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Testing for gravitationally preferred directions using the lunar orbit
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As gravity is a long-range force, it ia priori conceivable that the Universe’s global matter distribution
selects a preferred rest frame for local gravitational physics. At the post-Newtonian approximation, the phe-
nomenology of preferred-frame effects is described by two parameteend «,, the second of which is
already very tightly constrained. Confirming previous suggestions, we show through a detailed Hill-Brown-
type calculation of a perturbed lunar orbit that lunar laser ranging data have the potential of constraiaing
the 10°% level. It is found that certain retrograde planar orbits exhibit a resonant sensitivity to external
perturbations linked to a fixed direction in space. The lunar orbit being quite far from such a resonance exhibits
no significant enhancement due to solar tides. Our Hill-Brown analysis is extended to the perturbation linked
to a possible differential acceleration toward the galactic center. It is, however, argued that there ara strong
priori theoretical constraints on the conceivable magnitude of such an ¢f#8&56-282(196)05912-1

PACS numbgs): 04.80.Cc, 95.30.Sf, 96.26n

[. INTRODUCTION that tidal effects are numerically important. An observation-
ally oriented discussion of the influence of the tidal deforma-
It has been recognized for many years that lunar motioriion on the main effects linked t@ and v is contained in
provides a superb testing ground for relativistic gravity Ref.[10], while, as we said above, the tidal amplification of
[1-6]. In particular, the Lunar Laser RangifigLR) experi-  equivalence-principle-violation effects was discussed in
ment has allowed one to get a very high precision test of th&efs.[10] and, in more detail, ih11].
equivalence principle, as well as a 1% test of the Einsteinian In the present paper, we study the influence of the tidal
spin-orbit coupling[7,8]. However, it has been recently deformation of the lunar orbit on the preferred-frame effects
pointed out that the lowest-order perturbation analyses thdinked to the parametrized post-Newtonian parameier
have been commonly us¢d,5,9 to derive theoretical esti- We shall also discuss the effect of a hypothetical violation of
mates of (null or non-nul) relativistic effects are insuffi- the equivalence principle of galactic originoting, however,
ciently accurate in view of the importance of solar tidal ef-that there are strong priori theoretical constraints on the
fects [10]. Motivated by the results of Ref[10], we magnitude of such a violation
presented in Refl1] a full-fledged Hill-Brown theory of the
lunar orbit perturbation due to a hypothetical violation of the Il. PREFERRED-FRAME EFFECTS
equivalence principle. We found that the interaction with the o ) .
quadrupolar tide amplified the results of lowest-order pertur- AS gravity is a long-range force, one migatpriori ex-
bation analyses by a very significant factor: a 60% increas8€Ct the Universe’s global matter distribution to select a pre-
of the naive first-order calculation or a 40% increase of thd€fred rest frame for local gravitational physics. As shown in

improved first-order calculations allowing for perigee mo-112:13,9, all preferred-frame effects in the first post-
tion. Such results raise the question of whether similar amNeéwtonian limit are phenomenologically describable by only
plification factors affect othetnull or non-nul) relativistic WO parametersy; and a,. These parameters are associ-
effects in the lunar motion. To address this question it iA€d Wwith the following terms in the Lagrangian describ-

convenient to use the parametrized post-Newtorfe@N) N9 the gravitational dynamics ofN-body systems

framework(see, e.g.[9]) in which possible deviations from (AB=1,... N):

general relativity in the weak-field regime are described by o Gmm

some parameter8—1, y—1, aq, @,, etc., which vanish in L,=——> —2212\0), (2.1a

Einstein’s theory. “ 4 A7B TagC

In the case of the effects linked to the Eddington post-
Newtonian parameterg and y Ref. [6] has indeed shown s Gmymg
P B andy 6] " G W[(Vg'vg)_(nAB'VE\)(nAB'Vg)]-

(2.1b
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nag=(ra—rg)/r ag. Many (though not all of the observable following three contributions to the Lagrangigwe factor-
effects linked toe; and a, depend on the choice of the ized the Earth-Moon reduced masg;,=m;m,/m,
gravitationally preferred frame. We shall follow the standardmo=m;+m;,, from the Lagrangian
assumption{9] that the latter frame, being of cosmological
origin, can bgat least approximatelydentified with the rest a; Gmy
frame of the cosmic microwave background. This means that Rﬁyll)Z 502 7 Xalwv), (2.49
the center of mass of the solar system has the velacitjth
respect to the preferred frame of rest, with s
= i i i = °o_7° a
l[\ivll] 370=10 km/s in the direction ¢,8)=(168°,—7°) ;21):_2_(;127”‘())(21(V0'V)’ (2.49
It has been shown in Rf15] that the close alignment of
the Sun’s spin axis with the solar system angular momentum G
yields an extremely tight bound om,: |a,|<3.9x10°’ RO = _ a_zl_mo(w.vo)_ (2.40
(90% C.L). This limit on a5, is much stronger than the ex- “ cr
isting limits on the other post-Newtonian parametgtsy,
and a;. We shall, therefore, neglect adl, effects in this Here,r=x;—Xx, is the geocentric lunar position vector and
work. Concerninge;, combined orbital data on the plan- v=dr/dt its velocity, v, is the velocity of the Earth-Moon

etary system yieldi16] center-of-mass motion around the Sun, atd=X,— X,
with the mass ratioX;=m;/mg and X,=m,/my=1—X;.
a;=(2.1=3.1)x 10 %(90% C.L), (2.2 In the following section, we treat successively the perturba-

tions of the lunar orbit associated with the three terms
while binary pulsar data yield comparable or better limits(2.49—(2.49.
[17]. More precisely, PSR 1855+ 09 data Yyield
|a1|<5.0<10°4(90% C.L.)[17], while a recent analysis of

PSR J2317+ 1439 datd 18] yields lII. HILL-BROWN TREATMENT
OF PREFERRED-FRAME EFFECTS
|a,|<1.7x10°4(90% C.L). (2.3 A. Method in brief

Since the Hill-Brown approach to lunar motion represents
a classic tool of celestial mechanics treated with care in the
literature (e.g.,[21-24]), we outline its concept only very
briefly, focusing mainly on the particularities of the method
involved in the present study. We also refer the interested

The fact that the observational limits on the parameter are
only a factor 10 better than the present limits on thwre
conservativg Eddington post-Newtonian parametefs- 1
and y—1 recently stimulated Damour and Esposito-Bare
[19] to propose several experiments for improving them. . .
Concerning their proposal to use artificial satellite motions, itreader tO.REf[ll] for more detalls_and_ the notation used.
has been recognized that the currently best laser-tracked s%— Following Hill we start by cons_ldermg the planar Earth-
ellite Laser Geodynamics SatellittAGEOS) cannot yield a oon-Sun three_—body proplem with the Earth-Moon center
better constraint omv; because of badly modeled nongravi- 9f mass on a ’FII‘CU|aI’ orbit .around the S(me sp—galled_
tational forces[20]. Another possibility mentioned in Ref. main _problem ). The near C”CU"'?“ lunar motion is invest-
[19] (and first pointed out if5]) concerns lunar motion and gz_ited In-an Earth-centg re,d coordlnate.syste(m(q rotating
suggests that LLR data might yield an interesting new IimitWlth the angular velocityn’ corresponding to the solar mo-

of the @y parameter. However, Reff5] and[19] used only tlont aroq{ﬂd th?x Ethh"\tﬂgon ﬁﬁntgr (t)r: g_]d%t’e Su_rt\ :_husl
first-order perturbation theory to estimate the effects in rests on the axiX). Apart from the Earth direct gravitationa

the lunar motion. In view of these factand the experience action, the quadrupolar piece of the sdklal) gravitational

of the strong coupling with the solar tides mentioned in Sec.potential is also taken into account. The reduced Lagrangian

I), we decided to reassess the quantitative value of lunar daﬁ’;{ the lunar motion then reads

for constraining @; by building an accurate Hill-Brown Loo=20C+Y2) +n" (XY=YX) +Rus 31

theory of the preferred-frame perturbations of the lunar orbit. i =z ( )+ )+ R, 3D
We thus consider the three-body Earth-Moon-Sun system

(keeping the notation of Refl1]; in particular we use the wit

labels 1=Moon, 2=Earth, 3=Sun). Generally all these

three bodies contribute to the sum in E2.13; however, we Gm,
shall restrict ourselves to the “direct” preferred-frame ef- Rl =——=—5 + 3n'2x? (3.2
VXA+Y

fects with the subscripté and B spanning only 1(Moon)

and 2 (Earth. It is easy(though not trivial to verify that

“tidal” preferred-frame effects, involving the subscript 3 (the overdot meand/dt). Although simplified, the theory
(Sun in Eg. (2.19, are several orders of magnitude smallerentails the most important part of the solar tidal deformation
than direct effects. Because of their observational irrel-of lunar motion. Instead of the usual Keplerian ellipse, Hill
evance, we also omit from our discussion several terms igthooses for the intermediary lunar orbit a periodic solution
Eq. (2.19 which are equivalent to a nearly constant redefi-(with particular symmetrigsof (3.1, the so-called “varia-
nition of the locally measured gravitational constant. Thetional curve.” In the following, we shall investigate the
dominant preferred-frame effects are then contained in thérced perturbations of the variational orbit due to the addi-
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tional Lagrangian ternts(2.4). Our method of solution of the systef8.6)—(3.9) consists
A very convenient parametrization of the Hill problem of consecutive iterations, where at each stage one constructs
consists of replacing X,Y) by the complex-conjugated a particular right-hand-side source based on the results of the

quantities v,w) defined by ( is the complex unjt previous iterations. Details can be found in R&f] or Ap-
o pendix B of Ref[11]. Let us only point out that, contrary to
X+iY=a/(1+w), (3.38  the simpler case of the synodic lunar perturbations due to a
Y =1 — hypothetical violation of the equivalence principle studied in
X=iY=ad “(1+w), (83D Ref.[11], the generic form of the right-hand-side source term
(e, (3.39 now reads
W, (@) =W_,{ “+ W, (3.10
=(n—n")t+ 7o, (3.30

. where we allow for(i) complex functiondV_ , andW, and
wheren denotes the mean lunar motion around the Earth anq|) any real (nonmtege)' values of the powers:. Inversion

where ther variable represents the mean geocentric angulagf the linear problent. (w, (@), W, (a))=W, («) («#0) has
separation of the Moon and the Sun. Following Rél, the 3 simple formw, (a)=w_ ¢~ *+w,¢* with
fiducial lunar semimajor axia is defined by

Gmy w,= m){[a — 1+m)a+%K]Wa—%KV\_/_a},
—————=k(m), 3.4
(n—n")Za?3 w(m) 34 (3.113
where W= gy (P 20 mat 3 kW~ § W),
k(m)=1+2m+ 3m? (3.5 (3.11b
and m=n’/(n—n’') is Hil's expansion parametefin the  and
actual case of the Moom,,,=0.080848935....) The _ o 2 _ 2
Lagrange dynamical equations of the variational motion then Ad(M=aa’+3k=4(1+m)7]. (312
read [The solution corresponding ta=0 is identical with that
o — given in Eq.(2.529 of Ref.[11].] Some values of the power
L (ww) = Wi (W, W) @8 i (3.12 may lead to a significant amplification of the
where we denoted effect due to the smallness of the corresponding denominator
A (m). Of particular interest for our present work is the case
L(w,w)=D?w+2(1+m)Dw+ 3 x(m)(w+w), (3.77  wherea=1+m which yields the small denominator
with D=d/(id 7) = {d/d{ and the Hill source terms Apym(m)=§ m?(1+m)% (3.13
Wiy (W,W) = — 2 m2¢2(1+W) + ~(m)Q(wW,W). (3.8 Inthe next section we shall see that it appears in the sidereal

excitation of the lunar orbit.
The nonlinear source functioR(w,w) and its development ~ Because of the background motivation of our work, re-
in terms of (v,w) can be found for instance in RéflL1]. lated to the LLR experiment, we are essentially interested in
When Cons|der|ng an extra perturbaﬂon of lunar motion, the perturbatlon of the radial geocentrlc distance of the Moon
such ag2.4) in the case of preferred-frame effects, we havegiven by
to include an additional source function on the right-hand

2_3F 2 Y
side of Eq.(3.6) given by re=af(1+w)(1+w). (3.19

Performing a variation of this quantity, keeping only linear

S(w,w;Dw,Dw) = D—_G— —_G (3.9 terms in the perturbation, we obtain
dDw oW
or 1+w) 2
in terms of the “‘generating function” ?ZR 1+w ow 3.19

G(w,w;Dw,Dw)=2(m/n'3a)?R.
for the searched perturbation in radial coordinate. Remem-
bering thatw=0O(m?), to lowest order in then parameter,

lwe recall that the variational orbit is not a general solution of thethe radial oscillation can be expressed by the simple formula
system(3.1). Apart from the “forced” perturbations related to a or/a=(dw+ ow)/2.

new physical cause it admits also “free” perturbations covering the  In the rest of this section we investigate the forced pertur-

classical notion of the lunar orbit eccentricity and its perigee driftbations of the lunar variational orbit related to the three

due to the solar action. For simplicity, we omit in this study a preferred-frame Lagrangian term(.4). Finally, we note

natural coupling of the two types of perturbations, neglecting thughat, albeit the iteration scheme mentioned previously is
the (smal) lunar eccentricity(and inclination corrections to the straightforward, it represents a huge algebraic manipulation
preferred-frame perturbations. exercise. We thus employed the powerful dedicated algebraic
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computer systerminiMS developed by Moons from the Uni- TABLE I. Coefficientss, of the S&* (m) series in powers of
versity of Namur(Belgium) [25] to perform this task. The m. The percentagp, of the contribution of the listed terms to the
lowest two orders of the results have been, however, checkestries for the lunar orbitn=my,,,=0.080 848 93 5. . ., isgiven
by hand computations. in the second column. The last column gives the ragig {/sy).
B. Potential R k Sk Pk (Sk—1/s4)
First, we focus on the source tef.49. The correspond- 0 1.000000000000000 - -
ing generating functioi& reads 1 -8.375000000000000 -67.71 -0.119402985
_ 2 49.37500000000000 32.27 -0.169620253
Al a i 3 -268.2473958333333 -14.18 -0.184065161
- _ e 1+m i
G(w,Dw)=-i 61( r ) {[Dw+(1+m)(1+w)]1L" e 4 1444.161892361111 6.17 -0.185746070
_ o (14m)aid 5 -7841.277434172453 -2.71 -0.184174314
+[Dw—(1+m)(1+w)]{ e’} 6 42586.57408613037 1.19 -0.184125575
(3.19 7 -231375.2814872327 -0.52 -0.184058443
8 1256984.833107015 0.23 -0.184071657
where 9 -6828885.820821555 -0.10 -0.184068802
. [Wvg [ @) k(m)
= 2 Xy Oy 1
€1 2 M2 2 g T m (3.1 _
with

and where one must expressin terms ofw through Eq.

1 i i it 67 395 103 007 3327 349
(3.14. Here,a’ is the radius of thécirculan scl)la’r .orb|t. in S(”(m) 1— Lt 22— m3+ m?
the Earth-Moon center-of-mass frame ang=n’a’ its (cir- 8 8 384 2304
culan velocity, C(=0.98) is the cosine of the ecliptic latitude 5
of the unit vectorw®, and ¢ is a longitude angle ofv° +0o(m). (3.20

measured from the lungand solay position at timet, cor- ) . ()

responding to an arbitrary new-moon phase. For instance, ffable | gives the coefficients of the serig§(m) up to

we choose the last new-moon phase in this century, occuninth order. The second column of the table indicates the
ring at MJD51 521.2, we obtaigp=267.2°. Inserting this numerical contribution of the corresponding term to the total
expression into3.9) we obtain the source function, to be value of the series for the Ilunar orbit, i.e.,
added to the right-hand side of the Hill equati@®), in the  m=my;,,,=0.080 848 935 ... [24]. Two important fea-

form tures are to be noticedi) a significant contribution of the

higher order corrections to the total value of the series
S Dw DW=~ 2ls |Dw Fuem ewﬁ_ Sgll)(m,\,,oon) and (i) a geometriclike character of this series

2 1+w clearly pronounced after a few terms. The second property
suggests the presence of a pole near the %alue

—(1+m) e’ m.,=—0.184 07. Taking a Padapproximant of the series
—¢ 1+w +(1+m) Sf}l)(m) confirms the presence of a unique root of the de-

nominator located at the valum,, = —0.184 07 with an error

THW i emais of about 10°.

X 1TW€ e =7 €7 (- The physical origin of this pole can be easily understood

by using the following argument. When solving the problem
(3.18 by traditional first-order perturbation techniquese, e.g.,
Working out the iterative solution mentioned above oneg[5,19)), one finds that the sidereal orbit oscillation induced
realizes that this perturbation yields a wide spectrum of raby an external force linked to a fixed direction in space con-
dial and longitudinal oscillations of the lunar orlfiompare tains, in the denominator, the secular rate of the perigee lon-
also with the less accurate solution in Réf]). However, a  gitudew. This agrees with the intuitive idea that a spatially
detailed analysis shows that only two of them are sufficiently‘frozen” orbit (not moving its pericenter in fixed spaces
amplified to give an observably interesting sign@l:terms  “resonantly sensitive” to constant forces. As a check of this
with frequency equal to the mean sidereal lunar motion idea, we have multiplied thés(l)(m) series by w(m)
(having a period of about 27.32 days afi terms with —n[(3/49m?+ (177/32m3+ - - -] as given by Andoyer up to

frequency equal tm—2n’ (having a period of about 32.13 9 : ; ; (1)
days. Both periods are evaluated for the lunar orbit. Here-Order m” in Ref. [22]. The resulting series, saﬁal(m)

after we discuss properties of both of them starting with the= 485111)(m)ﬁx(m)/(3n m?)=1-m+(313/64m?+---, s
sidereal terms. much more tame, showing that the main characteristics of

The perturbation series giving the sidereal-frequency ras(l)(m) are entailed in the factgra(m)]~ 1. The difference
dial oscillations of the lunar orbit reads

S 2€; 2 L .
© (1)(m)8|r[n(t—t0) b1, (3.19 Such a value corresponds to a retrograde orbit with a sidereal

a 3m? period (for Earth satellitesT=27/|n|=82.4 days.
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between our more precise soluti¢8.19 and the previous
ones[5,19 (when the latter are improved by using the full |
value of the perigee advancis essentially contained in the pole

5x10° — T+ T

value of the residual serieg(all)(m). We find that, in the 0%

lunar cases”(Myoor) =0.956. In contrast with the case of rg 105
105 |

equivalence-principle-violation effects, we see therefore thai .2

preferred-frame effects exhibit no significant enhancemeni _ L M
genuinely linked to the tidal deformation of the lunar orbit. ~1x10° - 1
This result holds for the other effects discussed below and is
basically attributable to the fact that the actual lunar orbit is —ay{05 -
quite different from the “spatially frozen” resonant orbit
(while it is rather near the orbit resonant for solar-directed
equivalence-principle-violation effegts I e T o0 005 —0.00 005 o.10
The principal quantitative information of the previous

m
analysis is given by the amplitude of the sidereal oscillation
of the lunar orbit (3.19. Employing the definition(3.4) of FIG. 1. Amplitude(in centimeters C, of the sidereal oscilla-
the auxiliary Iurlar semllmajor axia [and a PadepproXi-  tion (for a;=1) vs the Hill parametem (positive for prograde
mant value ofS(al)(m)23511)(m|v|oon)20-5463 we have orbits, negative for retrograde orbits For high orbits

Calz(2/3)5%18&11)(m)m’2 as given in Eq.(3.19. In the case of
1/3 low orbits we introduce the influence of the Earth multipolar struc-
} S(al)(m)a’z4780>< aC[cm], ture by adding a quadrupole contribution to the denominator of a
' (3.21) Padeapproximant ofS(all)(m). In addition to the singularly ampli-
' fied orbit atm,,= —0.184 07, two celestial bodies are indicatéd:
the Moon M) and (ii) the LAGEQOS satellite ().

K)(2

@y lwlvo KX~
m°

|8 |= 5 Xo1C— 2~

where y=(1+mgz/my) ~*. The current publishedccuracy

of the lunar ranging measurements performed by the s taking into account the LAGEOS inclinatiorWe can
CERGA team is 14 mm. Recent technical improvements argge that none of the two bodiéan equatorial satellite at the
giving a timingprecisionof about 6 mniC. Veillet (private | A\GEQOS altitude or the Moonis the best candidate for
communicatiol]. If the latter precision level can be turned testing preferred-frame effects, but th@s mentioned in
into an accuracy level, the resul8.2]) suggests that the [1g}) 5 high-orbit artificial body with a period of about 30 h
LLR data should soon be able to constrain at the ohiimizes the sensitivity to ther; parameter@mong pro-
1X10"" level or better(given the phase information and the g:5qe orbits On the other hand, one should be aware of the
presence of several, effects at different frequencigs fact that the motion of artificial bodies is typically influenced
The valuem=0 of tr‘“e Hill parameter IS apparently an- p,y many nongravitational forces, some of which are difficult
other singularity of our “ranging formula’(3.19. However, 4 pe predicted and/or carefully modeled. For instance, this is
because we neglected the Earth quadrupole and the othgfe reason why the LAGEOS satellite is currently less suit-
higher muItlpo_Ies of the Earth gravity f|eId,_ we cannot ex- gpje for constraining the;, parameter than the Mod20],
tend our solution to near-Earth satellite orbitet0). This  \yhich is a nearly perfect “drag-free Earth satellite.” There-

regime has been thoroughly discussed in RES]. In a first  ¢qre the Junar data stand out as a potentially important source
approximation we can, however, match smoothly the solusy; the study of preferred-frame effects.

tion of Ref.[19], accounting basically for the Earth quadru-  The jntricate interaction of the variational curve perturba-
pole, and the solution presented in the present study, agns with the underlying tidal deformation leads also to a
counting in detail for the third-bodySun perturbations, by slowly convergent series for perturbations at the

adding the Earth quadrupole contributiondgm) after hav- (n—2n’)-frequency. The final result for the radial oscilla-
ing factorized it as denominator of the ser&fﬁl)(m). [Ac-  tions formula reads

tually, as Andoyer’s series is not accurate enough to Iocaliz% £

precisely the zero an=m,, we found it better to add the O _ 9 €1, ; opn\(t

quadrupole contribution to the denominator of a Page a 4 mS"l (Msir(n=2n")(t=to) + 4], (3.22
proximant ofo}l)(m).] Figure 1 shows the synthesis of the

two effects. The arrow points to the singularitg=m,,,
while the two pointsM andL stand for the Moon and the 43 28 867 468 391
3

AP . . b r(1) I 2__ 4
artificial (retrogradg satellite LAGEQOS, respectivelgwith Sa; (m=1 6 m+ 720 M 5160 ™ +0(m?).
(3.23

Be - i ; ;

eware, however, that for the _flnal determmatlon of tﬁecon The coefficients oS;(l)(m) up to the eight order are given
straint through LLR data analysis, the particular phgses very in Table Il. The intimgte coupling of this frequency with the
important. Moreover, we shall see that the preferred-frame pertur- id | f. It 'pthg incid q f)t/h le i
bations of the lunar orbit act also with several other frequencies ang'o€real frequency results in the coincidence ot the pole in

; r(1) (1) ;
it is their combined influence which determines the full effect to bethe m  series Sal (m) and Sal (m).  Numerically
searched for in the LLR data. S, Y (Myoor) =0.6035, and the lunar orbit sensitivity to the

with
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TABLE II. Coefficientss; of the S{Y(m) series in powers of ~source functior(3.26) excites the odd powers gf resulting

m. Other parameters as in Table I. in (radial and longitudinaloscillations of the lunar orbit with
the synodic frequency, aliasing with the equivalence-
k S Pk (Sk—1/s¢) principle-violation effec{10,11.
We have learned in Ref§10,11 that any synodic signal
0 1.000000000000000 - N is particularly amplified by the presence of a pole singularity
1 -7.166666666666667 -57.94 -0.139534884 occurring for a prograde orbit about 68% larger than the
2 40.09305555555556 26.21 -0.178750823 1,5y orhit (Mm,=0.1951039...). The corresponding
3 -216.8476851851852 -11.46 -0.184890401 ranging formula reads
4 1173.979870756172 5.02 -0.184711587
5 -6371.734190136318 -2.20 -0.184248093 Sr €
6 34622.85594255030 0.97 -0.184032600 = =— _=3?(m)cosr, (3.27
‘ ‘ : a 2m %1
7 -188086.0224857120 -0.42 -0.184079899
8 1021827.835270500 0.19 -0.184068212

where Sfl)(m) is a series in the Hill parameten, whose

numerical value for the lunar orbit is found to be 1.3022. The
@, perturbation on this frequency is given by amplitude of the synodic oscillatiof8.27) of the lunar orb.it
|5.r|=800x a; [cm], approximately 5.98 times smaller thus read¢d.r|=57xa; [cm], too small to compete with
than for the principal sidereal effect. Notice, however, thathe much greater sensitivity of the lunar orbit to the
this term in the spectrum of the preferred-frame lunar pertur€quivalence-principle-violation terifi0,11].
bations may bound ther; parameter as efficiently as the
sidereal term if it turns out that there is significantly less D. Potential Rﬁfl)
noise at this frequency.

From Eg. (2.49 we see that this perturbing term is

) equivalent to a variation of the gravitational const@nfnot
C. Potential R{? i . \ _
1 0 be confused with the generating functio@gw,Dw)]

A special character of this term is due to its independenc&ith a period of one yeafsee, e.g.[19]). The analysis of
of the choice of the gravitationally preferred frame. It would this term involves a small denominatdr, _ > —m? which,
be theoretically appealing if this term could significantly however, cancels out in the radial oscillatid®]. As found
contribute to constraining;. Unfortunately, we shall dem- in Ref. [5], the remaining signal still exhibits an interesting
onstrate that the significance of this perturbation faces tw@ensitivity to thea; parameter.

obstacles(i) Its amplitude is small, andii) it acts with a The generating functio® equivalent to theR{®) reads
synodic frequency, the same as the other phenomena tested

through the LLR experimente.g., the classic equivalence- . [a . .
principle-violation effec{9—11]). G(w,Dw)=ies| —|({Me 'Y—¢"me'?),  (3.28

In the context of the main lunar problem we consider a
circular solar orbit around the Earth. The velocity thus  with
becomes-vyey (vg=n'a’) in the rotating(Hill) coordinate

system introduced in Sec. Il. The generating functi®n R [w|vg
reads €3= a0~z k(m), (3.29
a . o
G(W,DW)=%2<?){[DW+(1+ m)(1+w)]¢ and the resulting source function is
—Dw— w)le— ! —_ efa\l i . .
[Dw—(1+m)(1+w)]¢ ™}, (3.29 S(W,W)=—3 “ —({Me"i¢— 7 Meld) (3.30
. 2\r/1+w
with
a v\ 2k(m) & Using the previous scheme of solving the perturbation equa-
€=— 21(—) —_— . (3.25 tions we obtain
2 c m a
. : : SJ . .
;rshg)r? the source function can be easily calculated by using = =e3SEfl)(m)S|r[n (t—to)— ] (3.31)
. _ &la . 1+w for the expected contribution to the radial perturbation of the
S(w,w;Dw,Dw)=—| =) ¢ (1_m)+§(1+m)1TW— lunar orbit. The first terms of the seriég’l)(m) are listed in
Table lll. The magnitude of the oscillatiorf8.31) is about
- l | 6.r|=4550x a;C [cm], comparable to the sidereal effect
+Dw| 7+ wtl (320 coming from Rflll). The valuex(m)Sff’l)(m):O.9643 shows

that tidal effects are not very important. We learned from
The close similarity with the classical equivalence-principle-J.G. Williams(private communicationthat the prospects of
violation effect studied iff11] consists of the fact that the decorrelating the effect3.31) from other annual effects is
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TABLE lIl. The same as in Table | but for ths(ff(m) series  argument goes through in both cases, but is newest in the

(ratio of the consecutive coefficients omitied scalar case, the vector case having been already discussed in
[29], though with a less stringent constraint ap). Equiva-

k S Pk lence principle tests p((/c))be Ec)e composition dependence of

0 1.000000000000000 N ::2 f\::ékt)ilc?n;?%pglgigfzii;y{?on cfﬁhe g\./eLthggchSSI(i)r:Z tt:)yCiE;ible

! -2:000000000000000 -16.17 matter «y, in a differential composition-dependent experi-

2 ~1.953125000000000 1.28 ment: a(\)’)_ a$)=f xgay . The ordinary tests of the equiva-

3 ~5.875000000000000 0.31 Ience. pﬁnciplg(usinngi;ible sourcegneasure the fractional

4 12.50295003255209 0.05 differential acceleration

5 49.86885579427062 0.02

6 73.34703290903986 < Ag\ WV

7 -113.6395324400916 < mae=| o =(ay—ay)ay="Ffpga?. (4.1

8 -670.4626529838962 < AB

9 -1047.599614057912 <

These experiments give us a hangtepractice, an upper
limit) on the magnitude ofvy : ay=(7xy/ fas) > (For sim-
high. If this is confirmed, Eq€3.21) and(3.31) would be the  plicity, we do not put absolute value signs aroundz, and
two best probes for constraining, . f.) Then the tests of the equivalence principle using the
same pair of visible bodies and an invisible soufes., the

galactic dark mattermeasure
IV. POLARIZATION OF THE LUNAR ORBIT BY A

GALACTIC DIFFERENTIAL ACCELERATION Aa

a

Vi
=(afa\v)—agv))a|=fABaVa| . (42)

AB

VI

In addition to preferred-frame effects, other perturbing The=
forces can be linked to some fixed direction in space. This
would be, in particular, the case if the Earth and the Moo ; ; ; ;
would fall with a different acceleration toward the center Opnsertmg the previous value aiy into (4.2) yields
the Galaxy. Years ago this possibility has been mentioned in VI (f ) V3 YY) 12
relation with a possible violation of the equivalence principle Tap=TAB)\TTap) -
linked to the gravitational binding energy of plan¢26]. , o )
More recently, this idea has been revived within the context € Main point is, now, E/hvat observable facts give not only
of possible strong-gravitational-field effects in neutron starsYe"y Stringent limits ony,g, but also mild limits ona, .
and has led, through the use of existing binary pulsar data, thdeed, Damour, Gibbons, and Gundla¢d4,35 have
new tests of strong-field gravif27]. Still more recently, the _sh(_)vx_/n, in the case of different sqalar couplings to V|s!ble and
idea surfaced again with a different motivation: the possibil-invisible matter, that cosmological data were putting the
ity that the coupling between ordinafyisible) matter and  limit a;=123,<0.71. (See also the later work36] which
galactic dark matter violates the equivalence princ[@g].  considered only the casg,=0, «;=0.) An even more strin-
The latter suggestion led to new galactic-related laborator@ent limit comes from gravitational lenses. Indeed, in some
tests of the equivalence princip[€9,30, as well as to a gravitational lenses one measures three different “gravita-
corresponding reanalysis of lunar laser ranging f8ta-33.  tional masses”: a “virial” massG, (1+ af)M linked to bi-
Before applying our Hill-Brown algorithm to the latter prob- nary interactions, the gravitational mass probed by the x-ray-
lem (with the result that we find no unexpected amplifica-emitting gasG, (1+ aye;)M, and the lensing mass, M
tion), we wish to emphasize that there are strengriori (light being uncoupled to the new field, be it scalar or vec-
theoretical constraint@ising existing observational datan  tor). The coincidence, within better than 30%, of these three
the conceivable magnitude of any “dark matter effect.” masses in some systemg37] gives the limit
These constraints diminish, in our opinion, the theoreticaky,; < (0.30)?=0.55. (Modulo the sign changer’— — a7,
significance of the results of Ref9,30,33. this argument applies to the vector case and therefore im-

We assume a field-theoretic framewdds is always the proves upon the |imiu|("90t°f)<1 used in[29].) We can ap-
case in recent discussions concerning possible violations ¢fly the above limits to the case of the elemental composi-
the equivalence principle, e.g[28,30). Within such a tions of the Moon(silica) and the Earttfiron core plus silica
framework, any effect on visible matter due to a n@wn-  mantle. A laboratory approximation of this caggi/Al ver-
Einsteinian long-range field generated by dark matter is nec-sys Cy has givenz) 3= (5+7)x 10 '?[30] so that, at the
essarily proportional_to the produ_atva, of tvv_o coupli_n_g 1o |eV€|,|?]X\é 123 4% 10"®. Finally, we get for the maxi-
constantsa, measuring the coupling of the field to visible ,ym Moon-Earth(1-2, keeping our previous labgldiffer-

matter ande, the coupling to invisible(dark matter. We  gnial acceleration caused by a possible anomalous coupling
normalize these coupling constants with respect to the usug gark matter (taking into account a further factor
Einsteinian coupling so that the effective gravitational con-yy_ /m.,.=0.32),

stant between bodie& and B readsG =G, (1* asag)
whereG, is a bare Newtonian constant and where the plus (Aa)v'

4.3

(minug sign holds for a spin @spin 1) mediating field. To
fix the ideas, let us consider the case of a scalar field

<6.0X10 "V/|fag|- (4.9

12
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Moreover, the fractional composition dependenégg TABLE IV. The same as in Table | but for thg,(m) series.
(whereA=SiO,, B=Fe) is generically expected to be small
compared to on& For instance, in dilaton mode[88] one K S Pk (Sk-1/s4)

finds fag=1.89X10 °[(E/M)s— (E/M)g] where

0 1.000000000000000 - -
E=2Z(Z—1)/(N+2)*3 Herez= atomic numberN= neu-

. . . -9.375000000000000 -75.80 -0.106666667
tron number, ancM = mass in atomic mass units. The only 5 58 75000000000000 38.40 -0.159574468
(physically motivatey case, we know of, where, would -332 3880203333333 1757 0176751256
exhibit a significant fractional variation over the periodic : : '
table, is the case of appreciable coupling to lepton numbe5 ;zi%%i?l%‘o;gg‘:; 73'74‘(1) 'g'iggggg;gg
L or to B—L=N. [In view of the small variation of the . : b -
baryon to mass ratioB/M) g~ 103, any coupling involv- 6 53488.73992091048 1.49 -0.184076932
ing L with a relative coefficient of order unity leads to es- 7 -290602.0005454238 -0.66 -0.184061843
sentially the same resultsFor instance, for a coupling to 8 1578765.334003927 0.29 -0.184069155
B-L, one getd xa=(2N/M)gi0,~ (2N/M)ge=—0.076. In- -8577020.610670500 -0.13 -0.184069201
serting this figure in Eq(4.4) and using the full galactic
acceleratiora=1.9x 10 8cm/<, one gets S o

—=—2—S,(m)cogn(t—ty)— ps], (4.10
(Aa)Yl<3.1x 10715 cm/&, 4.5 a m? =99 o e

which is 10 times smaller than the upper limit found in awith
recent analysis of LLR datg82]. Even if we take fag|~1,

we get Aa)1a<1x10 **cm/€, which is 3 times smaller Sga(M=1- Eer £5m2_ 127 637m3+ 4172 299m4
than the result 0f32]. We conclude that, within what we 8 4 384 2304
consider the most natural theoretical framework, LLR data +O(md). (4.11

(and a fortiori laboratory experiment$30]) do not (yet)

probe a theoretically very significant domain of values of A more complete set of the coefficients of this series is given
possible anomalous couplings to dark matter. in Table IV. The dominant dependence of this series is
Denoting Ng the projection of the unit vector directed again Captured by factorizing,&;(m)]*l_ The numerical
toward the galactic center on the ecliptic plane andyalue of the series(4.11) for the lunar orbit is
R=(X,Y), the galactic polarization effect is described by thes (m,,) =0.5050. Clearly, the dark matter differential
potential coupling contributes also to then{-2n") frequency of the
radial oscillation of the lunar orbit. We do not give here the
Re=Ac(Ng'R) (4.6 detailed result, just quoting that its amplitude is about 5.94
times smaller than the amplitude of the principal galactic
(Polarization contribution4.10. Finally, the serieeSga_|(m)
ﬁc,_hows the same pole, near,=—0.184 07, as the sidereal
series in(3.19.

analogous to Eqg2.4). The parameteA; phenomenologi-
cally represents a differential acceleration of the Moon an
the Earth toward the galactic center. The corresponding ge
erating functionG is given by

G=a[(1+w) 1 Me idet (1+w)¢ (TtMeide], V. CONCLUSIONS
4.7 The main results of this paper may be summarized as
where follows.
We have confirmed, by more detailed computations, pre-
A , As vious suggestionkb,19| that LLR data have the potential of
w=m=2- (4.9 constraining the post-Newtonian parameter at the

1x 10 * level or better. We showed that the preferred-frame
The polar anglepg=1.1° gives the angular distance of the Perturbations associated with the parameter contribute a
galactic center from the lunajand solay position corre- large spectrum of frequencies in the radial oscillation of the
sponding to the above chosen new-moon phase at MJpsgwnar orbit. The dominant:; effects occur at frequencies
521.2. Employing Eq(3.9) we obtain the source term of (sidereal effegtandn’ (yearly effeci with well-determined

Hill's problem in the form phases, and there is a subdominant effect at frequency
' n—2n’. Although the analytical results that we obtained
S=—e'for (1M, (4.9  from a high-order Hill-Brown algorithm should be accurate

enough for fitting purposes, it may be advisable to resort to a
Because of the similarity of this function wit{8.18), we  direct numerical integration of the equations of mot{see,
recover the qualitative conclusions of Sec. Ill B. The sidereak.g.,[19] for the «; contributions to the equations of mo-
perturbation of the lunar orbit reads tion).
We found that retrograde planar orbits with
n’/(n—n’)=—0.184 07(which have fixed perigees in iner-
4If f,g were larger than one, one should modify our analysistial space exhibit a resonant amplification of preferred-
above, and define more carefully the average valye frame effects. Putting an artificial satellite near such an orbit



6748 THIBAULT DAMOUR AND DAVID VOKROUHLICKY 53

could be an efficienfthough expensiyeway of improving  satellites do lie close to the frozen configuration. A careful
the present bounds am; . study of these problems is, however, beyond the scope of
We have extended our analysis to another perturbatiothis paper.
linked to a fixed direction in space: namely, a possible dif-
ferential acceleration toward the galactic center. Evidently,
this perturbation exhibits also a polerat,= —0.18 407 cor- ACKNOWLEDGMENTS
responding to an orbit “frozen in space.” We argue, how-
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