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Testing for gravitationally preferred directions using the lunar orbit
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As gravity is a long-range force, it isa priori conceivable that the Universe’s global matter distribution
selects a preferred rest frame for local gravitational physics. At the post-Newtonian approximation, the phe-
nomenology of preferred-frame effects is described by two parametersa1 and a2 , the second of which is
already very tightly constrained. Confirming previous suggestions, we show through a detailed Hill-Brown-
type calculation of a perturbed lunar orbit that lunar laser ranging data have the potential of constraininga1 at
the 1024 level. It is found that certain retrograde planar orbits exhibit a resonant sensitivity to external
perturbations linked to a fixed direction in space. The lunar orbit being quite far from such a resonance exhibits
no significant enhancement due to solar tides. Our Hill-Brown analysis is extended to the perturbation linked
to a possible differential acceleration toward the galactic center. It is, however, argued that there are stronga
priori theoretical constraints on the conceivable magnitude of such an effect.@S0556-2821~96!05912-7#

PACS number~s!: 04.80.Cc, 95.30.Sf, 96.20.2n
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I. INTRODUCTION

It has been recognized for many years that lunar mo
provides a superb testing ground for relativistic grav
@1–6#. In particular, the Lunar Laser Ranging~LLR! experi-
ment has allowed one to get a very high precision test of
equivalence principle, as well as a 1% test of the Einstein
spin-orbit coupling @7,8#. However, it has been recentl
pointed out that the lowest-order perturbation analyses
have been commonly used@4,5,9# to derive theoretical esti
mates of ~null or non-null! relativistic effects are insuffi-
ciently accurate in view of the importance of solar tidal e
fects @10#. Motivated by the results of Ref.@10#, we
presented in Ref.@11# a full-fledged Hill-Brown theory of the
lunar orbit perturbation due to a hypothetical violation of t
equivalence principle. We found that the interaction with t
quadrupolar tide amplified the results of lowest-order per
bation analyses by a very significant factor: a 60% incre
of the naive first-order calculation or a 40% increase of
improved first-order calculations allowing for perigee m
tion. Such results raise the question of whether similar a
plification factors affect other~null or non-null! relativistic
effects in the lunar motion. To address this question it
convenient to use the parametrized post-Newtonian~PPN!
framework~see, e.g.,@9#! in which possible deviations from
general relativity in the weak-field regime are described
some parametersb21, g21, a1 , a2 , etc., which vanish in
Einstein’s theory.

In the case of the effects linked to the Eddington po
Newtonian parametersb and g Ref. @6# has indeed shown

*On leave from the Institute of Astronomy, Charles Universi
Švédská 8, 15000 Prague 5, Czech Republic. Electronic addre
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that tidal effects are numerically important. An observatio
ally oriented discussion of the influence of the tidal deform
tion on the main effects linked tob and g is contained in
Ref. @10#, while, as we said above, the tidal amplification
equivalence-principle-violation effects was discussed
Refs.@10# and, in more detail, in@11#.

In the present paper, we study the influence of the ti
deformation of the lunar orbit on the preferred-frame effe
linked to the parametrized post-Newtonian parametera1 .
We shall also discuss the effect of a hypothetical violation
the equivalence principle of galactic origin~noting, however,
that there are stronga priori theoretical constraints on th
magnitude of such a violation!.

II. PREFERRED-FRAME EFFECTS

As gravity is a long-range force, one mighta priori ex-
pect the Universe’s global matter distribution to select a p
ferred rest frame for local gravitational physics. As shown
@12,13,9#, all preferred-frame effects in the first pos
Newtonian limit are phenomenologically describable by on
two parametersa1 and a2 . These parameters are asso
ated with the following terms in the Lagrangian descr
ing the gravitational dynamics ofN-body systems
(A,B51, . . . ,N):

La1
52

a1

4 (
AÞB

GmAmB

r ABc2 ~vA
0
•vB

0 !, ~2.1a!

La2
5

a2

4 (
AÞB

GmAmB

r ABc2 @~vA
0
•vB

0 !2~nAB•vA
0 !~nAB .vB

0 !#.

~2.1b!

Here, vA
0 represents the velocity of a given body wi

respect to the gravitationally preferred frame a

,
s:
6740 © 1996 The American Physical Society
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53 6741TESTING FOR GRAVITATIONALLY PREFERRED DIRECTIONS . . .
nAB5(rA2rB)/r AB . Many ~though not all! of the observable
effects linked toa1 and a2 depend on the choice of th
gravitationally preferred frame. We shall follow the standa
assumption@9# that the latter frame, being of cosmologic
origin, can be~at least approximately! identified with the rest
frame of the cosmic microwave background. This means
the center of mass of the solar system has the velocityw with
respect to the preferred frame of rest, wi
uwu.370610 km/s in the direction (a,d)5(168°,27°)
@14#.

It has been shown in Ref.@15# that the close alignment o
the Sun’s spin axis with the solar system angular momen
yields an extremely tight bound ona2: ua2u<3.931027

(90% C.L.!. This limit on a2 is much stronger than the ex
isting limits on the other post-Newtonian parametersb, g,
and a1 . We shall, therefore, neglect alla2 effects in this
work. Concerninga1 , combined orbital data on the plan
etary system yield@16#

a15~2.163.1!31024~90% C.L.!, ~2.2!

while binary pulsar data yield comparable or better lim
@17#. More precisely, PSR 18551 09 data yield
ua1u,5.031024(90% C.L.) @17#, while a recent analysis o
PSR J23171 1439 data@18# yields

ua1u,1.731024~90% C.L.!. ~2.3!

The fact that the observational limits on thea1 parameter are
only a factor 10 better than the present limits on the~more
conservative! Eddington post-Newtonian parametersb21
and g21 recently stimulated Damour and Esposito-Far`se
@19# to propose several experiments for improving the
Concerning their proposal to use artificial satellite motions
has been recognized that the currently best laser-tracked
ellite Laser Geodynamics Satellite~LAGEOS! cannot yield a
better constraint ona1 because of badly modeled nongrav
tational forces@20#. Another possibility mentioned in Ref
@19# ~and first pointed out in@5#! concerns lunar motion an
suggests that LLR data might yield an interesting new lim
of the a1 parameter. However, Refs.@5# and @19# used only
first-order perturbation theory to estimate thea1 effects in
the lunar motion. In view of these facts~and the experience
of the strong coupling with the solar tides mentioned in S
I!, we decided to reassess the quantitative value of lunar
for constraining a1 by building an accurate Hill-Brown
theory of the preferred-frame perturbations of the lunar or

We thus consider the three-body Earth-Moon-Sun sys
~keeping the notation of Ref.@11#; in particular we use the
labels 15Moon, 25Earth, 35Sun). Generally all these
three bodies contribute to the sum in Eq.~2.1a!; however, we
shall restrict ourselves to the ‘‘direct’’ preferred-frame e
fects with the subscriptsA and B spanning only 1~Moon!
and 2 ~Earth!. It is easy~though not trivial! to verify that
‘‘tidal’’ preferred-frame effects, involving the subscript
~Sun! in Eq. ~2.1a!, are several orders of magnitude smal
than direct effects. Because of their observational irr
evance, we also omit from our discussion several term
Eq. ~2.1a! which are equivalent to a nearly constant rede
nition of the locally measured gravitational constant. T
dominant preferred-frame effects are then contained in
at
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following three contributions to the Lagrangian~we factor-
ized the Earth-Moon reduced massm12[m1m2 /m0 ,
m05m11m2 , from the Lagrangian!:

Ra1

~1!52
a1

2c2

Gm0

r
X21~w•v!, ~2.4a!

Ra1

~2!52
a1

2c2

Gm0

r
X21~v0•v!, ~2.4b!

Ra1

~3!52
a1

c2

Gm0

r
~w•v0!. ~2.4c!

Here, r[x12x2 is the geocentric lunar position vector an
v[dr /dt its velocity, v0 is the velocity of the Earth-Moon
center-of-mass motion around the Sun, andX21[X22X1 ,
with the mass ratiosX1[m1 /m0 andX2[m2 /m0[12X1 .
In the following section, we treat successively the pertur
tions of the lunar orbit associated with the three ter
~2.4a!–~2.4c!.

III. HILL-BROWN TREATMENT
OF PREFERRED-FRAME EFFECTS

A. Method in brief

Since the Hill-Brown approach to lunar motion represe
a classic tool of celestial mechanics treated with care in
literature ~e.g., @21–24#!, we outline its concept only very
briefly, focusing mainly on the particularities of the metho
involved in the present study. We also refer the interes
reader to Ref.@11# for more details and the notation used.

Following Hill we start by considering the planar Eart
Moon-Sun three-body problem with the Earth-Moon cen
of mass on a circular orbit around the Sun~the so-called
‘‘main problem’’!. The near circular lunar motion is invest
gated in an Earth-centered coordinate system (X,Y) rotating
with the angular velocityn8 corresponding to the solar mo
tion around the Earth-Moon center of mass~the Sun thus
rests on the axisX). Apart from the Earth direct gravitationa
action, the quadrupolar piece of the solar~tidal! gravitational
potential is also taken into account. The reduced Lagrang
of the lunar motion then reads

LHill 5
1
2 ~Ẋ21Ẏ2!1n8~XẎ2YẊ!1RHill , ~3.1!

with

RHill 5
Gm0

AX21Y2
1 3

2 n82X2 ~3.2!

~the overdot meansd/dt). Although simplified, the theory
entails the most important part of the solar tidal deformat
of lunar motion. Instead of the usual Keplerian ellipse, H
chooses for the intermediary lunar orbit a periodic solut
~with particular symmetries! of ~3.1!, the so-called ‘‘varia-
tional curve.’’ In the following, we shall investigate th
forced perturbations of the variational orbit due to the ad
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6742 53THIBAULT DAMOUR AND DAVID VOKROUHLICKY´
tional Lagrangian terms1 ~2.4!.
A very convenient parametrization of the Hill proble

consists of replacing (X,Y) by the complex-conjugated
quantities (w,w̄) defined by (i is the complex unit!

X1 iY5ãz~11w!, ~3.3a!

X2 iY5ãz21~11w̄!, ~3.3b!

z5ei t, ~3.3c!

t5~n2n8!t1t0 , ~3.3d!

wheren denotes the mean lunar motion around the Earth
where thet variable represents the mean geocentric ang
separation of the Moon and the Sun. Following Ref.@6#, the
fiducial lunar semimajor axisã is defined by

Gm0

~n2n8!2ã 3
5k~m!, ~3.4!

where

k~m!5112m1 3
2 m2 ~3.5!

and m[n8/(n2n8) is Hill’s expansion parameter.~In the
actual case of the Moon,mMoon50.080 848 937 5 . . . .) The
Lagrange dynamical equations of the variational motion th
read

L~w,w̄!5WHill ~w,w̄!, ~3.6!

where we denoted

L~w,w̄!5D2w12~11m!Dw1 3
2 k~m!~w1w̄!, ~3.7!

with D[d/( idt)5zd/dz and the Hill source terms

WHill ~w,w̄!52 3
2 m2z22~11w̄!1k~m!Q~w,w̄!. ~3.8!

The nonlinear source functionQ(w,w̄) and its developmen
in terms of (w,w̄) can be found for instance in Ref.@11#.

When considering an extra perturbation of lunar motio
such as~2.4! in the case of preferred-frame effects, we ha
to include an additional source function on the right-ha
side of Eq.~3.6! given by

S~w,w̄;Dw,Dw̄!5D
]

]Dw̄
G2

]

]w̄
G, ~3.9!

in terms of the ‘‘generating function’’
G(w,w̄;Dw,Dw̄)[2(m/n8ã)2R.

1We recall that the variational orbit is not a general solution of
system~3.1!. Apart from the ‘‘forced’’ perturbations related to
new physical cause it admits also ‘‘free’’ perturbations covering
classical notion of the lunar orbit eccentricity and its perigee d
due to the solar action. For simplicity, we omit in this study
natural coupling of the two types of perturbations, neglecting t
the ~small! lunar eccentricity~and inclination! corrections to the
preferred-frame perturbations.
d
ar

n

,
e
d

Our method of solution of the system~3.6!–~3.9! consists
of consecutive iterations, where at each stage one const
a particular right-hand-side source based on the results o
previous iterations. Details can be found in Ref.@6# or Ap-
pendix B of Ref.@11#. Let us only point out that, contrary to
the simpler case of the synodic lunar perturbations due
hypothetical violation of the equivalence principle studied
Ref. @11#, the generic form of the right-hand-side source te
now reads

W!~a!5W2az2a1Waza, ~3.10!

where we allow for~i! complex functionsW2a andWa and
~ii ! any real ~noninteger! values of the powersa. Inversion
of the linear problemL„w!(a),w̄!(a)…5W!(a) (aÞ0) has
a simple formw!(a)[w2az2a1waza with

wa5
1

Da~m!
$@a222~11m!a1 3

2 k#Wa2 3
2 kW̄2a%,

~3.11a!

w2a5
1

Da~m!
$@a212~11m!a1 3

2 k#W2a2 3
2 kW̄a%,

~3.11b!

and

Da~m![a2@a213k24~11m!2#. ~3.12!

@The solution corresponding toa50 is identical with that
given in Eq.~2.52a! of Ref. @11#.# Some values of the powe
a in ~3.12! may lead to a significant amplification of th
effect due to the smallness of the corresponding denomin
Da(m). Of particular interest for our present work is the ca
wherea511m which yields the small denominator

D11m~m![ 3
2 m2~11m!2. ~3.13!

In the next section we shall see that it appears in the side
excitation of the lunar orbit.

Because of the background motivation of our work, r
lated to the LLR experiment, we are essentially interested
the perturbation of the radial geocentric distance of the Mo
given by

r 25ã 2~11w!~11w̄!. ~3.14!

Performing a variation of this quantity, keeping only line
terms in the perturbation, we obtain

dr

ã
5ReF S 11w̄

11wD 1/2

dwG ~3.15!

for the searched perturbation in radial coordinate. Reme
bering thatw5O(m2), to lowest order in them parameter,
the radial oscillation can be expressed by the simple form
dr /ã.(dw1dw̄)/2.

In the rest of this section we investigate the forced pert
bations of the lunar variational orbit related to the thr
preferred-frame Lagrangian terms~2.4!. Finally, we note
that, albeit the iteration scheme mentioned previously
straightforward, it represents a huge algebraic manipula
exercise. We thus employed the powerful dedicated algeb
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53 6743TESTING FOR GRAVITATIONALLY PREFERRED DIRECTIONS . . .
computer systemMINIMS developed by Moons from the Uni
versity of Namur~Belgium! @25# to perform this task. The
lowest two orders of the results have been, however, chec
by hand computations.

B. Potential Ra1

„1…

First, we focus on the source term~2.4a!. The correspond-
ing generating functionG reads

G~w,Dw!52 i ê1S ã

r D $@Dw1~11m!~11w!#z11me2 if

1@Dw̄2~11m!~11w̄!#z2~11m!eif%,

~3.16!

where

ê15
a1

2
X21C

uwuv0

c2 S ã

a8D k̂~m!

m
~3.17!

and where one must expressr in terms of w through Eq.
~3.14!. Here,a8 is the radius of the~circular! solar orbit in
the Earth-Moon center-of-mass frame andv05n8a8 its ~cir-
cular! velocity,C(.0.98) is the cosine of the ecliptic latitud
of the unit vectorw0, and f is a longitude angle ofw0

measured from the lunar~and solar! position at timet0 cor-
responding to an arbitrary new-moon phase. For instanc
we choose the last new-moon phase in this century, oc
ring at MJD51 521.2, we obtainf5267.2°. Inserting this
expression into~3.9! we obtain the source function, to b
added to the right-hand side of the Hill equation~3.6!, in the
form

S~w,w̄;Dw,Dw̄!52 i
ê1

2 S ã

r D H DwF z11m
e2 if

11w̄

2z2~11m!
eif

11wG1~11m!

3F11w

11w̄
z11me2 if2z2~11m!eifG J .

~3.18!
Working out the iterative solution mentioned above o

realizes that this perturbation yields a wide spectrum of
dial and longitudinal oscillations of the lunar orbit~compare
also with the less accurate solution in Ref.@5#!. However, a
detailed analysis shows that only two of them are sufficien
amplified to give an observably interesting signal:~i! terms
with frequency equal to the mean sidereal lunar motionn
~having a period of about 27.32 days and~ii ! terms with
frequency equal ton22n8 ~having a period of about 32.1
days!. Both periods are evaluated for the lunar orbit. He
after we discuss properties of both of them starting with
sidereal terms.

The perturbation series giving the sidereal-frequency
dial oscillations of the lunar orbit reads

der

ã
5

2ê1

3m2 Sa1

~1!~m!sin@n~ t2t0!2f#, ~3.19!
ed

if
r-

-

y

-
e

-

with

Sa1

~1!~m!512
67

8
m1

395

8
m22

103 007

384
m31

3 327 349

2304
m4

1O~m5!. ~3.20!

Table I gives the coefficients of the seriesSa1

(1)(m) up to

ninth order. The second column of the table indicates
numerical contribution of the corresponding term to the to
value of the series for the lunar orbit, i.e
m5mMoon50.080 848 937 5 . . . @24#. Two important fea-
tures are to be noticed:~i! a significant contribution of the
higher order corrections to the total value of the ser
Sa1

(1)(mMoon) and ~ii ! a geometriclike character of this serie

clearly pronounced after a few terms. The second prop
suggests the presence of a pole near the va2

mcr.20.184 07. Taking a Pade´ approximant of the series
Sa1

(1)(m) confirms the presence of a unique root of the d

nominator located at the valuemcr520.184 07 with an error
of about 1025.

The physical origin of this pole can be easily understo
by using the following argument. When solving the proble
by traditional first-order perturbation techniques~see, e.g.,
@5,19#!, one finds that the sidereal orbit oscillation induc
by an external force linked to a fixed direction in space co
tains, in the denominator, the secular rate of the perigee
gitudeÃ̇. This agrees with the intuitive idea that a spatia
‘‘frozen’’ orbit ~not moving its pericenter in fixed space! is
‘‘resonantly sensitive’’ to constant forces. As a check of th
idea, we have multiplied theSa1

(1)(m) series by Ã̇(m)

5n@~3/4!m21~177/32!m31•••] as given by Andoyer up to
order m9 in Ref. @22#. The resulting series, say,S̄a1

(1)(m)

54Sa1

(1)(m)Ã̇(m)/(3nm2)512m1~313/64!m21•••, is

much more tame, showing that the main characteristics
Sa1

(1)(m) are entailed in the factor@Ã̇(m)#21. The difference

2Such a value corresponds to a retrograde orbit with a side
period ~for Earth satellites! T52p/unu582.4 days.

TABLE I. Coefficientssk of the Sa1

(1)(m) series in powers of
m. The percentagepk of the contribution of the listed terms to th
series for the lunar orbit,m5mMoon50.080 848 937 5 . . . , isgiven
in the second column. The last column gives the ratio (sk21 /sk).

k sk pk (sk21 /sk)

0 1.000000000000000 – –
1 -8.375000000000000 -67.71 -0.119402985
2 49.37500000000000 32.27 -0.169620253
3 -268.2473958333333 -14.18 -0.184065161
4 1444.161892361111 6.17 -0.185746070
5 -7841.277434172453 -2.71 -0.184174314
6 42586.57408613037 1.19 -0.184125575
7 -231375.2814872327 -0.52 -0.184058443
8 1256984.833107015 0.23 -0.184071657
9 -6828885.820821555 -0.10 -0.184068802
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6744 53THIBAULT DAMOUR AND DAVID VOKROUHLICKY´
between our more precise solution~3.19! and the previous
ones@5,19# ~when the latter are improved by using the fu
value of the perigee advance! is essentially contained in th
value of the residual seriesS̄a1

(1)(m). We find that, in the

lunar case,S̄a1

(1)(mMoon).0.956. In contrast with the case o

equivalence-principle-violation effects, we see therefore t
preferred-frame effects exhibit no significant enhancem
genuinely linked to the tidal deformation of the lunar orb
This result holds for the other effects discussed below an
basically attributable to the fact that the actual lunar orbi
quite different from the ‘‘spatially frozen’’ resonant orb
~while it is rather near the orbit resonant for solar-direc
equivalence-principle-violation effects!.

The principal quantitative information of the previou
analysis is given by the amplitude of the sidereal oscillat
of the lunar orbit3 ~3.19!. Employing the definition~3.4! of
the auxiliary lunar semimajor axisã @and a Pade´ approxi-
mant value ofSa1

(1)(m):Sa1

(1)(mMoon).0.5465# we have

uder u.
a1

3
X21C

uwuv0

c2 Fkx2

m5 G1/3

Sa1

~1!~m!a8.47803a1C@cm#,

~3.21!

wherex[(11m3 /m0)21. The current publishedaccuracy
of the lunar ranging measurements performed by
CERGA team is 14 mm. Recent technical improvements
giving a timingprecisionof about 6 mm@C. Veillet ~private
communication!#. If the latter precision level can be turne
into an accuracy level, the result~3.21! suggests that the
LLR data should soon be able to constraina1 at the
131024 level or better~given the phase information and th
presence of severala1 effects at different frequencies!.

The valuem50 of the Hill parameter is apparently an
other singularity of our ‘‘ranging formula’’~3.19!. However,
because we neglected the Earth quadrupole and the o
higher multipoles of the Earth gravity field, we cannot e
tend our solution to near-Earth satellite orbits (m.0). This
regime has been thoroughly discussed in Ref.@19#. In a first
approximation we can, however, match smoothly the so
tion of Ref. @19#, accounting basically for the Earth quadr
pole, and the solution presented in the present study,
counting in detail for the third-body~Sun! perturbations, by
adding the Earth quadrupole contribution toÃ̇(m) after hav-
ing factorized it as denominator of the seriesSa1

(1)(m). @Ac-

tually, as Andoyer’s series is not accurate enough to loca
precisely the zero atm5mcr , we found it better to add the
quadrupole contribution to the denominator of a Pade´ ap-
proximant ofSa1

(1)(m).# Figure 1 shows the synthesis of th

two effects. The arrow points to the singularitym5mcr ,
while the two pointsM and L stand for the Moon and the
artificial ~retrograde! satellite LAGEOS, respectively~with-

3Beware, however, that for the final determination of thea1 con-
straint through LLR data analysis, the particular phasef is very
important. Moreover, we shall see that the preferred-frame pe
bations of the lunar orbit act also with several other frequencies
it is their combined influence which determines the full effect to
searched for in the LLR data.
at
nt
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out taking into account the LAGEOS inclination!. We can
see that none of the two bodies~an equatorial satellite at th
LAGEOS altitude or the Moon! is the best candidate fo
testing preferred-frame effects, but that~as mentioned in
@19#! a high-orbit artificial body with a period of about 30
optimizes the sensitivity to thea1 parameter~among pro-
grade orbits!. On the other hand, one should be aware of
fact that the motion of artificial bodies is typically influence
by many nongravitational forces, some of which are diffic
to be predicted and/or carefully modeled. For instance, thi
the reason why the LAGEOS satellite is currently less s
able for constraining thea1 parameter than the Moon@20#,
which is a nearly perfect ‘‘drag-free Earth satellite.’’ Ther
fore the lunar data stand out as a potentially important sou
for the study of preferred-frame effects.

The intricate interaction of the variational curve perturb
tions with the underlying tidal deformation leads also to
slowly convergent series for perturbations at t
(n22n8)-frequency. The final result for the radial oscilla
tions formula reads

der

ã
52

5

4

ê1

m
Sa1
8~1!~m!sin@~n22n8!~ t2t0!1f#, ~3.22!

with

Sa1
8~1!~m!512

43

6
m1

28 867

720
m22

468 391

2160
m31O~m4!.

~3.23!

The coefficients ofSa1
8(1)(m) up to the eight order are give

in Table II. The intimate coupling of this frequency with th
sidereal frequency results in the coincidence of the pole
the m series Sa1

8(1)(m) and Sa1

(1)(m). Numerically

Sa1
8(1)(mMoon).0.6035, and the lunar orbit sensitivity to th

r-
d

FIG. 1. Amplitude~in centimeters! Ca1
of the sidereal oscilla-

tion ~for a151) vs the Hill parameterm ~positive for prograde
orbits, negative for retrograde orbits!. For high orbits
Ca1

.(2/3)ãê1Sa1

(1)(m)m22 as given in Eq.~3.19!. In the case of
low orbits we introduce the influence of the Earth multipolar stru
ture by adding a quadrupole contribution to the denominator o
Padéapproximant ofSa1

(1)(m). In addition to the singularly ampli-
fied orbit atmcr520.184 07, two celestial bodies are indicated:~i!
the Moon (M ) and ~ii ! the LAGEOS satellite (L).
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a1 perturbation on this frequency is given b
uder u.8003a1 @cm#, approximately 5.98 times smalle
than for the principal sidereal effect. Notice, however, th
this term in the spectrum of the preferred-frame lunar per
bations may bound thea1 parameter as efficiently as th
sidereal term if it turns out that there is significantly le
noise at this frequency.

C. Potential Ra1

„2…

A special character of this term is due to its independe
of the choice of the gravitationally preferred frame. It wou
be theoretically appealing if this term could significan
contribute to constraininga1 . Unfortunately, we shall dem
onstrate that the significance of this perturbation faces
obstacles:~i! Its amplitude is small, and~ii ! it acts with a
synodic frequency, the same as the other phenomena te
through the LLR experiment~e.g., the classic equivalence
principle-violation effect@9–11#!.

In the context of the main lunar problem we conside
circular solar orbit around the Earth. The velocityv0 thus
becomes2v0eY (v05n8a8) in the rotating~Hill ! coordinate
system introduced in Sec. II. The generating functionG
reads

G~w,Dw!5 ê2S ã

r D $@Dw1~11m!~11w!#z

2@Dw̄2~11m!~11w̄!#z21%, ~3.24!

with

ê25
a1

2
X21S v0

c D 2 k~m!

m

ã

a8
. ~3.25!

Then the source function can be easily calculated by us
~3.9!:

S~w,w̄;Dw,Dw̄!5
ê2

2 S ã

r D H z21~12m!1z~11m!
11w

11w̄

1DwF z21

11w
1

z

11w̄
G J . ~3.26!

The close similarity with the classical equivalence-princip
violation effect studied in@11# consists of the fact that th

TABLE II. Coefficientssk8 of the Sa1
8(1)(m) series in powers of

m. Other parameters as in Table I.

k sk pk (sk21 /sk)

0 1.000000000000000 – –
1 -7.166666666666667 -57.94 -0.139534884
2 40.09305555555556 26.21 -0.178750823
3 -216.8476851851852 -11.46 -0.184890401
4 1173.979870756172 5.02 -0.184711587
5 -6371.734190136318 -2.20 -0.184248093
6 34622.85594255030 0.97 -0.184032600
7 -188086.0224857120 -0.42 -0.184079899
8 1021827.835270500 0.19 -0.184068212
t
r-

e

o

ted

g

-

source function~3.26! excites the odd powers ofz, resulting
in ~radial and longitudinal! oscillations of the lunar orbit with
the synodic frequency, aliasing with the equivalenc
principle-violation effect@10,11#.

We have learned in Refs.@10,11# that any synodic signa
is particularly amplified by the presence of a pole singular
occurring for a prograde orbit about 68% larger than
lunar orbit (mcr50.195 103 99 . . . ). The corresponding
ranging formula reads

der

ã
52

ê2

2m
Sa1

~2!~m!cost, ~3.27!

where Sa1

(2)(m) is a series in the Hill parameterm, whose

numerical value for the lunar orbit is found to be 1.3022. T
amplitude of the synodic oscillation~3.27! of the lunar orbit
thus readsuder u.573a1 @cm#, too small to compete with
the much greater sensitivity of the lunar orbit to th
equivalence-principle-violation term@10,11#.

D. Potential Ra1

„3…

From Eq. ~2.4c! we see that this perturbing term
equivalent to a variation of the gravitational constantG @not
to be confused with the generating functionsG(w,Dw)#
with a period of one year~see, e.g.,@19#!. The analysis of
this term involves a small denominatorDa5m}2m2 which,
however, cancels out in the radial oscillation@19#. As found
in Ref. @5#, the remaining signal still exhibits an interestin
sensitivity to thea1 parameter.

The generating functionG equivalent to theRa1

(3) reads

G~w,Dw!5 i ê3S ã

r D ~zme2 if2z2meif!, ~3.28!

with

ê35a1C
uwuv0

c2 k~m!, ~3.29!

and the resulting source function is

S~w,w̄!5
ê3

2 S ã

r D i

11w̄
~zme2 if2z2meif!. ~3.30!

Using the previous scheme of solving the perturbation eq
tions we obtain

der

ã
5 ê3Sa1

~3!~m!sin@n8~ t2t0!2f# ~3.31!

for the expected contribution to the radial perturbation of
lunar orbit. The first terms of the seriesSa1

(3)(m) are listed in

Table III. The magnitude of the oscillations~3.31! is about
uder u.45503a1C @cm#, comparable to the sidereal effe
coming fromRa1

(1) . The valuek(m)Sa1

(3)(m).0.9643 shows

that tidal effects are not very important. We learned fro
J.G. Williams~private communication! that the prospects o
decorrelating the effect~3.31! from other annual effects is
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the fractional modification of the average coupling to visible
matter aV in a differential composition-dependent experi-
ment:aA

(V)2aB
(V)5 f ABaV . The ordinary tests of the equiva-

lence principle~using visible sources! measure the fractional
differential acceleration

hAB
VV[S Da

a D
AB

VV

5~aA
~V!2aB

~V!!aV5 f ABaV
2 . ~4.1!

These experiments give us a handle~in practice, an upper
limit ! on the magnitude ofaV :aV5(hAB

VV/ f AB)1/2. ~For sim-
plicity, we do not put absolute value signs arounda, h, and
f .) Then the tests of the equivalence principle using the
same pair of visible bodies and an invisible source~e.g., the
galactic dark matter! measure

hAB
VI [S Da

a D
AB

VI

5~aA
~V!2aB

~V!!a I5 f ABaVa I . ~4.2!

Inserting the previous value ofaV into ~4.2! yields

hAB
VI 5~ f AB!1/2~hAB

VV!1/2a I . ~4.3!

The main point is, now, that observable facts give not only
very stringent limits onhAB

VV , but also mild limits ona I .
Indeed, Damour, Gibbons, and Gundlach@34,35# have
shown, in the case of different scalar couplings to visible and
invisible matter, that cosmological data were putting the
limit a I[A2b I,0.71. ~See also the later work@36# which
considered only the caseaV[0, a I50.) An even more strin-
gent limit comes from gravitational lenses. Indeed, in some
gravitational lenses one measures three different ‘‘gravita-
tional masses’’: a ‘‘virial’’ massG* (11a I

2)M linked to bi-
nary interactions, the gravitational mass probed by the x-ray-
emitting gasG* (11aVa I)M , and the lensing massG* M
~light being uncoupled to the new field, be it scalar or vec-
tor!. The coincidence, within better than 30%, of these three
masses in some systems@37# gives the limit
a I,(0.30)1/250.55. ~Modulo the sign changea I

2→2a I
2 ,

this argument applies to the vector case and therefore im-
proves upon the limita I

(vector),1 used in@29#.! We can ap-
ply the above limits to the case of the elemental composi-
tions of the Moon~silica! and the Earth~iron core plus silica
mantle!. A laboratory approximation of this case~Si/Al ver-
sus Cu! has givenhAB

VV5(567)310212 @30# so that, at the
1s level, uhAB

VVu1/2,3.431026. Finally, we get for the maxi-
mum Moon-Earth~1–2, keeping our previous labels! differ-
ential acceleration caused by a possible anomalous coupling
to dark matter ~taking into account a further factor
mcore/mEarth50.32),

S Da

a D
12

VI

,6.031027Au f ABu. ~4.4!
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high. If this is confirmed, Eqs.~3.21! and~3.31! would be the
two best probes for constraininga1 .

IV. POLARIZATION OF THE LUNAR ORBIT BY A
GALACTIC DIFFERENTIAL ACCELERATION

In addition to preferred-frame effects, other perturbi
forces can be linked to some fixed direction in space. T
would be, in particular, the case if the Earth and the Mo
would fall with a different acceleration toward the center
the Galaxy. Years ago this possibility has been mentione
relation with a possible violation of the equivalence princip
linked to the gravitational binding energy of planets@26#.
More recently, this idea has been revived within the cont
of possible strong-gravitational-field effects in neutron sta
and has led, through the use of existing binary pulsar data
new tests of strong-field gravity@27#. Still more recently, the
idea surfaced again with a different motivation: the possi
ity that the coupling between ordinary~visible! matter and
galactic dark matter violates the equivalence principle@28#.
The latter suggestion led to new galactic-related labora
tests of the equivalence principle@29,30#, as well as to a
corresponding reanalysis of lunar laser ranging data@31–33#.
Before applying our Hill-Brown algorithm to the latter prob
lem ~with the result that we find no unexpected amplific
tion!, we wish to emphasize that there are stronga priori
theoretical constraints~using existing observational data! on
the conceivable magnitude of any ‘‘dark matter effect
These constraints diminish, in our opinion, the theoreti
significance of the results of Refs.@29,30,32#.

We assume a field-theoretic framework~as is always the
case in recent discussions concerning possible violation
the equivalence principle, e.g.,@28,30#!. Within such a
framework, any effect on visible matter due to a new~non-
Einsteinian! long-range field generated by dark matter is n
essarily proportional to the productaVa I of two coupling
constants:aV measuring the coupling of the field to visib
matter anda I the coupling to invisible~dark! matter. We
normalize these coupling constants with respect to the u
Einsteinian coupling so that the effective gravitational co
stant between bodiesA and B readsGAB5G* (16aAaB)
whereG* is a bare Newtonian constant and where the p
~minus! sign holds for a spin 0~spin 1! mediating field. To
fix the ideas, let us consider the case of a scalar field~our

TABLE III. The same as in Table I but for theSa1

(3)(m) series
~ratio of the consecutive coefficients omitted!.

k sk pk

0 1.000000000000000 –
1 -2.000000000000000 -16.17
2 -1.953125000000000 -1.28
3 -5.875000000000000 -0.31
4 12.50295003255209 0.05
5 49.86885579427062 0.02
6 73.34703290903986 ,

7 -113.6395324400916 ,

8 -670.4626529838962 ,

9 -1047.599614057912 ,
argument goes through in both cases, but is newest in
scalar case, the vector case having been already discuss
@29#, though with a less stringent constraint ona I). Equiva-
lence principle tests probe the composition dependenc
the visible couplings:aA

(V)2aB
(V)50. Let us denote byf AB
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Moreover, the fractional composition dependencef AB
~whereA5SiO2, B5Fe! is generically expected to be sma
compared to one.4 For instance, in dilaton models@38# one
finds f AB.1.8931025@(E/M )A2(E/M )B# where
E5Z(Z21)/(N1Z)1/3. HereZ5 atomic number,N5 neu-
tron number, andM5 mass in atomic mass units. The on
~physically motivated! case, we know of, whereaA would
exhibit a significant fractional variation over the period
table, is the case of appreciable coupling to lepton num
L or to B2L5N. @In view of the small variation of the
baryon to mass ratio (B/M )AB;1023, any coupling involv-
ing L with a relative coefficient of order unity leads to e
sentially the same results.# For instance, for a coupling to
B2L, one getsf AB5(2N/M )SiO2

2(2N/M )Fe.20.076. In-
serting this figure in Eq.~4.4! and using the full galactic
accelerationa.1.931028cm/s2, one gets

~Da!12
VI,3.1310215 cm/s2, ~4.5!

which is 10 times smaller than the upper limit found in
recent analysis of LLR data@32#. Even if we takeu f ABu;1,
we get (Da)12

VI&1310214 cm/s2, which is 3 times smaller
than the result of@32#. We conclude that, within what we
consider the most natural theoretical framework, LLR d
~and a fortiori laboratory experiments@30#! do not ~yet!
probe a theoretically very significant domain of values
possible anomalous couplings to dark matter.

Denoting NG the projection of the unit vector directe
toward the galactic center on the ecliptic plane a
R[(X,Y), the galactic polarization effect is described by t
potential

RG5AG~NG•R! ~4.6!

analogous to Eqs.~2.4!. The parameterAG phenomenologi-
cally represents a differential acceleration of the Moon a
the Earth toward the galactic center. The corresponding g
erating functionG is given by

G5v̂@~11w!z11me2 ifG1~11w̄!z2~11m!eifG#,
~4.7!

where

v̂[m2
AG

ãn82 . ~4.8!

The polar anglefG51.1° gives the angular distance of th
galactic center from the lunar~and solar! position corre-
sponding to the above chosen new-moon phase at MJ
521.2. Employing Eq.~3.9! we obtain the source term o
Hill’s problem in the form

S52v̂eifGz2~11m!. ~4.9!

Because of the similarity of this function with~3.18!, we
recover the qualitative conclusions of Sec. III B. The sider
perturbation of the lunar orbit reads

4If f AB were larger than one, one should modify our analy
above, and define more carefully the average valueaV .
er

a

f

d

d
n-

51

l

dvr

ã
522

v̂

m2 Sgal~m!cos@n~ t2t0!2fG#, ~4.10!

with

Sgal~m!512
75

8
m1

235

4
m22

127 637

384
m31

4 172 299

2304
m4

1O~m5!. ~4.11!

A more complete set of the coefficients of this series is giv
in Table IV. The dominantm dependence of this series
again captured by factorizing@Ã̇(m)#21. The numerical
value of the series ~4.11! for the lunar orbit is
Sgal(mMoon)50.5050. Clearly, the dark matter differentia
coupling contributes also to the (n22n8) frequency of the
radial oscillation of the lunar orbit. We do not give here t
detailed result, just quoting that its amplitude is about 5
times smaller than the amplitude of the principal galac
polarization contribution~4.10!. Finally, the seriesSgal(m)
shows the same pole, nearmcr.20.184 07, as the siderea
series in~3.19!.

V. CONCLUSIONS

The main results of this paper may be summarized
follows.

We have confirmed, by more detailed computations, p
vious suggestions@5,19# that LLR data have the potential o
constraining the post-Newtonian parametera1 at the
131024 level or better. We showed that the preferred-fram
perturbations associated with thea1 parameter contribute a
large spectrum of frequencies in the radial oscillation of
lunar orbit. The dominanta1 effects occur at frequenciesn
~sidereal effect! andn8 ~yearly effect! with well-determined
phases, and there is a subdominant effect at freque
n22n8. Although the analytical results that we obtaine
from a high-order Hill-Brown algorithm should be accura
enough for fitting purposes, it may be advisable to resort t
direct numerical integration of the equations of motion~see,
e.g., @19# for the a1 contributions to the equations of mo
tion!.

We found that retrograde planar orbits wi
n8/(n2n8)520.184 07~which have fixed perigees in iner
tial space! exhibit a resonant amplification of preferred
frame effects. Putting an artificial satellite near such an o

s

TABLE IV. The same as in Table I but for theSgal(m) series.

k sk pk (sk21 /sk)

0 1.000000000000000 – –
1 -9.375000000000000 -75.80 -0.106666667
2 58.75000000000000 38.40 -0.159574468
3 -332.3880208333333 -17.57 -0.176751256
4 1810.893663194444 7.74 -0.183549166
5 -9846.043167679392 -3.40 -0.183920955
6 53488.73992091048 1.49 -0.184076932
7 -290602.0005454238 -0.66 -0.184061843
8 1578765.334003927 0.29 -0.184069155
9 -8577020.610670500 -0.13 -0.184069201
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could be an efficient~though expensive! way of improving
the present bounds ona1 .

We have extended our analysis to another perturba
linked to a fixed direction in space: namely, a possible d
ferential acceleration toward the galactic center. Eviden
this perturbation exhibits also a pole atmcr520.18 407 cor-
responding to an orbit ‘‘frozen in space.’’ We argue, ho
ever, that there are stronga priori theoretical constraints on
the conceivable magnitude of such an effect.

A specific suggestion for future work concerns applyi
our analysis of the singularly perturbed spatially frozen
bits to planetary satellites. It is widely known that solar sy
tem satellites are submitted to a complicated cosmogo
tidal evolution. It might be interesting to study if some
these bodies evolved historically through such a frozen o
configuration, yielding indirect limits on thea1 parameter.
For instance, one easily verifies that several of Jupiter sm
n.

e,

s
d

e

-
ta-
.J.
n
-
,

-

-
-
ic

it

ll

satellites do lie close to the frozen configuration. A care
study of these problems is, however, beyond the scope
this paper.
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Département de Mathe´matique FUNDP, Namur, 1991~unpub-
lished!.

@26# K. Nordtvedt, Icarus12, 91 ~1970!.
@27# T. Damour and G. Scha¨fer, Phys. Rev. Lett.66, 2549~1991!.
@28# C.W. Stubbs, Phys. Rev. Lett.70, 119 ~1993!.
@29# G. Smithet al., Phys. Rev. Lett.70, 123 ~1993!.
@30# Y. Su et al., Phys. Rev. D50, 3614~1994!.
@31# K. Nordtvedt, Astrophys. J.437, 529 ~1994!.
@32# K. Nordtvedt, J. Mu¨ller, and M. Soffel, Astron. Astrophys

293, L73 ~1995!.
@33# J. Müller, M. Schneider, and U. Schreiber, ‘‘FSG analysis r

port,’’ presented at the IERS Workshop, Paris, 1995~unpub-
lished!.

@34# T. Damour, G.W. Gibbons, and C. Gundlach, Phys. Rev. L
64, 123 ~1990!.

@35# T. Damour and C. Gundlach, Phys. Rev. D43, 3873~1991!.
@36# J.A. Frieman and B. Gradwohl, Phys. Rev. Lett.67, 2926

~1991!.
@37# A. Dar, in TAUP ’91, Proceedings of the Second Internation

Workshop on Theoretical and Phenomenological Aspects
Underground Physics, Toledo, Spain, edited by A. Morales
Morales, and J. Villar@Nucl. Phys. B~Proc. Suppl.! 28A, 321
~1992!#.

@38# T. Damour and A.M. Polyakov, Nucl. Phys.B423, 532~1994!;
Gen. Relativ. Gravit.26, 1171~1994!.


