( )e tN and ( )i tN differ from those used in
Morbidelli et al. (2014), where the damping rate ( )de dt eN N

was chosen to be proportional to ( )t-texp i . Here we set
t t t~ ~a e i ( )t= 1 , because such roughly comparable time-
scales were suggested by previous work.
The numerical integrations of the first migration stage were

stopped when Neptune reached a 28 auN,1 . Then, to
approximate the effect of planetary encounters during the
instability (NM12, Nesvorný 2015b), we applied a discontin-
uous change of Neptune’s semimajor axis and eccentricity,
DaN and DeN. Motivated by the NM12 results (see Figure 3),
we set D =a 0N or 0.5 au, and D =e 0N , 0.05 or 0.1. The
purpose of D = D =a e 0N N is to have a reference case for
comparison purposes. We use D =a 0.5 auN , because Nes-
vorný (2015b) showed that this jump size would be needed to
explain the Kuiper Belt kernel. Note that the resonant objects
are released from resonances with D =a 0.5 auN , because the
typical resonance width is just smaller than the jump size. No
change was applied to the orbital inclination of Neptune,
because a small inclination change should not critically affect
the processes studied here.
The second migration stage starts with Neptune having the

semimajor axis = + Da a aN,2 N,1 N. We apply the
swift_rmvs4 code, and migrate the semimajor axis (and
damp the eccentricity) on an e-folding timescale t2. The
migration amplitude was adjusted such that the final semimajor
axis of Neptune ended to be within 0.05 au of its current mean

=a 30.11 auN,c , and the orbital period ratio, P PN U, where PN
and PU are the orbital periods of Neptune and Uranus, ended
within 0.5% of its current value ( =P P 1.96N U ). A strict
control over the final orbits of planets is important, because it
guarantees that the mean motion and secular resonances reach
their present positions.
As for the specific values of t1 and t2 used in our model, we

found from NM12 that the orbital behavior of Neptune can be
approximated by t  10 Myr1 and t  30 Myr2 for a disk
mass =M 20disk MEarth, and t  20 Myr1 and t  50 Myr2 for

=M 15disk MEarth. Slower migration rates are possible for
lower disk masses. Moreover, we found from NM12 that the
real migration is not precisely exponential with the effective t2
being longer than the values quoted above during the very late
migration stages (τ2 100Myr). This is consistent with

Figure 3. The orbit histories of the giant planets in an instability simulation
from NM12. In this example, the fifth giant planet was initially placed on an
orbit between Saturn and Uranus and was given a mass equal to the Neptune
mass. Ten thousand particles, representing the outer planetesimal disk, were
distributed with the semimajor axis < <a23.5 29 au, surface density
S = a1 , and low eccentricity and low inclination. With the total disk mass

=M 15disk MEarth, each disk particle has0.75 Pluto mass. The plot shows the
semimajor axes (solid lines), and perihelion and aphelion distances (thin
dashed lines) of each planet’s orbit in a time frame ±20 Myr around the
instability. Neptune migrates into the outer disk during the first stage of the
simulation. It reaches 27.5 au when the instability happens (t;18.3 Myr).
During the instability, Neptune has a close encounter with the fifth planet and
its semimajor axis jumps by0.4 au outward (see the inset). The fifth planet is
subsequently ejected from the solar system by Jupiter. Neptune’s migration
after the instability can be approximated with the e-folding timescale
t = 50 Myr2 . The effective t2 becomes longer (τ2  100 Myr) at later times.
The final orbits of the four remaining planets are a good match to those in the
present solar system (thin dashed lines).
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constraints from Saturn’s obliquity, which was presumably
exited by late capture in a spin–orbit resonance (Vokrouhlický
& Nesvorný 2015; see Hamilton & Ward 2004 and Ward &
Hamilton 2004 for the original work that proposed the spin–
orbit resonance as the means of exciting Saturn’s obliquity).
Much shorter migration timescales than those quoted above do
not apply, because they would violate constraints from the wide
inclination distribution of HCs and resonant populations
(Nesvorný 2015a). We therefore used t = 10 Myr1 or
30Myr, and t = 302 or 100Myr. These cases should bracket
the range of possible migration timescales.

2.2. Planetesimal Disk Properties

The planetesimal disk was divided into two parts. The inner
part of the disk, from just outside Neptune’s initial orbit to redge,
was assumed to be massive. We used =r 28 auedge or 30 au,
because our previous simulations in NM12 showed that the
massive disk’s edge must be at 28–30 au for Neptune to stop at
30 au. If the edge of the massive disk were at >30 au,
Neptune would continue migrating past 30 au (Gomes
et al. 2004). The solar nebula could have become truncated,
for example, by photoevaporation from the UV and FUV
irradiation by background stars in a cluster (e.g., Adams 2010;
see also discussion in Petit et al. 2011). In fact, a recent study of
the dynamics of planetesimals embedded in a gas disk
suggested that the solar nebula was truncated (or else it would
act to produce very high orbital inclinations, > i 40 , in the
Kuiper Belt; Kretke et al. 2012). The estimated mass of the
planetesimal disk below 30 au is M 20disk MEarth (NM12). As
shown in Levison et al. (2008), the massive disk is the main
source of HCs, Plutinos, and other resonant populations. It
therefore has a crucial importance for the resonance over-
population problem considered here.

The planetesimal disk probably had a low mass extension
reaching from 30 au to at least45 au. The low mass extension
of the disk beyond 30 au is presumably the source of CCs
(Batygin et al. 2011; Wolff et al. 2012; Nesvorný 2015b). It is
needed to explain why the CCs have several unique physical
and orbital properties (see Section 3.4). The disk extension
should not substantially contribute to the present populations of
the hot and resonant KBOs (Nesvorný 2015b)4, because the
orbital inclinations of bodies native to >a 40 au remain small
during Neptune’s migration. Here we therefore do not initially
consider the disk extension, and return to it only in Section 3.4,
where we test whether a grainy migration is consistent with the
formation of the Kuiper Belt kernel.

Each of our simulations included one million disk particles
distributed from outside Neptune’s initial orbit to redge. The radial
profile was set such that the disk surface densityS µ r1 , where
r is the heliocentric distance. A large number of disk particles
was needed because the implantation probability in different
parts of the Kuiper Belt is expected to be ∼10−3

–10−4. With 106

disk particles initially, this yields ∼100–1000 implanted
particles, and allows us to perform a detailed comparison of
the model results with observations. The disk particles were
assumed to be massless such that their gravity does not interfere
with the migration/damping routines. This means that the

precession frequencies of planets are not affected by the disk in
our simulations, while in reality they were. This is an important
approximation (Batygin et al. 2011). The direct gravitational
effects of the fifth planet on the disk planetesimals were ignored
(see the discussion at the end of Section 4). These effects could
be especially important for the CCs (Batygin et al. 2012).
An additional uncertain parameter concerns the dynamical

structure of the planetesimal disk. It is typically assumed that
the disk was dynamically cold with orbital eccentricities
e 0.1 and orbital inclinations  i 10 . Some dynamical

excitation could have been supplied by scattering off of Pluto-
sized and larger objects that presumably formed in the disk
(Stern & Colwell 1997; Kenyon et al. 2008). The magnitude of
the initial excitation is uncertain, because it depends on several
unknown parameters (e.g., the number of large objects in the
disk). The initial eccentricities and initial inclinations of disk
particles in our simulations were distributed according to the
Rayleigh distribution with s = 0.1e and s = 0.05i , where σ is
the usual scale parameter of the Rayleigh distribution (the mean
of the Rayleigh distribution is equal to p s2 ).

2.3. Grainy Migration

We developed an analytic method to represent the jitter that
Neptune’s semimajor axis experiences due to close encounters
with massive planetesimals. The method has the flexibility to
use any smooth migration history of Neptune on the input,
include a certain number of the massive planetesimals in the
original disk, and generate a new migration history where the
random element due to massive planetesimal encounters is
included. This approach is useful, because we can easily
control how grainy the migration is, while preserving the global
orbital evolution of planets from the smooth simulations. We
then proceed to test how the simulation results depend on
various parameters, such as the number and mass of the
massive planetesimals in the original disk.
We start with a specific migration run in which Neptune’s

semimajor axis evolves smoothly, except for a possible jump
byDaN due to an encounter with another planet. The migration
parameters, namely aN,0, aN,1,DaN, t1, and t2 (Section 2.1), are
specified at this point. As mentioned above, each run also
includes 106 test particles that represent the disk planetesimals.
We first scan through the simulation output in small steps Dt,
and extract the orbit of Neptune and the orbital distribution of
disk planetesimals at each step. We then apply the Öpik-type
collision probability code (Bottke et al. 1994; see also
Greenberg 1982) to calculate how many encounters between
Neptune and planetesimals happen for encounter distances
<r R, where R is some threshold. The gravitational focusing

by Neptune is taken into account in this calculation.
The goal is to find how the number of encounters with <r R

depends on R. We find that for small values of R this
dependence is linear (while a quadratic dependence would be
expected without gravitational focusing). This can be under-
stood from the following expression for the impact parameter:

( )= +
¥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥b R

R

R

v

v
1 3max

2 2 N esc
2

(e.g., Bertotti et al. 2003), where RN=24,622 km is Neptune’s
mean radius, vesc;23.5 km s−1 is the escape velocity from
Neptune’s cloudtops, and ¥v is the encounter speed “at
infinity.” Parameter ( )b Rmax is the maximal impact parameter

4 With the possible exception of the 2:1 resonance, which sweeps through the
low mass extension of the disk during Neptune’s migration, and can capture
and retain an important population of low-inclination orbits. The orbital
inclinations of known KBOs in the 2:1 resonance may hint on this, but better
statistics will be needed to establish things more firmly.
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value for which the minimal encounter distance is lower than
specified R, when ¥v is fixed. Since ¥v ;1–2 km s−1, and thus
¥ v vesc, the second term in Equation (3) is greater than 1 for
all encounters with *<R R , where ( )* = ¥R R v vN esc

2. The
number of encounters with <r R in this regime is therefore
proportional to R. For *>R R , on the other hand, the first term
in Equation (3) prevails, and the number of encounters with
<r R becomes proportional to R2. In practice, we find it

satisfactory to neglect the effect of distant encounters, because
the distant encounters do not (individually) induce any
significant changes of Neptune’s semimajor axis. We therefore
only consider encounters with *<r R , where the scaling is
linear. Note that * >R R140 N for <¥v 2 km s−1.

The Öpik code gives us the number of planetesimals having
encounters with Neptune, ( )Dn R t t, ; , as a function of the
distance R, time t, and time interval Dt. Obviously,

( )D µ Dn R t t t, ; for the small intervals used here
(Δt=103 years). The time profile of the number of encounters
depends on the timescale of the planetesimal disk dispersal,
which in turn is related to Neptune’s migration speed. We find
from our simulations that ( )D µ a-n R t t R t, ; with some
exponent α. For example, in the simulation with t = 301 Myr
and τ2=100Myr, we have α;1.1–1.2. Then, if we
approximate ( )D = a-n R t t C R t, ; , the constant C will depend
on the initial number of massive planetesimals in the disk (Nmp).
Here we consider =N 1000mp , 2000, and 4000, and rescale the
original ( )Dn R t t, ; obtained with 106 disk particles to Nmp.
This gives us an approximate record of the history of close
encounters between the massive planetesimals and Neptune.

Equipped with the calibrated ( )Dn R t t, ; function, we
sequentially consider each Dt interval. With D =t 10 years3 ,

( )Dn R t t, ; is always much smaller than unity. In each step, we
generate a random variate X with a uniform distribution
between 0 and 1. We then set ( )D =n R t t X, ; and solve for

( )= DR R t X t, ; . If < <R R RN max, where *<R Rmax is the
maximum encounter distance considered here (in practice we
set =R R 10max Hill , where =RHill is the Hill radius), the
encounter is recorded, and we proceed with the next timestep
Dt . In the end, the method allows us to generate an encounter
sequence that closely approximates the reality. Note that for the
typical encounter speeds considered here it only takes up to
several months to cross Rmax.

We proceed by computing the effect of individual encounters
on the semimajor axis of Neptune. This is done using a
hyperbolic approximation of the planetesimal’s trajectory
relative to Neptune. The hyperbolic approximation is adequate
for deep encounters considered here, and in a regime when the
encounter duration is much shorter than the orbital period of
Neptune. The deflection angle θ of the asymptotes of the
hyperbola describing the planetesimal encounter trajectory can
be obtained from R and ¥v . Specifically, introducing the half-
angle q q=1 2

1

2
, we find (e.g., Bertotti et al. 2003)

( )q = + ¥
-⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

R

R

v

v
sin 1 2 . 41 2

N esc

2 1

Expressed in the inertial frame, the change of Neptune’s
velocity vector is

[( ) ] ( )d q q q´ -¥V e e e
m

M
v2 sin cos sin , 5

N
1 2 1 2 1 2 2 1 2

where MN and m are Neptune’s and planetesimal masses, e1 is a
unit vector along the angular momentum vector of planetesi-
mal’s planetocentric trajectory, and e2 is a unit vector along the
incoming trajectory of the planetesimal (relative to the planet).
Since we do not propagate the information about e1 and e2 from
the original simulation, we assume that e1 and e2 are randomly
(isotropically) oriented in space (obviously, these vectors are
perpendicular to each other). This should be a reasonable
approximation in a situation when the disk of planetesimals is
dispersed by Neptune. On the other hand, the actual distribution
of encounters is likely to be, to some degree, anisotropic,
because Neptune migrates outward due to these encounters. A
study of the dynamical effects of anisotropic encounters on the
Kuiper Belt goes beyond the scope of this paper.
Finally, we use the Gauss equations to compute the orbital

effect of dV on Neptune’s orbit. The eccentricity and
inclination changes are neglected. In the approximation of a
near-circular orbit of Neptune, we obtain

( )d d
 a

a

V

V
2 , 6N

N N

where daN is the change of Neptune’s semimajor axis, d V is a
projection of dV onto the direction of Neptune’s orbital motion,
andVN is Neptune’s orbital speed. To compute d V from dV , we
assume that dV has a random orientation. The change daN is
computed for all encounters with massive planetesimals and
recorded in a file. In a simulation, we then use the modified
swift_rmvs4 code with smooth migration (Section 2.1), and
apply daN every time that is recorded in the encounter file.
Figure 4 shows an example of the sequence of daN in the

case with t = 30 Myr1 , t = 100 Myr2 , and =N 1000mp , where
each massive planetesimal was assumed to have Pluto’s mass.
The total number of encounters recorded in this case is ∼104,
implying that a massive planetesimal had on average ∼10
encounters with < =r R R 10max Hill . As expected, most
encounters happen during the initial migration stages when
the planetesimal disk is still massive. The slight preference for
a somewhat larger range of the daN values at late epochs
reflects the outward migration of Neptune’s orbit. The
root mean square of da aN N is of the order of

( )( )~ ~¥
-m M v V 10N

4, as expected from Equations (5)
and (6). By design, the daN distribution has a zero mean, while
in reality the distribution should be skewed toward positive
values, because the massive planetesimals contribute to
Neptune’s outward migration.
Figure 5 shows an example of grainy migration of Neptune

produced by the method described in this section. The effects
of encounters are clearly visible in panel (b), where the ratio of
orbital periods, P PN U, shows an irregular pattern. During the
late stages, when the smooth migration nearly stalls, the
random effect of encounters with massive planetesimals can
cause Neptune to move slightly inward during some time
intervals. This may be important for Neptune Trojans, because
their stability sensitively depends on the maximal P PN U
reached during the planetary migration (Gomes & Nes-
vorný 2016).

2.4. The CFEPS Detection Simulator

We used the CFEPS detection simulator (Kavelaars
et al. 2009) to compare the orbital distributions obtained in
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our simulations with observations. CFEPS is one of the largest
Kuiper Belt surveys with published characterization (currently
169 objects; Petit et al. 2011). The simulator was developed by
the CFEPS team to aid the interpretation of their observations.
Given intrinsic orbital and magnitude distributions, the CFEPS
simulator returns a sample of objects that would have been
detected by the survey, accounting for flux biases, pointing
history, rate cuts, and object leakage (Kavelaars et al. 2009). In
the present work, we input our model populations in the
simulator to compute the detection statistics. We then compare
the orbital distribution of the detected objects with the actual
CFEPS detections using the Kolmogorov—Smirnov (K–S) test
(Press et al. 1992).

This is done as follows. The CFEPS simulator takes as an
input: (1) the orbital element distribution from our numerical
model, and (2) an assumed absolute magnitude (H) distribution.
As for (1), the input orbital distribution was produced by a
short integration starting from the final model state of the
Kuiper Belt. The orbital elements of each object were recorded
at 100 yr intervals during this integration until the total number
of the recorded data points reached ;105. Each data point was
then treated as an independent observational target. We rotated
the reference system such that the orbital phase of Neptune in
each time frame corresponded to its ecliptic coordinates at the
epoch of CFEPS observations. This procedure guaranteed that
the sky positions of bodies in Neptune’s resonances were
correctly distributed relative to the pointing direction of the
CFEPS frames.

The magnitude distribution was taken from Fraser et al.
(2014). It was assumed to be described by a broken power
law with ( ) ( )= a -N H dH dH10 H H1 0 for <H HB and

( ) ( ) ( )( )= a a a- + - -N H dH dH10 H H H H2 0 1 2 B 0 for >H HB,
where a1 and a2 are the power-law slopes for objects brighter
and fainter than the transition, or break magnitude HB, and H0

is a normalization constant. Fraser et al. (2014) found that
a  0.91 , a  0.22 , and H 8.0B (r band) for the HCs. In the
context of a model where the HCs formed at <30 au, and were
implanted into the Kuiper Belt by a size-independent process
(our integrations do not have any size-dependent component),
the HC magnitude distribution should be shared by all
populations that originated from <30 au (Morbidelli et al.
2009; Fraser et al. 2014). We varied the parameters of the input
magnitude distribution to understand the sensitivity of the
results to various assumptions. We found that small variations
of a1, a2, and HB within the uncertainties given in Fraser et al.
(2014) have essentially no effect. Note that because we
compare our results with the CFEPS survey, we work with
the absolute magnitudes in the g band ( +H H 0.6g r ).

3. RESULTS

All migration simulations were run to 0.5 Gyr. They were
extended to 2 or 4 Gyr with the standard swift_rmvs4 code
(i.e., without migration/damping after 0.5 Gyr). We performed
16 new simulations in total. Four of these simulations
considered the case with smooth migration. In case 1, we used

Figure 4. The sequence of Neptune’s semimajor axis changes, daN, due to massive planetesimal encounters. This sequence was generated for a case with
t = 30 Myr1 , t = 100 Myr2 , and =N 1000mp . Each massive planetesimal was assumed to have one Pluto mass. The top panel shows the number of encounters per
1 Myr as a function of time. The gray line in the top panel is a power law function, at with a = -1.15, that provides an excellent match to the decreasing profile of the
number of encounters with time. The central panel shows the daN values produced by individual encounters. The histogram on the right is the distribution of daN.

6

The Astrophysical Journal, 825:94 (18pp), 2016 July 10 Nesvorný & Vokrouhlický



t = 30 Myr1 and t = 100 Myr2 . In case 2, we used
τ1=10Myr and t = 30 Myr2 . For each of these cases, we
performed a simulation with D =a 0N , and another simulation
with D =a 0.5 auN . In addition, we performed 12 simulations
with the grainy migration. These simulations shared the
properties of the four smooth migration cases, but for each
case we considered several different assumptions on the
migration graininess. Specifically, the outer disk was assumed
to have 1000, 2000 or 4000 massive planetesimals each with a
Pluto mass ( =M Mmp Pluto), or 1000 massive planetesimals
each with twice the mass of Pluto ( =M M2 ;mp Pluto hereafter
Twoplutos). A more detailed exploration of parameter space
was not possible, because each simulation with 106 disk
particles is computationally expensive (one full simulation for
4 Gyr requires ∼5000 CPU days on NASA’s Pleiades
Supercomputer5).

For the population estimates discussed below we first need to
define what we mean by different categories of KBOs. The
HCs are defined here as objects on orbits with semimajor axis

< <a40 47 au and perihelion distance ( – )= >q a e1 36 au.
Using a smaller perihelion distance cutoff would not affect the
population estimate much, because there are not that many
orbits with <q 36 au in the quoted semimajor axis range. We
do not make any effort to separate the HCs from the
populations in the 5:3, 7:4, 9:5, 11:6 resonances that intersect
the main belt. This should not be a problem either, because the

populations in these weak resonances are much smaller than the
HC population.
As for the 3:2 resonance, we require that the resonant angle,

s l l v= - -3 23:2 N , where λ and ϖ are the mean and
perihelion longitudes of a particle, andlN is the mean longitude
of Neptune, librates. This is done by selecting all particles with

< <a38.5 40 au at the end of our simulations, performing an
additional 106 years simulation for them, and computing the
libration amplitude, Aσ, as half of the full range of the s3:2
excursions. The maximum amplitude of stable librations seen
in our simulations is s A 130 , which is similar to the
maximum libration amplitudes of known Plutinos (Nesvorný &
Roig 2000, Gladman et al. 2012). The non-librating orbits with

< <a38.5 40 au typically have low eccentricities, because
the low eccentricities are required near the 3:2 resonance for the
orbital stability.

3.1. Resonance Overpopulation Problem

We first discuss whether Neptune’s jump, as suggested in
Nesvorný (2015a), can help to resolve the resonance over-
population problem. Figure 6 shows the final distribution of
orbits implanted into the Kuiper Belt in case 1 with smooth
migration. For D =a 0N (i.e., no jump) we obtain

=N N 0.14HC 3:2 , while for D =a 0.5 auN we find
=N N 0.35HC 3:2 (Table 1). Thus, the ratio increased by a

factor of 2.5 when Neptune’s jump was accounted for in the
model. The main difference between these two cases is that the
probability of capture on a stable orbit in the 3:2 resonance,
P3:2, is = ´ -P 2.0 103:2

3 forD =a 0N and = ´ -P 6.8 103:2
4

Figure 5. The orbital histories of the outer planets in a simulation with t = 30 Myr1 , t = 100 Myr2 , =a 27.8 auN,1 , D =a 0.5 auN , D =e 0.1N . Here we assumed
that the outer disk contained 1000 massive planetesimals each with mass =M M2mp Pluto, and applied the method described in Section 2.3 to mimic a grainy migration
that would result from the interaction of Neptune with these massive objects. Neptune’s jump happens at =t 32.5 Myr in this simulation. Panel (b) shows the orbital
period ratio P PN U. The horizontal dashed lines in panels (a) and (b) correspond to the present values of the semimajor axes of Uranus and Neptune.

5 http://www.nas.nasa.gov/hecc/resources/pleiades.html
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for D =a 0.5 auN . (The probabilities are normalized here to
one particle in the original disk below 30 au.)

We looked into this issue in detail and found that the change
of P3:2 was mainly contributed by Neptune’s jump. As a
consequence of Neptune’s jump, the 3:2 resonant objects
captured during the previous stage were released from the
resonance. Interestingly, however, many bodies were captured
into the 3:2 resonance from the scattered disk immediately after
Neptune’s jump, when the 3:2 resonance suddenly moved into
a new orbital location, and during the subsequent slow
migration of Neptune. This explains why the N NHC 3:2 ratio
did not change more substantially. The probability of capture in
the main belt, PHC, also changed, but the change was minor
( = ´ -P 2.8 10HC

4 for D =a 0N and = ´ -P 2.4 10HC
4 for

D =a 0.5 au;N Table 1).
A similar result holds for case 2 with smooth migration,

where =N N 0.45HC 3:2 for D =a 0N and =N N 0.66HC 3:2
forD =a 0.5 auN . These values are somewhat higher that those
obtained in case 1 perhaps suggesting that N NHC 3:2 might
increase further if even shorter migration timescales were used.
The short migration timescales are not plausible, however,
because they do not satisfy the inclination constraint
(Nesvorný 2015a). Given these results, we conclude that the
effect of Neptune’s jump can help, but it is insufficient in itself
to resolve the resonance overpopulation problem. This is
because even in the smooth migration cases with
D =a 0.5 auN , the 3:2 resonance is still strongly overpopu-
lated, by a factor of ∼5–10 relative to HCs. Other resonances,
such as the 2:1 or 5:2, are overpopulated by a significant factor

as well. We therefore proceed by considering the cases with
grainy migration.
Figure 7 shows some of our best results for the grainy

migration. These results were obtained for case 1 (t = 30 Myr1
and τ2=100Myr) and 1000 Twoplutos. Here, N N 4HC 3:2
for both D =a 0N and D =a 0.5 auN , in a close match to
CFEPS observations. This is encouraging. Neptune’s jump
does not seem to have much to do with this result, because

N N 4.2HC 3:2 for D =a 0N and N N 3.8HC 3:2 for
D =a 0.5 auN . These two values are similar and the small
difference between them probably reflects some minor
difference in the planetary migration histories. Neptune’s jump
has only a small effect here, because the case with grainy
migration encourages late captures with many bodies being
captured after the instability.
The results for the case-1 grainy migration with 4000 Plutos

are similar to those reported above for 1000 Twoplutos. The
ones obtained for 1000 and 2000 Plutos are intermediate,
showing a clear progression from the smooth migration case to
cases with an increased migration graininess (Table 1). The
main trend is that P3:2 drops when more and more Plutos are
included. For case 1 with 1000 Plutos, = ´ -P 8.9 103:2

4

for D =a 0N and = ´ -P 3.2 103:2
4 for D =a 0.5 auN .

With 2000 or 4000 Plutos, or 1000 Twoplutos,
P3:2;(1.5–4)×10−4, which represents only a small fraction
of P3:2 obtained with the smooth migration. This change is
attributed to the jittery motion of the 3:2 resonance that
accompanies Neptune’s grainy migration (Murray-Clay &
Chiang 2006). Due to this jitter, many bodies captured into

Figure 6. The orbital elements of bodies captured in the Kuiper with smooth migration and the case-1 parameters (t = 30 Myr1 and τ2=100 Myr). The left panels
show the result for D =a 0N and the right panels show the result for D =a 0.5 auN . Orbits in the 3:2 resonance and in the main belt (40.5<a<47 au) are
highlighted by blue and red colors, respectively. The two vertical lines in the upper panels show the positions of the 3:2 and 2:1 resonances with Neptune. Note that
the resonances are strongly overpopulated relative to the HCs (cf. Figure 1). There are roughly 7 (3) times as many Plutinos as the HCs forD =a 0N (ΔaN=0.5 au).
This contradicts observations.
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the resonance during the earlier stages were later released from
the resonance, because their libration amplitude increased
beyond the limits required for the orbital stability ( s A 130 ;
Nesvorný & Roig 2001). The distribution of the libration
amplitudes in the 3:2 resonance is discussed in Section 3.3.

The HC capture probability also changes when the migration
graininess is increased in the model. With case 1 and 1000
Plutos, PHC ; 4–5×10−4, about a factor of 2 higher than in
the smooth migration case. The capture probability increases
further, to ´ -P 6 10HC

4, when 2000 or 4000 Plutos are
included. Together, the increasing PHC and decreasing P3:2 lead
to N NHC 3:2 values that are more in line with observations. The
best fit to observations, with NHC/N3:2;2–4, occurs for the
case-1 simulations with 2000 and 4000 Plutos (Table 1). It is
difficult to infer the precise number of Pluto-mass bodies with
more confidence. On one hand, additional observations are
needed to better constrain the N NHC 3:2 ratio in the present
Kuiper Belt. On the other hand, the massive planetesimals in
the original disk must have had a range of masses, while here
we represent their size distribution by a delta function. A more

realistic modeling with a continuous mass distribution of
massive planetesimals is left for future work. See Gladman &
Chan (2006) for a modeling work of the effect of very massive
planetesimals.
For an outer disk with mass Mdisk=15–20 MEarth,

´ -P 6 10HC
4 in our reference case with grainy migration

implies the HC mass MHC=0.008–0.012 MEarth, while the
mass inferred from observations is M 0.01HC MEarth (Fraser
et al. 2014). This is an excellent agreement. Since the model
population of Plutinos in the 3:2 resonance has the right
proportion relative to the HCs, as discussed above, this implies
that the Plutino mass obtained in the simulation is also
approximately correct. (The inner classicals below the 3:2
resonance and Neptune Trojans provide additional constraints
that are not considered here.)
The case 2 with t = 10 Myr1 and t = 30 Myr2 shows trends

in many ways similar to those discussed for case 1 above. The
principal effect of faster migration rates is to produce the PHC
values that are a factor of ∼2 larger than in case 1 (for the same
level of graininess), and P3:2 values that are somewhat smaller.
Together, these trends make it easier to obtain the observed
NHC/N3:2;2–4 with a lower level of graininess. This is
illustrated in Figure 8, where we show the orbital distributions
obtained with 2000 Plutos. We find that N N 1.5HC 3:2 in
case 1 and N N 6HC 3:2 in case 2. Thus, while the case 1 with
2000 Plutos produces a ratio that is slightly lower than the one
indicated by observations, the case 2 with 2000 Plutos
overshoots it. The best results in case 2 were obtained with
1000 Plutos in the original disk. In this case, =N N 1.8HC 3:2
forD =a 0N and =N N 2.5HC 3:2 forD =a 0.5 auN (Table 1).
We conclude that the statistics inferred from observations of

the resonant and non-resonant populations in the Kuiper Belt
implies that the massive planetesimal disk below 30 au
contained 1000–4000 Plutos. The combined probability that a
planetesimal from the original disk below 30 au evolves on a
Kuiper Belt orbit is ∼10−3. With 1000–4000 Plutos in the
original disk, we would therefore expect that ∼1–4 Pluto-class
objects should exist in the Kuiper Belt today, while two such
objects are known (Pluto and Eris). This is a reasonable
agreement, but note that neither Pluto or Eris is a member of
the HC population, while we would expect from our model that
the Pluto-size objects are preferentially deposited in the HC
population. The expectations would be slightly different if a
continuous mass distribution of massive planetesimals were
considered. For example, it is plausible that the needed
migration graininess was produced by the combined effect of
1000 Plutos and 500 Twoplutos. This would yield ∼1 Pluto and
∼0.5 Twoplutos in the Kuiper Belt today. Obviously, these
considerations are subject to the small number statistics. Their
main point is to show that the needed graininess from the
N NHC 3:2 constraint is not contradictory to having two Pluto-
class objects in the Kuiper Belt today.

3.2. The Inclination Distribution

The implantation of the disk planetesimals into the Kuiper
Belt is a multi-step dynamical process that was first pointed out
in Gomes (2003), and is hereafter called the Gomes
mechanism. In the Gomes mechanism, disk planetesimals are
first scattered by Neptune to >30 au, where they can evolve
onto orbits with large libration amplitudes in mean motion
resonances. The secular dynamics inside the mean motion
resonances, including the Kozai cycles (Kozai 1962), can

Table 1
The Capture Statistics of the HCs and Plutinos Obtained in Different

Dynamical Models

PHC P3:2 N NHC 3:2

(×10−4) (×10−4)

Smooth Migration
T30 1.9 5.3 0.36
C1-0.0 2.8 20 0.14
C1-0.5 2.4 6.8 0.35
C2-0.0 5.0 11 0.45
C2-0.5 6.6 10 0.66

Grainy Migration
C1-0.0-1000P 4.6 8.9 0.52
C1-0.5-1000P 4.2 3.2 1.3
C1-0.0-2000P 5.2 3.9 1.3
C1-0.5-2000P 5.7 3.2 1.8
C1-0.0-4000P 6.6 2.1 3.1
C1-0.5-4000P 6.2 1.9 3.3
C1-0.0-1000P2 5.5 1.3 4.2
C1-0.5-1000P2 6.0 1.6 3.8
C2-0.0-1000P 8.5 4.7 1.8
C2-0.5-1000P 9.2 3.7 2.5
C2-0.0-2000P 11 1.9 5.8
C2-0.5-2000P 13 1.9 6.8

Observations
CFEPS/DES 5 1.5 ;2–4

Note. T30 is a case from Nesvorný (2015a), where Neptune started at
=a 24 auN,0 and smoothly migrated to 30 au with an e-folding timescale of

t = 30 Myr . C1 stands for Case 1 with t = 30 Myr1 and t = 100 Myr2 , C2
stands for case 2 with t = 10 Myr1 and t = 30 Myr2 . Labels 0.0 and 0.5
denote the cases with D =a 0.0N and D =a 0.5 auN . The simulations with
1000, 2000, and 4000 Plutos are labeled by 1000P, 2000P and 4000P,
Respectively. The Case with 1000 Twoplutos is denoted by 1000P2. The
Columns give the probability of capture as HC (PHC) and in the 3:2 resonance
(P3:2), and the ratio between the two populations (N NHC 3:2). The last row lists
observational contraints. The PHC value reported in this row was computed
from the estimated mass of the HCs, ∼0.01 MEarth according to Fraser et al.
(2014). Assuming a =M 20disk MEarth disk from NM12, this gives

´ -P 5 10HC
4. According to the CFEPS and DES the population of

Plutinos in the 3:2 resonance is ;2–4 smaller than the HCs.
Thus, ´ -P 1.5 10HC

4.
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subsequently act to raise the perihelion distance and decouple
the orbits from Neptune. Finally, if Neptune is still migrating,
bodies can be released from the resonances onto stable non-
resonant orbits. While the Gomes mechanism can operate for a
wide range of migration parameters, Nesvorný (2015a) found
that the inclination constrain requires that Neptune is given
sufficient time to act on the scattered bodies and increase their
orbital inclinations before bodies decouple from Neptune (the
Kozai cycles inside mean motion resonances also contribute to
increasing the orbital inclinations, but they are not the principal
factor). Hence it is required that Neptune’s migration was slow.

Nesvorný (2015a) used a slightly different migration setup
from the one utilized here. The migration in their case was
smooth (i.e., no massive bodies in the disk) and characterized
by a single migration phase with the starting position of
Neptune aN,0 and e-folding migration timescale τ. They found
that the inclination constraint implies that a 25 auN,0 and
t 10 Myr. The migration recipe used in this work was

described in Section 2. Here we have two migration stages with
a slow migration during the first stage, and even slower
migration during the second stage. The migration timescales
used for the two phases satisfy the inclination constraint
because t 10 Myr1,2 . At the end of the first phase, we
assumed that the orbit of Neptune may have changed
discontinuously. And, in addition, our preferred migration
mode is grainy. These differences could affect the inclination
distribution. Here we therefore test whether the orbital

distribution obtained with our favored migration parameters
satisfies the inclination constraint.
Figure 9 illustrates how the orbital distribution of bodies

obtained in our case-1 simulation (t = 30 Myr1 , t = 100 Myr2 ,
ΔaN=0.5 au) compares with observations. Two cases are
shown: (1) a grainy migration case with 1000 Twoplutos, and
(2) a smooth migration case for a reference. We used the
CFEPS detection simulator, as described in Section 2.4, and
compared the simulated orbits with the actual CFEPS
detections. The agreement is satisfactory in the grainy case,
where the distribution of the non-resonant orbits roughly
follows the lines of constant perihelion distance such that a
larger value of the semimajor axis implies larger eccentricity.
This trend is a characteristic property of the HC population (see
Nesvorný 2015a for a more detailed comparison of our model
with the CFEPS observations). The 3:2 resonance population
obtained in the grainy migration case has a correct distribution
of orbital eccentricities. Moreover, as we discussed in
Section 3.1, the HCs and resonant populations appear in the
right proportion. For comparison, the smooth migration case
shown in Figures 9(a) and 9(b) leads to an excessive number of
detections in resonances, which is clearly incorrect.
The inclination distribution obtained in the model is wide

and roughly comparable to the one inferred from observations.
A more careful comparison of the inclination distributions is
presented in Figure 10, where the model distributions are
shown to follow very closely the CFEPS distributions. This is
especially true for the inclination distribution of Plutinos

Figure 7. The orbital elements of bodies captured in the Kuiper Belt in a model with the case-1 migration timescales (t = 30 Myr1 and τ2=100 Myr), grainy
migration corresponding to 1000 massive planetesimals each with mass =M M2mp Pluto, D =a 0N (left panels) and D =a 0.5 auN (right panels). The HCs and
Plutinos are denoted by larger symbols.
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(Figure 10(a)), for which the K–S test gives a 84% probability
that the simulated and observed distributions are being derived
from the same underlying distribution. The agreement is
somewhat less satisfactory for HCs, where the model
distribution is slightly wider than the observed one and the
K–S test gives a 23% probability. Still, this is a satisfactory
match. Also, note that the inclination distribution is sensitive to
the migration timescale, and slightly shorter migration time-
scales should lead to a better agreement (Nesvorný 2015a).

Indeed, our case 2 with t = 10 Myr1 and t = 30 Myr2 yields
a narrower inclination distributions of the HCs (Figure 11(b)).
In this case, the K–S test gives the 57% probability for Plutinos
and 80% probability for the HCs. The main difference with
respect to case 1 is that the model distribution of HCs now
represents a reasonable match to observations all the way down
to i 5 , while in case 1 we were able to produce a satifactory
fit only for > i 10 (Nesvorný 2015a). This may indicate that
the real migration timescales were closer to case2 than to
case 1.

In case 1 with 2000 and 4000 Plutos the inclination
distributions are similar to the one shown in Figure 10. All
other cases studied here show narrower inclination distributions
for Plutinos. Cases 1 and 2 with a smooth migration also show
narrower inclination distributions of HCs, which nicely fit the
observed distribution for  < < i5 10 , where the CFEPS
inclination distribution steeply raises, but fail to match the wide
distribution for > i 10 . This shows that there is some trade-off
between the level of graininess and the migration timescale.

Any future attempt to closely match the inclination distribution
will thus need to explore both these parameters with more
resolution. Here we content ourselves with showing that the
general results published in Nesvorný (2015a) are valid even if
Neptune’s migration was grainy.

3.3. Distribution of Libration Amplitudes

The distribution of libration amplitudes in the 3:2 resonance
was characterized by CFEPS (Gladman et al. 2012). According
to Figure 3 in Gladman et al. (2012), the cumulative
distribution of libration amplitudes, Aσ, appears to be steadily
raising from s A 20 to s A 100 , and tails off for

> sA 100 . In terms of a differential distribution, Gladman
et al. (2012) suggested an asymmetric triangle model, where
the number of orbits in a D sA interval linearly increases from
zero at = sA 20 to a maximum at s A 90 , and then linearly
drops to zero at s A 130 , because the orbits with > sA 130
are unstable.
Gladman et al. (2012) also pointed out that the distribution of

Aσ inferred from CFEPS observations is very similar to the
theoretical distribution reported in Nesvorný & Roig (2001),
where the 3:2 resonance was randomly populated, and the
orbital distribution was dynamically evolved over 4 Gyr (with
Neptune on its current orbit). The number of resonant orbits
increases with Aσ, because the resonant orbits with larger
libration amplitudes represent a larger phase-space volume than
the orbits with smaller libration amplitudes, and are therefore
more populated to start with. There are fewer orbits with

Figure 8. The orbital elements of bodies captured in the Kuiper Belt in a model with grainy migration corresponding to 2000 massive planetesimals each with mass
=M Mmp Pluto, andD =a 0.5 auN . The left and right panels show the results for case 1 (t = 30 Myr1 and τ2=100 Myr) and case 2 (t = 10 Myr1 and τ2=30 Myr),

respectively. The HCs and Plutinos are denoted by larger symbols.
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> sA 100 , because this is already close to the stability limit,
and the original population was depleted when the orbits with

> sA 100 evolved out of the resonance.
Figure 12 shows the distributions of libration amplitudes in

the 3:2 resonance obtained in the models with smooth and

grainy migrations. The grainy migration case matches the
observed distribution much better that the smooth case. The
K–S probabilities obtained for the grainy case are 32% for
D =a 0% and 17% for D =a 0.5 au, while the probability in
the smooth case is ∼10−3. This result, in itself, could be used

Figure 9. A comparison of the orbital distributions obtained in our model (blue dots) and the actual CFEPS detections (red dots). The left panels show the distribution
obtained for a smooth migration of Neptune. The right panels show the result obtained with grainy migration assuming that there were 1000 massive planetesimals
with =M M2mp Pluto in the original disk. In both cases, we used t = 30 Myr1 , t = 100 Myr2 , =a 27.8 auN,1 , D =a 0.5 auN , D =e 0.1N . The CFEPS detection
simulator was applied to the model, and the resulting distribution of the detected orbits is shown here. For the actual CFEPS detections, we plot all orbits that were not
classified by the CFEPS team as belonging to the CC population.

Figure 10. A comparison of the inclination distributions obtained in our model (solid lines) and the CFEPS detections (dashed lines). Here we used t = 30 Myr1 ,
t = 100 Myr2 , =a 27.8 auN,1 ,D =a 0.5 auN ,D =e 0.1N , and the migration graininess corresponding to 1000 massive planetesimals each with =M M2mp Pluto. The
CFEPS detection simulator was applied to the model orbits to have a one-to-one comparison with the actual CFEPS detections. In panel (b), we plot orbits with
> i 10 to avoid any potential contamination from the CCs.
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rule out the smooth migration case, where the libration
amplitudes are significantly larger than the ones found by
CFEPS (Gladman et al. 2012). This is a consequence of the
capture mechanism in the 3:2 resonance, which tends to
produce large amplitudes if the migration is smooth. The
amplitudes in the grainy case are a bit larger than what would
be ideal for D =a 0.5 au, and the distribution is somewhat
shallower for D =a 0, but we do not consider these slight
differences being significant.6

The distributions of Aσ obtained for the smooth and grainy
migration cases are significantly different in all cases studied
here. The amplitude distribution obtained for the smooth-
migration case 2 is similar to the one shown in Figure 12 for the
smooth-migration case 1 (blue line). This is independent of

whether or not Neptune jumped during the instability. The
smooth migration cases therefore produce, in general, the
amplitude distributions that do not agree with observations.
With the grainy migration corresponding to 4000 Plutos, on the
other hand, the model distributions of Aσ become slightly
narrower than what is inferred from observations. From this we
conclude that 1000–4000 Plutos give the best fit to observa-
tions. It is encouraging to see that while this argument is
independent of the one based on the population statistics
(Section 3.1), it leads to a similar inference about the number of
Pluto-sized objects. In any case, these results represent a
significant improvement over those shown in Figure 7 of
Gladman et al. (2008), where the amplitude distribution
obtained in the model of Levison et al. (2008; =a 28 auN,0 ,
smooth migration with τ=1Myr) was shown to be strongly
discordant with the CFEPS observations.

3.4. The Cold Classicals and Kernel

The CCs have low orbital inclinations ( < i 5 ) and several
physical properties (red colors, large binary fraction, steep size
distribution of large objects, relatively high albedos) that
distinguish them from all other KBO populations.7 The most
straightforward interpretation of the unique physical and orbital
properties is that CCs formed and/or dynamically evolved by
different processes than other trans-Neptunian populations.
Here we consider a possibility that the CCs formed at >40 au
and survived Neptune’s early “wild days” relatively unharmed
(e.g., Kavelaars et al. 2009; Batygin et al. 2011; Wolff
et al. 2012). This requires that the massive planetesimal disk at
<30 au had a low-mass extension beyond 30 au, as already
discussed in Section 2.2. Nesvorný (2015b) studied this model
and found that the original disk at 42–47 au only contained the

Figure 11. A comparison of the inclination distributions obtained in our model (solid lines) and the CFEPS detections (dashed lines). Here we used t = 10 Myr1 ,
t = 30 Myr2 , =a 27.8 auN,1 , D =a 0.5 auN , D =e 0.1N , and the migration graininess corresponding to 2000 massive planetesimals each with =M Mmp Pluto. The
CFEPS detection simulator was applied to the model orbits to have a one-to-one comparison with the actual CFEPS detections. In panel (b), we plot orbits with > i 5 .

Figure 12. The cumulative distributions of the libration amplitudes in the 3:2
resonance. The dashed line shows the distribution from CFEPS (Gladman et al.
2012). The blue solid line is the distribution obtained in the smooth migration
case with t = 30 Myr1 , t = 100 Myr2 , and =a 27.8 auN,1 . The two red lines
show the distributions for the same model parameters, but when we assumed
that the planetesimal disk contained 1000 massive planetesimals each with

=M M2mp Pluto. The two cases correspond to D =a 0 (shallower profile) and
D =a 0.5 au (steeper profile).

6 Note that the distribution of the libration amplitudes can be modified over
very long timescales by the gravitational encounters of Plutinos with Pluto
(e.g., Yu & Tremaine 1999; Nesvorný et al. 2000). Here we ignore this effect.

7 Specifically, (1) the CCs have distinctly red colors (e.g., Tegler &
Romanishin 2000) that may have resulted from space weathering of surface
ices, such as ammonia (Brown et al. 2011), that are stable beyond ∼35 au. (2)
A large fraction of the 100 km class CCs are wide binaries with nearly equal
size components (Noll et al. 2008, p. 345). (3) The albedos of the CCs are
generally higher than those of the HCs (Brucker et al. 2009). And finally, (4)
the size distribution of the CCs is markedly different from those of the hot and
scattered populations, in that it shows a very steep slope at large sizes (e.g.,
Bernstein et al. 2004; Fraser et al. 2014), and lacks very large objects (Levison
& Stern 2001).
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mass ∼6×10−3 MEarth. The surface density of solids in this
region, Σs∼2×10−5 g cm−2, was probably therefore some
∼3000 times lower than in the massive part of the disk below
30 au.8 This implies that the CCs must have formed by an
efficient accretion mechanism that was capable of building
∼100 km planetesimals in a low-mass environment (e.g.,
Johansen et al. 2009).9

According to Petit et al. (2011), the CC population can be
divided into the “stirred” and “kernel” components. The stirred
orbits have the semimajor axes < <a42.4 47 au, inclinations
< i 5 , and small eccentricities with an upper limit that raises

from e 0.05 for a=42 au to e 0.2 for a=47 au. The
kernel is a narrow concentration of low-inclination orbits with
a 44 au, e 0.05, and a ;0.5–1 au width in the semimajor

axis. Figure 13 illustrates a model of the orbital distribution
inferred from the CFEPS observations.
Nesvorný (2015b) suggested that the Kuiper Belt kernel can

be explained if Neptune’s otherwise smooth migration was
interrupted by a discontinuous change of Neptune’s semimajor
axis when Neptune reached ;28 au. Before the discontinuity
happened, planetesimals located at ∼40 au were swept into
Neptune’s 2:1 resonance, and were carried with the migrating
resonance outwards. The 2:1 resonance was at 44 au when
Neptune reached ;28 au. If Neptune’s semimajor axis changed
by fraction of au at this point, perhaps because Neptune was
scattered off of another planet (see Figure 3), the 2:1 population
would have been released at44 au, and would remain there to
this day. The orbital distribution produced in this model
provides a good match to the orbital properties of the kernel.
Nesvorný (2015b) model assumptions and migration para-

meters were the same as in this work, except that (1) they
considered a low mass extension of the planetesimal disk at
30–50 au, and (2) their migration was ideally smooth, while
here we showed that the population statistics inferred from
observations requires that the migration was grainy. We
therefore repeat the simulations of Nesvorný (2015b) to test
whether the kernel can form even if the migration was grainy.

Figure 13. Three components of the CFEPS-L7 synthetic model for the main classical belt. The hole at a;40–42 au and low inclinations in the hot component was
introduced to represent the destabilizing action of the secular resonances. The kernel component is the concentration of orbits with < <a43.8 44.4 au,

< <e0.03 0.08 and  i 5 . Figure from Petit et al. (2011).

8 This estimate was based on the mass of the current CC population as
reported by Fraser et al. (2014) and on the survival rate determined in Nesvorný
(2015b). If, instead, the current CC population is comparable to or even larger
than HCs (Petit et al. 2011), then the surface density contrast would only be
∼10–100.
9 The polution of CCs from the HCs should be minimal, because only ∼4% of
the HC orbits obtained in our model have < i 5 . This represents ∼0.0004
MEarth, or only about 10% of the estimated mass of the CC population (∼0.003
MEarth according to Fraser et al. 2014). The percentage would be smaller if the
CC mass is larger (Petit et al. 2011).
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Each simulation included 5000 test particles distributed from
30 to 50 au. Their radial profile was set such that the disk
surface densityS µ r1 . There is therefore an equal number of
particles (250) in each radial au. A larger resolution is not
needed, because a significant fraction of particles in the CC
region survive. The disk extension was assumed to be
dynamically cold with low orbital eccentricities and low orbital
inclinations. The initial inclinations were set to be similar to
those inferred for the present population of CCs. Specifically,
we used ( ) ( )s= -N i di i i disin exp 2 i

2 2 , with s = 2i

(Brown 2001; Gulbis et al. 2010). The initial eccentricities
were set according to the Rayleigh distribution with s = 0.01e ,
0.05, or 0.1.

Figure 14 shows the orbital distribution of particles obtained
in a model with s = 0.01e , and the case-1 migration parameters
with the graininess corresponding to 1000 Twoplutos. The
result is similar to those published in Nesvorný (2015b) for the
smooth migration. The concentration of orbits near 44 au has
orbital properties comparable to those of the CFEPS kernel.
This shows that the grainy migration required to explain the
population statistics of resonant and non-resonant populations
also allows for the formation of the Kuiper Belt kernel. These
results are therefore consistent with each other. The concentra-
tion of orbits obtained in the model near 44 au becomes slightly
more fuzzy for s = 0.05e or 0.1, following the trends described
in Nesvorný (2015b). The case-2 parameters with grainy
migration also lead to the formation of the kernel. We therefore
conclude that the model of kernel formation described in
Nesvorný (2015b) does not require that the migration was
smooth. Instead, it works even if the migration was grainy.

3.5. The 2:1 and 5:2 Resonances

Adams et al. (2014) found from the Deep Ecliptic Survey
(DES) that  N N N N 23:2 2:1 3:2 5:2 , while Gladman et al.
(2012) suggested from the CFEPS that N3:2/N2:1;3–4 and

N N 13:2 5:2 . Part of these differences between the DES and
CFEPS may stem from differences in observational strategies
and/or debiasing approach. While there is obviously a
significant uncertainty in these estimates, it is probably fair to
say that observations suggest roughly comparable populations
in the 2:1 and 5:2 resonances (to within a factor of ∼2 or so),
both of which are ;1–4 times smaller than Plutinos in the 3:2
resonance.
Here we find that the smooth migration cases produce

~N N 153:2 2:1 and ~N N 103:2 5:2 . The 2:1 and 5:2 reso-
nances are therefore clearly underpopulated, relative to the 3:2
resonance, if the migration is assumed to be smooth. Much
better results were obtained for the grainy migration. In case 2
and 2000 Plutos, where the lowest resonant ratios were found,
N3:2/N2:1;2–2.5 and N N 13:2 5:2 . It is therefore plausible
that the population of bodies in the 5:2 resonance can be as
large as Plutinos (Volk et al. 2016). Other results obtained here
are intermediate. For example, case 1 gives ~N N 103:2 2:1 and

N N 63:2 5:2 for 2000 Plutos, and N3:2/N2:1;3–5 and
N N 23:2 5:2 for 4000 Plutos.

The increased level of migration graininess therefore leads to
lower values of N N3:2 2:1 and N N3:2 5:2, which are in better
agreement with observations (Gladman et al. 2012; Adams
et al. 2014; Volk et al. 2016). This trend is mainly contributed
by the lower value of P3:2 when the migration is assumed to be
grainy. On the other hand, if different migration timescales are

Figure 14. The final distribution of orbits obtained in two simulations with =a 24 auN,0 , t = 30 Myr1 , =a 27.8 auN,1 , D =a 0.5 auN , D =e 0.1N , and
t = 100 Myr2 . The panels on the left show the result for the smooth migration (figure from Nesvorný, 2015b), while those on the right show the result for the grainy
migration with 1000 massive planetesimals each with =M M2mp Pluto. The concentration of orbits at44 au was created by the 2:1 resonance when Neptune jumped.
At the beginning of the simulation, 5000 test particles were distributed on low-inclination (s = 2i ) low-eccentricity (s = 0.01e ) orbits between 30 and 50 au. The bold
symbols denote the orbits that ended with < <a40 47 au and ( )= - >q a e1 36 au.
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considered for the same level of graininess, then the cases with
faster migration rates tend to produce larger populations in the
2:1 (a;47.8 au) and 5:2 (a;55.5 au) resonances than the
cases with slower migration rates. This trend is clearly visible
in Figure 8, where the 2:1 and 5:2 resonances are more
populated in case 2 (t = 10 Myr1 and τ2=30Myr) than in
case 1 (t = 30 Myr1 and τ2=100Myr).

4. DISCUSSION

In an attempt to develop a consistent model of Neptune’s
migration, we previously proposed that the wide inclination
distribution of orbits inferred from observations can be
explained if Neptune started inward of 25 au, and slowly
(e-folding timescale τ 10Myr) migrated into a massive disk
with the outer edge at30 au. Moreover, we suggested that the
concentration of low-inclination orbits at44 au, known as the
Kuiper Belt kernel, can be explained if Neptune’s semimajor
axis discontinuously changed by 0.5 au when Neptune
reached a 28 au, perhaps because Neptune was scattered
off of another planet (NM12). Here we pointed out that all
previous models of the Kuiper Belt formation suffered from the
resonance overpopulation problem, where the resonant popula-
tions were overpopulated when compared to observations. We
showed that this problem can be resolved if Neptune’s
migration was grainy as a result of close encounters of
Neptune with massive, Pluto-class planetesimals.

Here we considered the Pluto-class planetesimals because
we have direct observational evidence that planetesimals such
as Pluto or Eris exist in the present Kuiper Belt. It is possible
that Neptune’s grainy migration was contributed by objects
much more massive than Pluto/Eris. We were not strongly
motivated to consider, for example, an Earth-mass object in this
work (Gladman & Chan 2006), because the overpopulation
problem can be resolved by considering a reasonable number
of smaller mass bodies (Plutos or Twoplutos). We thus really
do not need to invoke effects of very massive planetesimals or
planets. This does not exclude the possibility that such massive
objects formed in the original disk, affected the dynamical
evolution of Neptune, and helped to shape the orbital structure
of the Kuiper Belt (e.g., Gladman & Chan 2006). More detailed
investigations of a continuous distribution of massive planete-
simals, including cases with the Earth-class bodies, are left for
future work.

The best results were obtained if the massive disk below
30 au was assumed to have contained 1000–4000 Plutos, or
∼1000 bodies twice as massive as Pluto. The total mass in
these massive objects should thus be ∼2–8 MEarth, while the
most plausible total mass of the disk was found to be ;20
MEarth in NM12. This means that the Pluto-class objects should
have represented ;10%–40% of the original disk mass. The
remaining ;60%–90% of the mass was predominantly in the
100 km class bodies, as inferred from the size distribution of
the present Kuiper Belt (e.g., Bernstein et al. 2004). To obtain
this mass partitioning, a relatively steep size distribution of the
planetesimal disk inferred from observations for diameters
;100–500 km cannot continue for D>500 km, because in
that case the total mass in the D>500 km bodies would be
negligible. Instead, the distribution needs to bulge at large
sizes.

Figure 15 shows a reconstructed size distribution of the
planetesimal disk below ;30 au. We used several constraints
here. For the intermediate sizes 10<D<500 km, we adopted

the size distribution suggested by Fraser et al. (2014) from
observations of the Kuiper Belt and Jupiter Trojans. This size
distribution can be approximated by two power laws with a
break at D;100 km, a steeper slope for larger sizes
(cumulative power index ;4.5–5.0), and a shallower slope
for smaller sizes (cumulative index ;1–2). To estimate how the
size distribution may have looked like for D>500 km, we
assumed that there were 1000–4000 Plutos in the original disk,
as required from the results of this study, and connected the
size distribution from D<500 km to Pluto’s diameter
(D= 2370 km). Note that the shallow slope of the SFD in this
range is consistent with observations of large KBOs
(Brown 2008). The number of objects with D>2500 km
drops in Figure 15, but this part of the size distribution is
unconstrained. The size distribution may have been shallower
in this size range, including some very massive objects in the
original disk (e.g., Gladman & Chan 2006).
Only a few constraints exist for D<10 km. One of these

constraints was derived from the population of the Jupiter-
family comets (JFCs), as most recently described in Brasser &
Morbidelli (2013). The argument was used to estimate that
there were between ∼2×1011 and ∼1012 objects in the
original disk with D>2.3 km (Morbidelli & Rickman 2015).
If correct, it would require that the shallow size distribution
below the break at D;100 km needs to steepen up for small
sizes. Here we satisfy this constraint by postulating a
cumulative index of 3.0 for 1<D<10 km. Note that this
contradicts the size distribution inferred from the observations
of active JFCs, which is more shallow for 1<D<10 km
(cumulative index ;2; e.g., Lowry et al. 2008; Solontoi
et al. 2012). At least part of this difference could presumably be
explained by devolatization and surficial mass loss of cometary
nuclei (Belton 2014). Finally, the detection of a single
occultation event in the archival data of the Hubble Space
Telescope guiding camera can be used to estimate the number

Figure 15. A schematic reconstruction of the size distribution of the original
planetesimal disk below 30 au. The red color denotes various constraints. HST
Occult. stands for the occultation constraint derived in Schlichting et al. (2009),
JFCs is the constraint from Morbidelli & Rickman (2015), and the distribution
for 10<D<500 km is inferred from the observations of KBOs and Jupiter
Trojans (e.g., Fraser et al. 2014). The break between a shallow slope for small
sizes and a steep slope for large sizes was fixed at D=100 km. The existence
of 1000–4000 Plutos in the original disk inferred in this work requires that the
size distribution had a hump at >D 500 km. The numbers above the
reconstructed size distribution show the cumulative power index that was used
for different segments. The wavy nature of the size distribution shown here is
reminiscent of that of the present asteroid belt. The total mass is dominated by
the ;100 km class objects.
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of sub-kilometer KBOs (Schlichting et al. 2009). From this we
infer that there would need to be ∼1013–1014 bodies with
D>0.5 km in the original disk.

The size distribution shown in Figure 15 was normalized to
have =M 20disk MEarth, which is the preferred disk mass
from NM12. Different populations of small bodies in the solar
system have different probabilities to dynamically evolve from
the original disk to reach their current orbits. For example, the
capture probability of Jupiter Trojans was estimated to be

´ -P 7 10JT
7 for each particle in the original disk (Nesvorný

et al. 2013). By scaling down by this factor the size distribution
shown in Figure 15, we find that the largest captured object
should have D;200 km. For comparison, the largest Jupiter
Trojan, 624 Hector, is roughly 230 km accross. This illustrates
that the normalization of the reconstructed profile from NM12
is consistent with the present population of Jupiter Trojans.
Also, the probability that a disk planetesimal is captured as an
irregular satellite of Jupiter is ∼2×10−8 according to
Nesvorný et al. (2014). This implies that the largest irregular
satellite of Jupiter should have D∼100 km, while Himalia is
only slightly larger (D∼140 km).

The size distribution profile shown in Figure 15 has several
interesting implications for the accretion and collisional
evolution of KBOs. First, the hump in the profile at the largest
sizes, with 1000–4000 Plutos, probably hints on a runaway-
type mode of accretion of these largest objects. It is fairly
similar to the size distribution profiles obtained in the classical
collisional coagulation models (e.g., Stern & Colwell 1997;
Kenyon et al. 2008). It is unclear whether the pebble accretion
(e.g., Lambrechts & Johansen 2012), which is a very efficient
mechanism for growing large solid objects in the protoplane-
tary disks, could generate the hump.

The size distribution at small sizes should have been
modified by collisional grinding. The importance of collisional
grinding mainly depends on the physical strenghts of KBOs,
the dynamical structure of the outer planetesimal disk, and the
time elapsed between the dispersal of the protoplanetary nebula
and Neptune’s migration into the disk. Using different
assumptions, the published studies of collisional grinding
reached different conclusions (e.g., Pan & Sari 2005;
Fraser 2009; Nesvorný et al. 2011). If Neptune’s migration
into the planetesimal disk was delayed, as required if the
planetary instability was responsible for the Late Heavy
Bombardment (LHB; e.g., Gomes et al. 2005; Bottke
et al. 2012), more time would be available for the modification
of the size distribution by collisional grinding (;300–600Myr,
depending on when exactly the LHB started). Our main
concern with this issue is whether a massive planetesimal disk
could have survived a long period of collisional grinding, and
have the estimated mass M 20disk MEarth when the instability
happened.

At least two important approximations were adopted in this
work: (1) the gravitational effects of planetesimals were not
explicitly included in the simulations (except for the implicit
assumption that the small planetesimals drive Neptune’s
migration and that the large planetesimals are the source of a
jitter in the evolution of Neptune’s semimajor axis), and (2) the
direct gravitational effects of the hypothetical fifth giant planet
were not accounted for in the simulations except that we
(optionally) activated Neptune’s jump in some simulations to
see whether Neptune’s jump can resolve the resonance
overpopulation problem. Here we argue that none of these

assumptions can affect the main results of our work. As for (1),
the collective gravitational effect of planetesimals can speed up
the apsidal and nodal precession of Neptune’s orbits, and
slightly alter the degree of the secular excitation of orbits in the
Kuiper Belt (Batygin et al. 2012). While this may be important
to some extent for CCs, whose clustered orbital distribution
would more easily reveal signs of small perturbations, this
effect is probably insignificant for the resonant populations and
HCs, which suffered much larger orbital changes due to other
major dynamical processes.
As for (2), the five planet model of the early solar system is,

despite its various successes, not universally accepted and
much more work will need to be done to establish things more
firmly. It is thus probably sensible that here we did not include
the direct effects of the fifth planet on planetesimals. Instead,
we showed in this work that the resonance overpopulation
problem can be resolved if we include a reasonable number of
Pluto-class planetesimals in the original trans-planetary disk,
and let Neptune’s orbit react to the gravitational perturbations
during close encounters with these bodies. About half of our
simulations were done with Neptune’s jump, which was
presumably caused by an encounter of Neptune with the fifth
planet (NM12).
The basic motivation for activating Neptune’s jump in some

of our simulations was to test whether the jump can resolve, in
itself, the resonance overpolulation problem as suggested in our
previous work (Nesvorný 2015a). We found that it cannot,
because large populations of bodies are captured into
resonances after Neptune’s jump, during the subsequent
migration of Neptune. Since the fifth planet was presumably
ejected from the solar system near the time of Neptune’s jump
(NM12), it cannot affect things at later times. Including or
ignoring its direct effects on planetesimals is therefore
irrelevant for the main thesis of this work. We plan on
conducting more self-consistent simulations in the near future.

This work was supported by NASA’s Outer Planet Research
(OPR) program. The work of David Vokrouhlický was partly
supported by the Czech Grant Agency (grant GA13-01308S).
The CPU-expensive simulations in this work were performed
on NASA’s Pleiades Supercomputer, and on the computer
cluster Tiger at the Institute of Astronomy of the Charles
University, Prague.
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