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Abstract

A semianalytic theory for long-term dynamics of a low Earth orbit artificial satellite, or a space debris particle, is presented. The

empirical model TD88 of the neutral atmosphere density distribution, simple enough to allow analytic removal of short period

perturbations, is the principal part of the theory. In order to compare our results with observations of passive spherical bodies, we

also include the main gravitational effects, notably those of the zonal harmonics J2; . . . ; J9 (J2
2 terms are also considered), and for

low eccentricities and inclinations we use the description in nonsingular elements. Starting with a single set of initial orbital data and

giving a certain ‘‘confidential interval’’ on the resulting lifetimes, we find a reasonably good agreement with observations over the

timescale of years, the mean computed lifetimes being a few percent apart from the real ones. The strength of our theory is the

computational efficiency, since we need only ’ 5 s (on a PC equipped with Intel Celeron 1.7GHz) to propagate the 10-year orbital

arc, while maintaining a lot of the physics of the motion under drag (solar flux, geomagnetic activity, local time, geographic

latitude). The online calculation as well as the code are available on the internet.

r 2004 Elsevier Ltd. All rights reserved.

PACS: 91.10.Sp; 95.40.+s
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1. Introduction

The problem of the orbital motion of celestial bodies
in a resistive medium can be traced back to Newton’s
Principle (Newton, 1687, bk. II, Sec. I–IV) and
Laplace’s analysis of a possibly finite velocity of
gravitation (Laplace, 1805). However, with the advent
of the space age there arose the need of precisely
predicting the orbital behaviour of the newly launched
bodies. Compared to the gravitational perturbations,
the adequate allowance for atmospheric drag turned out
e front matter r 2004 Elsevier Ltd. All rights reserved.
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to be a problem for unforeseen complexity (Brouwer,
1963). Besides the obstacles in the analytical treatment
of the drag based on the idealized spherical nonrotating
density model, the upper atmosphere revealed itself to
behave unexpectedly. The irregular density variations
derived from orbital analyses of the first launched
satellites were attributed to the influence of the Sun, as
they displayed periodical changes of approximately 27
days. In December 1958 this conjecture was most
persuasively confirmed by the juxtaposition of the
density variations and those of the measured centimetre
solar radio flux. Another clue pointing to the ‘‘solar-
radiation hypothesis’’ was the overall dependence of the
drag on the angle between the perigee and the Sun
(Jacchia, 1959a; King-Hele and Walker, 1959). In the
subsequent years, together with the advances in theory
(King-Hele, 1964), direct evidence has grown that the
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solar and geomagnetic effects stronglyinfluence the
thermospheric density at a variety of timescales, both
periodically and randomly (Jacchia, 1959b, 1960, 1961,
Jacchia and Slowey, 1962a,b). In order to accurately
describe a satellite’s motion through the thermosphere
over a long period of time, one has to take these effects
into account, apart from the obvious quasi-exponential
decrease of density with height.

Beginning in the 1960s the ground-based or in situ
data deduced from mass spectrometers, accelerometers,
optical techniques, and incoherent scatter radar mea-
surements were extensive enough to construct more
detailed models of the upper atmosphere. The physical
models of the thermosphere and derived from the a
priori known physical laws and try to reproduce the
variations in the measured values. Such a goal is
extremely ambitious and is still not achieved for the
operational use of such models in predicting the motion
of artificial satellites. Semiempirical models based on
simplified physical concepts proved to be more success-
ful in representing the observed thermospheric density
variations, starting with the 1965 Jacchia model (Barlier
and Berger, 1983; Marcos, 2002; Lathuillère et al.,
2002). The widely used semiempirical model series such
as Jacchia (Jacchia, 1964, 1970, 1971, 1977), DTM
(Barlier et al., 1978; Berger et al., 1998) or MSIS (Hedin,
1983, 1987, 1991; Picone et al., 2002) combine some
simplified physical hypotheses, e.g.,, static diffusive
equilibrium of the different thermospheric constituents
above the heterosphere base, with the fitting on the
measured data. Finally, there existpurely empirical
models of the thermospheric density that are based on
fitting the semiempirical models with the aim of the
maximum computational speed (e.g., de Lafontaine and
Hughes, 1983; Gill, 1996).

Although the semiempirical models are physically
simplified, they do not permit the analytical solution of
the equations of motion. Representing the state-of-the-
art description of the thermospheric density variations,
the semiempirical models are used in predicting the
satellite behaviour on short-term periods typically up to
several days by means of numerical integration. How-
ever, for long-term satellite dynamics, lifetime predic-
tions, fuel consumption planning, one has also needed to
know the evolution of satellite orbits over longer time
spans. Over the years a lot of long-term analytical or
semianalytic motion theories expressing the atmospheric
drag for LEO satellites by substantially simplified
density models have been developed. The semianalytic
theory summarized in the classical book by King-Hele
(1964) makes use of the oblate rotating thermosphere
with the altitude-dependent scale height to find the drag
induced changes over one satellite revolution. The SGP4
orbit propagator with a power density function is widely
used in connection with the NORAD two-line element
sets (Hoots and Roehrich, 1980). For discussion of the
numerical and analytical approaches to modelling the
satellite motion see e.g., Gooding (1981), Fonte et al.
(1995), Hoots and France (1997).

The idea behind the construction of the TD88 model
of the thermospheric density (Sehnal, 1988, 1990b;
Sehnal and Pospı́šilová, 1988) and thereto related theory
of motion (Sehnal, 1990a), was to develop a new kind of
semianalytic theory of the LEO satellite motion under
the influence of air drag. In contrast to other semi-
analytic theories with static atmospheric density models,
the TD88 model explicitly includes dependence on the
physical parameters dynamically influencing the air
density (solar flux, geomagnetic index, local time, day
of year, latitude). TD88 is an empirical density model
with numerical coefficients determined by fitting the
TD88 densities to the satellite drag data and the DTM78
model values (Barlier et al., 1978) within the height
range of 150–750 km. The TD88 density model can be
analytically integrated over one revolution of the
satellite, thus defining the least time step of the theory.
With the dynamical reaction of the atmospheric drag on
the changing physical conditions, the TD88 theory is
able to predict the motion of the satellite over long time
spans, starting with only one set of initial orbital data.
This is a rather unique feature, since other semianalytic
theories usually extrapolate the recent changes in orbital
elements due to the drag neglecting the fluctuating
physical state of the thermosphere with the risk of a drag
induced positional error propagating further on. In a
somewhat similar way to the TD88 theoryHoots and
France (1987) and Danielson et al. (1995) use the drag
effects given by a dynamical thermospheric model, but
conveniently numerically integrated over one revolu-
tion. Given the purely empirical approach, the TD
model can be used to compute density at a particular
space and time location nearly an order of magnitude
faster than the semiempirical models such as DTM or
MSIS. For that reason Montenbruck and Gill (2001)
characterize the TD model as extremely rapid; on the
other hand, they find it also of a very low accuracy.
However, we think that methodology by which they
reach this conclusion is incorrect, in fact, the TD88
model is of comparable accuracy as other models of
thermospheric density within its proper height range,
and it is suitable for a rapid description of the long-term
orbital evolution as demonstrated below.

Helali (1987) was the first who used the TD model to
obtain a semianalytic prediction of the perigee-height
evolution. However, his analysis was incomplete since
he omitted two, computationally most difficult terms in
the TD density formulation (notably the diurnal terms
(6)). Similarly, Šegan (1988) making use of the algebra
manipulation program obtained orbit-averaged varia-
tions of the semimajor axis and the eccentricity using the
TD model, but he limited his formulation to the case of
zero-eccentricity orbits; with this he compared the



ARTICLE IN PRESS
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theory and observations of Intercosmos 10 (1973-82A)
satellite and concluded ‘some differences persist, per-
haps due to incompleteness of the model’. Another
attempt to use the TD model for a fast orbit
propagation was the work of Sehnal and Pospı́šilová
(1991) (see also Sehnal, 1990a), who determined lifetime
of the satellite Rohini 1 (1980-62B). Rossi et al. (1998)
used a substantially simplified version of the TD model
to simulate the thermospheric drag effects on the long-
term behaviour of space debris population around the
Earth.

The aim of this paper is to present a new, extended
implementation of the TD88 drag theory and to discuss
how its theoretical predictions compare with the orbital
data of several real-world artificial satellites. In addition
to the variations in the semimajor axis and eccentricity
(Sehnal, 1990a), we include the perturbations in the
inclination which reflect the net thermospheric rotation
with respect to the Earth surface. Because of the
tendency to circularize the orbits, and in order to treat
orbits with initially small eccentricity, we pay a special
attention to this limit. Notably, a formulation in
nonsingular elements is used for these cases (which
introduces the drag effects on the argument of perigee).
A complete description of the satellite motion requires
consideration other than atmospheric effects; in this
paper we restrict ourselves to the effects of the
geopotential zonal harmonics, nevertheless, weaker
effects may be included in a straightforward way. As
part of our work, we also extended altitude range of
applicability of the TD model to 1200 km (Appendix B).

When dealing with atmospheric drag acting on LEO
satellites, one of the important sources of uncertainty is
the drag coefficient CD: Here our method is to make a
‘‘lifetime prediction’’ for each satellite as though we
were at the moment of its launch and we got the initial
set of its orbital elements. To be able to compare the
TD88 density model with reality, we assume that we
know the solar and geomagnetic conditions during the
flight. Further, we suppose a perfect knowledge of the
mass and diameter of each satellite, the uncertainties or
small variations in these parameters being included in
the overall uncertainty of the drag coefficient. Even if we
confine ourselves to spherical satellites, there is still not a
generally accepted model for their CD: This choice of the
interval CD 2 h2:09; 2:31i; within which we suppose the
actual CD lies for the satellites below, say, 500 km, is in
agreement with the range of the CD values given by the
recent theoretical models of CD based on the molecule-
surface interactions data measured at satellite heights (it
should be mentioned, however, that CD generally
increases with height, see Section 2.1.2)(Moe et al.,
1993, 1996, 1998). The output of the presented theory is
a time interval, within which the real lifetime should
fall—we may regard it as a ‘‘CD-based confidential
interval’’ of the calculated lifetime. For convenience, in
figures we sometimes draw a curve denoted as ‘‘best-fit
CD’’, which was found by fitting the computed time of
flight to the actual lifetime.

For the development of the defining formulæ of
the theory to the final complex expressions and for
their subsequent export into the Fortran 77 code
the computer system Maple 8 was used. The code
of the theory is available on the internet
(http://www.asu.cas.cz/�bezdek/density_therm/pohtd/),
as well as the online computation for a desired real or
fictitious LEO body.
2. Theory

In this section, we summarize the orbital perturba-
tions taken into account in this work. The principal
element here is a semianalytic treatment of the atmo-
spheric drag effects (Section 2.1), whose primary
limitation is the assumption of spherical shape of the
satellite. In order to compare our results with observa-
tions, we complement the atmospheric effects with the
main gravitational perturbations, notably those from
the zonal harmonics of the geopotential (Section 2.2).
Effects of finer substance, such as the tesseral harmonics
(e.g., Kaula, 1966; Deleflie et al., 2004a, b), lunisolar
perturbations (e.g., Kozai, 1973; Giacaglia, 1973), tidal
effects (e.g., Musen, 1961; Casotto, 1991) or radiation
pressure (e.g., Milani et al., 1987), can be implemented
too. We linearly superimpose first-order contributions
of different effects, except for the J2 perturbation that is
treated to the second-order, with no attempt to
analytically couple drag effects with gravitational
perturbations (see e.g., Brouwer and Hori, 1961;
Delhaise, 1991). Though such a coupling is of theore-
tical interest by its subtlety, the primary uncertainty of
models aiming to propagate satellite orbits in the
thermosphere over long period of time arises due to
mismodelling of the physical, mostly irregular phenom-
ena related to solar and geomagnetic activity (see e.g.,
Fig. 3). We also note that a more straightforward
method of coupling various perturbing effects together
is to numerically integrate the averaged Lagrange or
Gauss equations, such as in Breiter and Métris (1999),
however this is not considered here.
2.1. Atmospheric drag

We first briefly review the TD model (Sehnal, 1988,
1990b; Sehnal and Pospı́šilová, 1991) and outline the
method used to obtain the long-term perturbations of
semimajor axis, eccentricity and inclination; the angular
orbital elements are not considered except for the
argument of perigee in the small eccentricity limit.

http://www.asu.cas.cz/~bezdek/density_therm/pohtd/
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2.1.1. Thermospheric density model TD

Thermospheric density r depends in a complex way
on a variety of parameters, fundamental of which are: (i)
the altitude h above the geoid, describing its vertical
structure, (ii) the geographic latitude f and longitude l;
related to direction towards specific energy sources such
as the Sun or polar regions, and (iii) their numerous
regular and irregular features in time. Characteristic to
the vertical structure is the exponential decrease with a
scale height H, that however itself depends on the
altitude, in this way reflecting composition variations
and other physical phenomena. Angular density depen-
dence is usually expressed in terms of development in
spherical functions with the symmetry axis oriented
toward the energy source, and the temporal variability
reflects principally local solar time, solar and geomag-
netic activity. The TD model as an empirical model
defines the thermospheric density as

r ¼ f x f 0k0

X7
n¼1

gnhn; (1)

where

f x ¼ 1þ a1ðF x 	 F bÞ; (2a)

f 0 ¼ a2 þ f m; (2b)

k0 ¼ 1þ a3ðKp 	 3Þ; (2c)

f m ¼ ðF b 	 60Þ=160; (2d)

functions take into account variable solar and geomag-
netic effects: Fx is the solar radio flux at 10.7 cm
wavelength for a previous day and F b its mean value
over 81 days (three solar rotations), both given in
10	22 Wm	2 Hz	1; and Kp is the appropriate geomag-
netic index 3 h before the date. Flare-induced irregular
increase of the solar activity, and related major
disturbances of the geomagnetic field, are thus trans-
lated into the thermospheric density. These are by far
the most important stochastic effects which need to be
included in a dynamic drag model (see e.g., Fig. 3).

Vertical density variations are approximated with a
sum of exponentials

hn ¼ Kn þ
X3
j¼1

Knj exp
h̄ 	 h

jH

� �
; (3)

having scale heights multiples of the fundamental value
29 km (Sehnal, 1990b). The reference altitude, roughly
corresponding to the heterosphere base is h̄ ¼ 120 km.

Angular dependence and, mostly regular, variability
in time are given by the functions gn in (1). The constant
and solar cycle parts are

g1 ¼ 1; (4a)

g2 ¼ f m=2þ a4; (4b)
while the annual and semiannual effects are

g3 ¼ ð1þ a5 f mÞ sin 2ðd 	 p4Þ; (5a)

g4 ¼ ð1þ a6 f mÞ sinðd 	 p5Þ; (5b)

g5 ¼ sinðd 	 p3Þ sinf; (5c)

here d is the day count in the year. The short-period
terms correspond to the diurnal and semidiurnal
variations

g6 ¼ ð1þ a7 f mÞ sinðt 	 p6Þ cosf; (6a)

g7 ¼ ð1þ a8 f mÞ sin 2ðt 	 p7Þ cos
2 f; (6b)

with t denoting the local solar time. These terms
approximate a lagged atmospheric bulge in the solar
direction.

The model is numerically determined by a set of
constants H, an (n ¼ 1; . . . ; 8), Kn and Knj (n ¼ 1; . . . ; 7
and j ¼ 1; . . . ; 3), and phases pi (i ¼ 3; . . . ; 7). By fitting
TD model density predictions to observations and those
of the DTM78 model, Sehnal (1988, 1990b) and Sehnal
and Pospı́šilová (1988) derived ðan;Kn;Knj ; piÞ suitable
for the height range 150–750 km; see Appendix A. To
allow higher satellite orbits, we obtained another set of
constants ðH; an;Kn;Knj ; piÞ appropriate for the height
range 750–1200 km; see Appendix B.

2.1.2. Orbital perturbations

Consider a spherical satellite moving through a
resistive medium, such as the thermosphere, and denote
its relative velocity with respect to the rest frame by V:
In the free molecular flow regime (rarefied gas of
noninteracting particles with long mean free path), the
satellite experiences drag given by (Sterne, 1960; King-
Hele, 1964; Fitzpatrick, 1970)

f ¼ 	
CD

2

S

m
rVV; (7)

where S is the satellite cross-section, m its mass, r the
thermospheric density and CD a drag coefficient. The
latter depends in a complicated way on (i) microphysics
of particle interaction with the satellite surface, and (ii)
the ratio of the particles’ thermal speed and V (expressed
usually as series in this parameter; e.g., Zarrouati, 1987;
Milani et al., 1987). A typical value for low altitude
satellites is CD ’ 2:2 while at higher altitudes CD

increases (in part due to the composition variations
and also due to higher thermal velocity of atmospheric
constituents). To keep things simple, in this paper we
assume CD to be constant, but an adjustable parameter
for each satellite.

Since the thermosphere is not stationary in the inertial
frame, but rather rotates with an angular velocity xt; we
have V ¼ v	 xt � r; where ðr; vÞ are the satellite
geocentric position vector and orbital velocity. As
mentioned below, the appropriate value of xt is a
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A. Bezděk, D. Vokrouhlický / Planetary and Space Science 52 (2004) 1233–1249 1237
delicate issue, and we again start with the simplest model
of the thermosphere corotating with the Earth. We
denote

d ¼ CD
S

m
; (8a)

t ¼
ot

n
Z cos I ; (8b)

where n is the satellite’s mean motion, I the inclination
of its orbit and Z2 ¼ 1	 e2 (e is the orbital eccentricity).
With these parameters, we obtain

T ¼ 	
d
2
rv2B2; (9a)

N ¼ 	
d
2
rv2

et
Z

B
F	

Fþ

sinE; (9b)

W ¼ 	
d
2
rv2

t tan I

Z
BF	

ffiffiffiffiffiffiffi
F	

Fþ

s
cos z; (9c)

for the acceleration component T along the tangent of
the orbit, and parallel with v; the component N normal
to the tangent and directed away from the centre, and
the component W perpendicular to the precedent ones;
for convenience we introduced F�ðEÞ ¼ 1� e cosE;
where E is the osculating eccentric anomaly, B ¼ 1	
tF	=Fþ and z ¼ oþ f ; where f is the true anomaly and
o is the argument of perigee. Inserting (9a) in Gauss
equations, we obtain (compare with results by King-
Hele, 1964 or Fitzpatrick, 1970)

da

dE
¼ 	a2rdSa; (10a)

de

dE
¼ 	ardSe; (10b)

dI

dE
¼ 	ard

t tan I

2Z2
SI ; (10c)

for the rate of change of the osculating semimajor axis a,
eccentricity e and inclination I. Here, we have

Sa ¼ B2Fþ

ffiffiffiffiffiffiffi
Fþ

F	

r
; (11a)

Se ¼
Z2 cosE

Fþ

Sa þ
et
2

BF	

ffiffiffiffiffiffiffi
F	

Fþ

s
sin2 E; (11b)

SI ¼ BF 2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FþF	

p
cos2 z: (11c)

In connection with Eqs. 10(a)–(c) resulting from
changing the independent variable in the Gauss equa-
tions from time to the eccentric anomaly E, we note that
for near-circular close orbits Jupp (1976) suggested an
extra term (due to the drag-induced changes in a and e)
to be added to the right-hand sides. Neglecting this
term, the Eqs. 10(a)–(c) must be viewed only as
approximate. In his answer King-Hele (1978) argued
that in practice the perturbations due to odd zonal
harmonics of the geopotential prevent the eccentricity to
be lower than about 0.0005 (unless the inclination is zero
or 65:6), and showed that the proposed extra term is
negligible except during the last day of the satellite’s life,
but then other simplifying assumptions of the theory are
violated. The application of the TD88 theory to the
near-circularly orbiting satellites discussed in this paper
seems to support the idea that Jupp’s term may be
neglected for most of a satellite’s lifetime (see especially
Fig. 10, but also discussion in Section 4).

Except for the final catastrophic decay at a very low
altitude, the thermospheric drag is small enough so that
the orbit-averaged values of the right hand sides in Eqs.
(12) are appropriate for removal of short-period
perturbations and thus a good measure of the long-
term effects (e.g., Milani et al., 1987). In particular,

Da ¼ 	a2d
Z 2p

0

dE rSa; (12a)

De ¼ 	ad
Z 2p

0

dE rSe; (12b)

DI ¼ 	ad
t tan I

2Z2

Z 2p

0

dE rSI (12c)

are the relevant variations in one revolution.
The atmospheric perturbations of the remaining three

orbital elements are generally much smaller than those
from the geopotential and can be neglected for our
purposes. An exception is the case of near-circular
orbits, or those near the equatorial plane, for which the
geopotential may cause stationary, or oscillating, values
(Section 2.2.1). Since the quasi-circular orbits are of
general interest, also because an evolution in an atmo-
sphere inevitably drives orbits to that end-state, we
discuss this particular case below.

In the small eccentricity limit, nonsingular elements
(k ¼ e coso; h ¼ e sino) are the well-defined variables,
indicating that eðdo=dtÞ rather than ðdo=dtÞ is of real
importance. Using the appropriate Gauss equation we
have

e
do
dE

¼ 	adrSo; (13)

with

So ¼ sinE
Z

Fþ

Sa 	 ðe þ cosEÞ
et
2Z

BF	

ffiffiffiffiffiffiffi
F	

Fþ

s" #

	
et
2Z2

sin IBF2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FþF	

p
sin z cos z: ð14Þ

For small values of eccentricity, we may also simplify
So ’ sinE½1þ OðeÞ�: Variation in one revolution of the
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satellite about the Earth is then

eDo ¼ 	ad
Z 2p

0

dErSo: (15)

Combining Eqs. (12b) and (15) we obtain the appro-
priate changes Dk and Dh of the nonsingular elements.

The cumbersome issue, necessary to evaluate the
integrals in Eqs. (12) and (15), is to express the
thermospheric density r; with its space and time
variations (Section 2.1.1), in terms of the orbital
elements. This topic is briefly discussed in the next
paragraphs.

Thermospheric density in terms of orbital elements: We
first consider the vertical-structure terms exp½ðh̄ 	 hÞ=jH�

in (3). The TD model assumes the air density is constant
on the surfaces of ellipsoids of fixed flattening e ’
1=298: To the first power in e; the height h over the
oblate Earth’s surface is approximated by (e.g., King-
Hele, 1964)

h ’ aF	 	 Rð1	 e sin2 fÞ; (16)

where R is the Earth’s equatorial radius. Using simple
spherical trigonometry we have sinf ¼ sin I sin z in
terms of orbital parameters (z ¼ oþ f as before). Hence
the appropriate factors in averaging are

cj ¼
eR
2jH

sin2 I ; (17a)

zj ¼
ae

jH
; (17b)

Bj ¼ exp
h̄ þ R 	 a

jH
	 cj

� �
; (17c)

so that

exp
h̄ 	 h

jH

� �
¼ Bj expðzj cosEÞ expðcj cos 2zÞ: (18)

While cj are small parameters, notably the maximum
value occurs for j ¼ 1: c1 ’ 0:369 sin2 I ; and will be
considered here of the order of eccentricity, zj may be
arbitrarily large. With this, we can expand the last
exponential factor in (18) and define

cjðzÞ ¼ expðcj cos 2zÞ

¼ 1þ cj cos 2zþ
c2j

2
cos2 2zþ Oð3Þ: ð19Þ

In what follows we keep terms in cj up to the third order
included. The auxiliary angle z is eliminated using the
transformation formulæ from the true anomaly f to the
eccentric anomaly E, cos f ¼ ðcosE 	 eÞ=F	; sin f ¼

Z sinE=F	; so that cj take finally the form

cjðEÞ ¼ 1þ cj cos 2xþ 1
4

c2j ½1þ cos 4x�

þ ecj½cosð2xþ EÞ 	 cosð2x	 EÞ� þ � � � ; ð20Þ
with x ¼ oþ E; we again keep track of terms up to the
third order in cj and e included. We finally write

hn ¼ Kn þ
X3
j¼1

KnjBjcjðEÞ expðzj cosEÞ: (21)

Further work also benefits from splitting the last three
factors gn in (1) into a part ~gn that changes during one
revolution about the Earth and a quasi-constant part ḡn:
We thus have gn ¼ ḡn � ~gn; n ¼ 5; 6; 7; defined as

ḡ5 ¼ sinðd 	 p3Þ; ~g5 ¼ sinf; (22a)

ḡ6 ¼ 1þ a7 f m; ~g6 ¼ sinðt 	 p6Þ cosf; (22b)

ḡ7 ¼ 1þ a8 f m; ~g7 ¼ sinð2t 	 2p7Þ cos
2 f: (22c)

Elementary spherical trigonometry yields

cos t cosf ¼ 	 cos I sin z sinða	 OÞ 	 cos z cosða	 OÞ;

sin t cosf ¼ 	 cos I sin z cosða	 OÞ þ cos z sinða	 OÞ;

where a is the solar right ascension and O is the
longitude of the ascending node. With these relations the
~g5 – ~g7 factors may be expressed in terms of the eccentric
anomaly E and other orbital parameters.

The change in the semimajor axis Da over one orbital

period: To show our procedure, we now focus on
computing the orbit-averaged change Da from (12a).
With Sa from (11a) we directly obtain

Da ¼ 	 2pa2df x f 0k0

�
X4
n¼1

gn KnU þ
X3
j¼1

BjKnjUj

 !"

þ
X7
n¼5

ḡn KnV n þ
X3
j¼1

BjKnjV nj

 !#
; ð23Þ

where the following auxiliary functions

U ¼
1

2p

Z 2p

0

dE SaðEÞ; (24a)

Uj ¼
1

2p

Z 2p

0

dE SaðEÞcj expðzj cosEÞ; (24b)

V n ¼
1

2p

Z 2p

0

dE ~gnSaðEÞ; (24c)

V nj ¼
1

2p

Z 2p

0

dE ~gnSaðEÞcj expðzj cosEÞ (24d)

were introduced. Expanding the integrand in terms of
small values of the eccentricity e and parameter t in (8b),
of the order of e, we obtain

U ¼ ð1	 tÞ2 þ 3
4

e2ð1þ t2Þ þ Oð4Þ: (25)

Incidentally, U and Vn can be also obtained in a closed
form using the complete elliptic integrals of the first and
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second kind, but without being able to obtain a similar
result for Uj and Vnj we restrict ourselves to use the
truncated series as in (25). To compute Uj we multiply
cj from (19) by the appropriately expanded Sa function;
all terms are then rearranged so as to have a sum of
terms each multiplied by a factor either sin nE or cos nE:
Thanks to the odd parity, the sine terms average out and
integration of the cosine terms results in the modified
Bessel functions of order n and argument zj (see e.g.,
King-Hele, 1964)

1

2p

Z 2p

0

cosðnEÞ expðzj cosEÞdE ¼ InðzjÞ: (26)

While obtaining results up to the third order in small
parameters e � cj ; we give here expansion to second
order only

Uj ¼ ð1	 tÞ2I0ðzjÞ þ 2eð1	 t2ÞI1ðzjÞ

þ cjð1	 tÞ2I2ðzjÞ cos 2o

þ 2ecjð1	 tÞ½I1ðzjÞ þ I3ðzjÞ� cos 2o

þ 3
4
e2ð1þ 2

3
tþ t2Þ½I0ðzjÞ þ I2ðzjÞ�

þ 1
4
c2j ð1	 tÞ2½I0ðzjÞ þ I4ðzjÞ cos 4o� þ Oð3Þ: ð27Þ

Note that InðzÞ / zn; and thus Uj can be also expressed
in terms of the nonsingular elements k and h if
necessary. Though straightforward, the results for Vj

and V nj are too lengthy and cumbersome to be reprinted
here; suffice we give

V 5 ¼
e

2
1þ 2t	 3t2


	
e2

8
ð3	 2tþ 7t2Þ þ Oð4Þ

�
sin I sino: ð28Þ

The overall result for Da in (23), with all necessary
integrals from (24), were directly exported from Maple
into computer memory in a Fortran format. The
modified Bessel functions are computed using proce-
dures from Press et al. (1992).

Other elements and comments: Integrals in (12b), (12c)
and (15) are treated in the same way, with the
appropriate S-functions from (11b), (11c) and (14).
The final results are again exported as Fortran listings
and used for further computations.

From all orbital elements, only the perturbation in
inclination critically depends on the correct description
of the thermospheric rotation (e.g., King-Hele, 1964 and
Eqs. (12)). Since, on the other hand, the effects in
inclination are of high interest, the issue of the thermo-
spheric rotation merits a short comment. The zonal
thermospheric winds are westward in mean, implying
that ot4o0 for relevant altitudes (o0 is the Earth
rotation speed). Despite of this consensus, less is known
in detail about the order of magnitude of the effect.
King-Hele and Walker (1983) review older literature and
discuss new satellite observations in favour of fast zonal
superrotation. Introducing L so that ot ¼ Lðh;fÞo0;
their results indicated L ’ 1:3 at h ’ 300 km and
evening side of the atmosphere for low latitudes.
However, the issue remains controversial, after Wharton
et al. (1984) determined far smaller value ’ 1:04 from
Dynamics Explorer 2 in situ measurements. Theoretical
studies, e.g., Mayr et al. (1984), also support slower
thermospheric winds. Though a source of possible
mismatch in explaining the inclination behaviour
(especially for near-polar orbits), here we preliminarily
neglect thermosphere’s superrotation and use ot ’ o0 ¼

const, and leave this issue of potential interest for
further work.

2.2. Geopotential effects: zonal harmonics

To allow reasonable comparison of the satellite
observations and predictions from our model, we
include the principal geopotential long-term perturba-
tions using the classical Kaula’s approach (e.g., Kaula,
1962, or in more detail Kaula, 1966 or Zarrouati, 1987).
With the geopotential expressed in terms of the
osculating orbital elements

R‘mpq ¼
k
a

R

a

� �‘

F ‘mpðIÞG‘pqðeÞS‘mpq; (29)

where k ¼ GM ; G is the gravitational constant, M is
mass of the Earth, R the Earth reference radius, F ‘mpðIÞ

and G‘pqðeÞ the inclination and eccentricity functions,
and S‘mpq the appropriate trigonometric functions and
geopotential coefficients, the first order analysis of the
Lagrange perturbation equations yields secular terms in
longitude of node ( _O), argument of pericentre ( _o) and
mean anomaly. Those are then used to obtain the first
order effects in eccentricity and inclination, out of which
we consider only the long-period parts. Hence for the
eccentricity we have a contribution from the zonal
harmonics of degree ‘ (we keep terms up to ‘ ¼ 9)

De‘ ¼
nZ
e _o

J‘
R

a

� �‘X
p

F ‘0pG‘pð2p	‘Þ sinð‘ 	 2pÞo: (30)

Since G‘pð2p	‘Þ / ej‘	2pj; the principal contribution arises
when j‘ 	 2pj ¼ 1: The special case of frozen orbits
( _o ¼ 0) near critical inclination has not been considered
so far, but can be separately implemented in the future
(e.g., Jupp, 1975).

Because of the axisymmetry of the zonal part of
geopotential, the inclination perturbation DI is coupled
to the eccentricity effects through

DI ¼ 	
e

Z2
cos I

sin I
De: (31)

The eccentricity and inclination are thus affected
primarily by the odd-degree geopotential terms
(for which ‘ 	 2p ¼ �1), while node and perigee by
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the even-degree geopotential terms. The second-order
long-period effects in e and i due to J2 are also included
(e.g., Zarrouati, 1987, p. 162).
2.2.1. Nonsingular elements for small eccentricities and/

or inclinations

Kaula’s analysis is not suitable for near-circular
orbits, or orbits with small inclination to the reference
plane, because the related angular elements (argument
of perigee and longitude of node) may show markedly
nonlinear, or even oscillatory, behaviour. This is
because the solution of the satellite motion in the zonal
geopotential field allows, in the appropriate limit, a
stationary solution which is offset from circular or
equatorial orbit. Since the near-circular motion is
important for our work we pay particular attention to
this case. A classical treatment of this problem is due to
Kozai (1959) and Cook (1966); more recent is e.g.,
Deleflie et al. (2004a, b).

Using nonsingular orbital elements k ¼ e coso and
h ¼ e sino instead of e and the ill-defined o; the odd-
degree geopotential zonals produce a small (� J2) but
nonzero systematic shift along the h-axis. Keeping the J3

contribution only, for simplicity, we approximately have

k ¼ A cosðst þ aÞ; (32a)

h ¼ A sinðst þ aÞ þ B; (32b)

where

s ¼ 3nJ2
R

a

� �2

1	
5

4
sin2 I

� �
; (33a)

B ¼ 	
1

2

R

a

J3

J2
sin I ; (33b)

A and a being constants of integration (proper values of
eccentricity and argument of pericentre in the terminol-
ogy of planetary studies). The parameter B � J3=J2 �

J2 is the forced eccentricity. The offset by this value
along the h-axis causes nonlinear variations of perigee
direction, or even its oscillations when AojBj; and
makes the variation in eccentricity no longer sinusoidal
(see Figs. 6, 7, 10, 11). In our analysis we include effects
of zonal terms up to degree nine and conventionally use
description (32) in the nonsingular elements when
jBj4A=100: Note that the osculating values of A and
B may be computed from (32) by eliminating time t and
from the known values of the eccentricity e and the
argument of perigee o:

Similar to the small eccentricity case, the motion with
small inclination may be solved in terms of nonsingular
variables ðP ¼ sin I cosO;Q ¼ sin I sinOÞ which replace
ðI ;OÞ (e.g., Kozai, 1959). We, however, do not discuss
this case in detail here because in none of the examples
given below these results are necessary.
2.3. Implementation of the theory

The presented TD88 theory is, therefore, semianalytic
in the perturbations induced by drag and analytic in
those given by the zonal terms of the geopotential. This
is caused by differently treating both effects. The
computation of the drag perturbations makes use of
the specific formulation of the TD88 model, enabling the
integration of the osculating differential equations (10)
over one revolution. This basic time interval is appro-
priate with respect to the time scale of the changes in the
thermospheric density parameters (three-hour Kp; daily
values of F x), the reinitialization performed after each
integration step is desirable, because the variations in
the density produced by the geomagnetic disturbances
or solar flares may reach tens of percent. On the other
hand, gravitational perturbations depend on the zonal
coefficients Jn of the geopotential, which we take as
constant in time. When adding these effects to the
theory—in contrast to the perturbations given by the
atmospheric drag—we could use some of the already
developed methods, so we chose a well-established
approach based on the classical analytical results.

The implementation of the theory in the program is
basically the following. The fundamental independent
variable used in our code is time. Each time step means
the propagation of all necessary quantities by one solar
day, DT ¼ 86400 s. As far as the gravitational perturba-
tions are concerned, i.e. those due to the odd zonals in
eccentricity and inclination, we just consider Eq. (30),
where we take o in the argument of trigonometric
functions to advance according to o ¼ _ot þ o0: Here
time t appears explicitly. As for the atmospheric drag,
Da, De, Di in Eq. (12) represent the secular changes over
one anomalistic period, P ¼ 2p=n; where n is the mean
motion corrected for the perturbation given by J2: These
drag induced increments are then added to the orbital
elements in the course of the propagation, each
increment multiplied with a numerical factor DT=P

reflecting the 1-day time step. So here is how we convert
the ‘‘one-revolution steps’’ into ‘‘one-day steps’’ in the
case of the atmospheric effects. We did not investigate
the modification of the mean motion by theatmospheric
drag effects, just assuming this is small for most part of
the evolution. The effects of other zonal harmonics in n

would be warranted for orbital arcs longer than ’ 200
years.
3. Applications

We now apply the theory outlined in Section 2 to the
orbits of several satellites. In doing so, certain restric-
tions have to be kept in mind: (i) the theory presently
accounts for the drag, but not lift effects, and is best
suited to spherical satellites, (ii) the orbital elements of
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the example satellites in this section are propagated
using the known data on solar and geomagnetic activity,
what is an important condition in the lifetime prediction
accuracy (see Section 3.1), and (iii) the current version of
the TD model was calibrated to maximum heights of
’ 1200 km so that satellites with high-altitude orbits (or
those with high eccentricity) are excluded. The latter
item is less constraining for satellite applications, since
most of those with orbits decaying in the atmosphere
within a reasonably short period of time reside at lower
altitudes, but may be inconvenient for space debris
applications (see Section 4). The inability to include lift
effects will be addressed in the future, however a large
class of laser-tracked geodynamics or other scientific
satellites meet the near-sphericity requirement and their
orbits are suitable for our study.

Since the theory assumes removal of short-period
perturbations, a time step comparable or longer than
one revolution around the Earth can be afforded.
Though the shortest period in the geomagnetic effects
recorded in the model is 3 h (for the Kp index), we use a
time step of one day to propagate a spacecraft orbit. We
verified validity of our results by using also a shorter
time step, notably 3 h.

We evolve orbital elements until the semimajor axis
becomes smaller than R þ 140 km when the body is
assumed burnt in the atmosphere. This empirical value
has been suggested by King-Hele (1964) and it defines
well the final stage of the orbital evolution of Castor
(Section 3.2), GFZ-1 (Section 3.3) and other satellites.

3.1. Accuracy of lifetime prediction

We compare the prediction of the theory with the
orbital data of the satellites flown in the past so that we
use the measured physical parameters influencing the
upper atmosphere (solar flux, index of geomagnetic
activity). The uncertainty in the long-term orbit
propagation then follows from atmospheric density
mismodelling and uncertainty in the initial orbital data
and model parameters. Since a detailed analysis of these
effects is not always possible (e.g., space debris
applications), uncertainties and fluctuations in some
parameters are traditionally relegated to the uncertainty
in the CD coefficient.

For spherical satellites at low altitudes we assume
CD ¼ 2:2 with an error of �5% as discussed in Section
1. This translates into assuming CD within the interval
h2:09; 2:31i and this directly maps onto an uncertainty
interval of the computed spacecraft lifetime. We draw
this ‘‘CD-based confidence strip’’ in Figs. 1, 5 and 9.
Quantitatively, the lifetime determination with the mean
value of CD ¼ 2:2 is 0.1% (Castor), 1.8% (GFZ-1),
4.3% (Starshine 1) away from the observed value
(‘‘accuracy’’), while the ‘‘confidence interval’’ defined
by the limiting values of CD represents �2:2% (Castor),
�2:6% (GFZ-1), �5:5% (Starshine 1) relative to the
mean lifetime prediction (‘‘precision’’). In each of the
examples below we also determined the best suited value
of CDfor which the theory yields the observed lifetime
value, which are 2:18 (Castor), 2:12 (GFZ-1) and 2:10
(Starshine 1). For Starlette and Grid Sphere satellites
(Figs. 12 and 13), residing in the altitude range
800–1200 km, we modified the ‘‘CD-based confidence
strip’’ to encompass the variation of the drag coefficient
in these heights, CD 2 h2:1; 3i (Zarrouati, 1987).

Note on the accuracy of lifetime prediction for future

missions: The accuracy of the lifetime prediction for low
Earth satellites is limited by two contributions at least:
(i) the incompleteness or uncertainty in the force model
(such as discussed above), and (ii) the uncertainty in
modelling the future behaviour of solar activity neces-
sary for the atmospheric drag effects. The latter issue is
usually more serious. Modelling the 11-year variability
of solar activity is complicated not only by the
significant irregularities in the average profile of each
cycle (this can be modelled e.g., by taking minimum and
maximum peak profiles), but especially because of the
unequal length of a particular cycle. Differences in the
length of cycles may be as large as 11%, producing up to
a year uncertainty in the prediction of the moment when
a particular cycle will start. This has a vast influence on
the lifetime prediction (see Owens et al., 2000).

To have an order-of-magnitude idea illustrating these
effects, we consider the case of spacecraft Castor
(Section 3.2). The lifetime prediction with our theory
and with extrapolated solar activity becomes inaccurate
by �27%; this compares with about �2:2% inaccuracy
when solar activity is known.

3.2. Castor (1975-039B)

The French microsatellite Castor has played a
prominent role in the history of in situ measurements
of the thermospheric density: carrying an accurate
microaccelerometer it was an early mission that allowed
long-term and coherent series of measurements of
nongravitational perturbations on a low-flying satellite
(Boudon et al., 1979; Falin et al., 1981). Castor had a
nearly spherical shape with a diameter d ’ 75:6 cm and
a mass of m ¼ 77:5 kg. The initial orbit, with inclination
’ 30; had a perigee at ’ 270 km and apogee at
’ 1270 km. Launched on 17 May, 1975, the satellite
acquired data mainly during the solar minimum phase
and decayed in the atmosphere after ’ 1373 days.
Thanks to a collaboration with OCA/CERGA at
Grasse, we had the opportunity to obtain Castor
measurements, including a rather detailed information
about its orbital evolution. This is used to compare with
the theory in Section 2.

Figs. 1–4 show that comparison during the whole
lifetime. Observations are represented by the averaged
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Fig. 1. Long-term decrease of Castor’s semimajor axis during its

lifetime. Dots are measurements, solid line is the TD88 model with

CD ¼ 2:18 (for most part their difference is too small to be noticed;

typical fractional difference of the computed solution and observar-

tions is ’ �0:02%). Solutions with �5% variation of the CD

coefficient from a nominal value of 2:2; defining the CD-based

confidence strip discussed in the text, are also shown: (i) CD ¼ 2:09
(long-dashed line), and (ii) CD ¼ 2:31 (short-dashed line).
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Fig. 2. As in Fig. 1 but for Castor’s eccentricity (and the CD ¼ 2:18
value; variations of CD are not shown here). The secular trend is due to

the atmospheric drag, long-periodic variations due to the odd zonal

harmonics of the geopotential (principally the J3 term).
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Fig. 3. Middle panel: Castor’s semimajor axis variations—ordinate

shows the daily change Da due to atmospheric drag. Observations

(grey solid line) are shown together with model results (black solid

line). During the low solar activity phase, time p800 days, the

principal long-term variation is due to circulation of the satellite

perigee as referred to the Sun—perigee hour angle tP—shown in the

upper panel. As the solar activity increases, determined by the daily

values Fx (grey solid line) and the three-month average value Fb (black

solid line) of the solar 10.7-cm flux shown in the bottom panel,

semimajor axis variations become larger and erratic. The model,

however, still appears to explain its principal variations. A correlation

between the sudden peaks of the solar activity and large excursions in

the semimajor axis perturbations due to the atmospheric density

variations are easily seen. The net decrease of the semimajor axis at the

end is a combination of two effects: (i) the overall increase of the solar

activity diagnosed by the F b parameter, and (ii) systematically smaller

perigee height.
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Fig. 4. As in Fig. 2 but for Castor’s inclination. Long-periodic effects

are due to the odd zonal harmonics of the geopotential (principally the

J3 term), while the ’ 0:04 decrease at the end of the mission is due to

the drag in the corotating atmosphere. The inclination is observation-

ally determined with the least accuracy, though some mismatch in the

signal is caused by the lack of modelled lunisolar perturbations.
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osculating elements with a running window of a day
length; although the data are nonuniform, we suppose
this approximative method of removing the short-period
perturbations to be satisfactory here, as the gaps in the
data are generally of small size and placed irregularly.
The computed orbit assumed a single set of initial data
and adjusted CD coefficient to achieve the best possible
value of lifetime. Obviously, CD is fully correlated with
the S=m ratio (Eq. (8a)), whose average variations
(standard error) reach ’ 3%. This effect, together with
compositional variations at different heights and surface
characteristics of the satellite, may contribute to the
effective variations of CD; as well as the average density
errors in the density model. Nevertheless, we see in Fig.
1 that the nominal value (2.2) is very close to the lifetime
best fitting value of 2:18: We warn the reader that such a
perfect agreement in the orbital lifetime may be
accidental in part, and itis not likely to be the case of
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Fig. 5. Long-term decrease of the semimajor axis for GFZ-1 satellite

during its lifetime of ’ 1525 days. The best fit to the orbital lifetime is

provided by assuming CD ¼ 2:12 (solid line); data (black dots). The

effect of �5% variations in CD around the nominal value of 2:2 is

shown by the dashed lines: (i) CD ¼ 2:09 long-dashed line, and (ii)

CD ¼ 2:31 short-dashed line.
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Fig. 6. As in Fig. 5 but for GFZ-1’s eccentricity. Observations (dots)

are well-matched by the model (solid line): the initial steady

oscillations are due to the zonal harmonic terms in geopotential, while

the atmospheric drag contributes to the late behaviour.

A. Bezděk, D. Vokrouhlický / Planetary and Space Science 52 (2004) 1233–1249 1243
other satellites. However, we anyway consider the
agreement of the theory and observations rather
satisfactory, especially for the semimajor axis and the
eccentricity. For instance the fractional difference of the
computed and observed values of the semimajor axis
does not exceed 0:02% for most the lifetime and does
not indicate any linear drift; larger difference occurs
only during the final decrease in the atmosphere.

Another approach to see high sensitivity of the orbital
decay on the environmental effects is in Fig. 3, which
shows the daily changes in Castor’s semimajor axis.
First, during the low solar activity period the secular
drag is small and the prevailing long-period effect is an
oscillation with a period of ’ 143 days due to changing
mutual geometry of the satellite elliptic orbit and the
solar direction (the corresponding terms involving
longitude of perigee $ and the solar right ascension a
were readily identified); this is what Jacchia (1959a, b)
calls the ‘‘diurnal effect’’ and corresponds to the orbit
plane passing through the bulge in the atmosphere,
while the periapsis being on the dayside. When solar
activity increases, variations of semimajor axis become
much more erratic and mainly reflect principal solar
flares and geomagnetic state. The fact that the thermo-
spheric density fluctuates with these solar disturbances
has been previously reported many times, in particular
from the density measurements of Castor itself (e.g.,
Villain et al., 1979; Falin et al., 1981; Berger and Barlier,
1981). The net effect is then given by the overall solar
activity level, characterized here by the three-month
average Fb of the solar radio flux; obviously, decrease of
the meanaltitude above the Earth toward the end of the
mission also contributes to larger daily changes Da:

Fig. 4 shows long-term variation of Castor’s inclina-
tion. A large jitter in the observations is mainly due to
observational inaccuracy. We roughly tested the hy-
pothesis of atmospheric superrotation with a simple
assumption of a constant value of the L parameter.
Apparently, all solutions with L 2 ð1; 1:15Þ match the
observations, while only those with L41:25 fail to fit
them. Inaccuracy in the data, however, did not allow us
to draw any specific conclusions about mean value of
atmospheric superrotation from Castor’s data.

3.3. GFZ-1 (1995-020A)

In this case our knowledge about the satellite and its
orbital parameters was not so detailed as in the Castor’s
case; we used data from http://op.gfz-potsdam.de/gfz1/
gfz1.html. GFZ-1 was designed as a small, passive,
spherical satellite (d ¼ 21:5 cm, m ¼ 20:63 kg), equipped
with retro-reflectors to be tracked from the ground by
the satellite laser ranging systems. The satellite was
released from MIR on 19 April 1995 into a nearly
spherical orbit at an altitude of 390 km with the
inclination of 51:6; and decayed after ’ 1525 days.
The orbital data and model predictions are compared
in Figs. 5–8. Data were obtained from the two-line
element series with the short-term gravitational pertur-
bations removed using a modified SGP4 procedure with
J2-induced short perturbations removed (for the defini-
tion standard SGP4 procedure, see Hoots and Roehrich,
1980). The GFZ-1 orbit is interesting for testing our
predictions because of its very small eccentricity, e ’

0:0008 on average; thus description in nonsingular
elements is used throughout the, entire lifetime. We
again observe admittedly good agreement between the
theoretical and observed values, with the best fit of the
satellite lifetime for CD ¼ 2:12: This value is within the
�5% tolerance around the nominal value of 2:2 and is in
reasonable agreement with SLR-derived results giving
the average CD of 2.05 (Cox and Lemoine, 1999). The
simulated lifetime for CD ¼ 2:2 is 31 days (i.e. 2% of the
lifetime) away from the observed value.

http://www.op.gfz-potsdam.de/gfz1/gfz1.html
http://www.op.gfz-potsdam.de/gfz1/gfz1.html
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Fig. 7. As in Fig. 5 but for GFZ-1’s argument of perigee o: Due to the

low eccentricity (Fig. 6), o liberates around 90 value, rather than

circulates. Atmospheric drag causes the stable point of the gravita-
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the theoretical curve (solid line).
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Fig. 8. As in Fig. 5 but for GFZ-1’s inclination. The overall decrease

in the observations (dots) as modelled by our drag theory (solid line);

the long-term oscillations are caused mainly by the lunisolar

perturbations.
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Fig. 9. Long-term decrease of Starshine’s semimajor axis during its

lifetime. The best fit to the observed lifetime is provided by assuming

CD ¼ 2:10 (solid line); data (black dots). The effect of�5% variations

in CD around the nominal value of 2:2 is shown by the dashed lines:

(i) CD ¼ 2:09 long-dashed line, and (ii) CD ¼ 2:31 short-dashed line.
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Fig. 10. As in Fig. 5 but for Starshine’s eccentricity. Top:
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eccentricity and, in the same time, diminishes its variations.

A. Bezděk, D. Vokrouhlický / Planetary and Space Science 52 (2004) 1233–12491244
Both eccentricity and argument of perigee, Figs. 6 and
7, are also well fitted with the combined effect of the odd
zonal terms in geopotential and the atmospheric drag.
The latter tends to circularize the orbits proper value
and, an the same time, also displaces the fixed point of
the argument of perigee due to the gravitational effects
(at 90; Section 2.2.1) to a smaller value.

3.4. Starshine 1 (1999-030B)

Orbital data for this satellite have been obtained from
NASA/GSFC Orbital Information Group Web Site
(http://oig1.gsfc.nasa.gov/) as two-line element series.
Starshine 1 was the first of three small, optically
reflective spherical student satellites that have been
designed by the US Naval Research Laboratory and
built by a volunteer coalition of organizations and
individuals in the USA and Canada. Starshine 1 was
deployed on 5 June 1999 into a nearly circular orbit with
an initial altitude of 388 km and inclination of 51:6: The
satellite reentered the atmosphere after a 258 day flight,
on 18 February 2000. Physical parameters, notably size
of d ¼ 48:3 cm and mass m ¼ 39:3 kg, are from http://
azinet.com/starshine/. Moore et al. (2003) presented a
preliminary analysis of Starshine orbital data for an
independent test of Naval Research Laboratory upper
atmosphere density models.

To compare Starshine’s orbital evolution with our
model prediction (Figs. 9–11) we again removed short-
term gravitational perturbations from the two-line
elements using the SGP4 model (Hoots and Roehrich,
1980). The best fit value of CD coefficient is 2:10; smaller

http://www.oig1.gsfc.nasa.gov/
http://www.azinet.com/starshine/
http://www.azinet.com/starshine/
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Fig. 12. Long-term decrease of Starlette’s semimajor axis over an 18-

year period. Steeper variation in between 1987 and mid 1992, and

after 1999, correlates with periods of high solar activity. Symbols are

the observed orbit, the solid line is the best fit with the TD model,

assuming CD ¼ 2:55 for the drag coefficient. The two dashed lines

show solutions with CD ¼ 2:1 (short-dashed) and CD ¼ 3 (long-

dashed), physically motivated limiting values of this parameter.
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than its nominal value of 2:2: In spite of similar initial
data as in the GFZ-1 case, Starshine 1 reentered much
faster; this is because maximum of solar activity
occurring in 2000. The small eccentricity of Starshine
makes the evolution of argument of pericentre highly
nonlinear (Fig. 11); one can notice two interesting cases,
in July 1999 and in November 1999, when the orbit
becomes nearly circular with o quickly travelling close
to the zero degree value. Yet, our model seems to
explain this effect rather well.

3.5. Starlette (1975-010A) and Grid Sphere 7-1 (1971-

067E)

Starlette, launched on 6 February, 1975 by the French
space agency CNES, was a first in a series of successful
laser-tracked geodynamics satellites. Small and dense,
with a diameter of ’ 21 cm and mass of ’ 47:3 kg, its
primary goal is to probe the Earth’s gravitational field.
The initial perigee altitude of ’ 810 km, high orbit
determination accuracy requirements and long time
span of observations require that atmospheric drag must
be taken into account in a precise orbit determination.
As an example, Bruinsma et al. (1999) used the Starlette
orbital data to assess the accuracy of several thermo-
spheric density models. As a part of their analysis, they
also obtained long-term variations of the observed
orbital elements by accurate filtering techniques, and
these have been kindly provided to us.

The first obstacle in our work, however, was to extend
the original TD model to higher altitudes, appropriate
for the Starlette orbit. Using a similar technique as in
Sehnal and Pospı́šilová (1988) we adjusted the TD
model parameters to achieve the best possible agreement
between TD density predictions and those from DTM94
model (Berger et al., 1998). The tested height range was
750–1200 km, the parameter set is given in Appendix B.
With the new model we were able to propagate
Starlette’s orbit using the theory in Section 2 and
compare it with observations. Fig. 12 shows this
comparison for semimajor axis during an 18-year
period. The best fit is obtained with CD ’ 2:55;
significantly larger than for the low-altitude satellites
discussed above. This finding is in a good agreement
with theory that expects a strong altitude dependence of
CD in between 500 and 1000 km. As an example, models
discussed in Zarrouati (1987) determine for Starlette’s
altitude CD in the 2.1–3 range, depending on the value
ofexospheric temperature T1: Our best fit value of 2:55
incidentally corresponds to its theoretical value at 800
km and T1 for mean atmospheric conditions. The
timescale shown in Fig. 12 allows to appreciate the
difference in the net semimajor-axis decay-rate for
periods of solar minimum and maximum activity,
respectively.

Another example of a spacecraft flying above the
nominal height range of the former TD88 model is Grid
Sphere 7-1, launched on 7 August 1971 onto a near
polar (I ’ 87:6) and near circular (e ’ 0:01) orbit with
initial perigee height of ’ 790 km. Grid Sphere was part
of a fleet of experimental atmospheric satellites all
ejected from the same booster OV1-21. In this case, the
satellite was a rigid aluminium sphere that served as a
radar calibration target. The satellite has a markedly
large value of the area-to-mass ratio: d ¼ 1:12m for
m ¼ 37 kg. Two-line elements, obtained from http://

http://www.oig1.gsfc.nasa.gov/
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oig1.gsfc.nasa.gov/, were handled as in the case of GFZ-
1 and Starshine 1 above.

Fig. 13 shows the long-term behaviour of Grid
Sphere’s semimajor axis obtained by the propagation
with our model and with the modified density para-
meters from Appendix B. A fairly good agreement is
obtained with CD ¼ 2:63; a value similar to that of
Starlette. The sequence of shallower and steeper
variations of Grid Sphere’s semimajor axis reflect solar
cycles; their unequal length can be easily noticed.
pn ¼ ½	29:41;	263; 263; 8:0913; 10:0813�;
4. Conclusions

The purpose of this work is to investigate long-term
orbital dynamics of low-altitude satellites or debris
particles using a semianalytic theory of motion. The
goal is to develop a fast computational tool enabling to
propagate vast amounts of real or fictitious orbits which
may be useful for studying multiparameter orbital
problems or evolution of a space debris population
(e.g., Walker et al., 1997; Rossi et al., 1998; Reynolds et
al., 1999). In order to validate the theory, we compared
its predictions with the orbital data of several artificial
satellites. In spite of the limitations and constraints due
to model assumptions and its incompleteness, we may
conclude their reasonably fair agreement. In particular,
the estimated lifetime differs from the observed value by
a few percent typically. This, however, becomes about
an order of magnitude worse for extrapolation to the
future because of the limitations in the prediction of
solar activity.

Despite the fair agreement between the theory and
observations discussed above, the theory would profit
from further improvements. First, the TD model itself
should be reanalysed with the goal of obtaining a better
agreement with predictions of newer versions of aero-
nomic models such as NRLMSIS or DTM2000. Second,
further effects, such as those mentioned at the beginning
of Section 2, might be straightforwardly included in the
theory. Finally, the theory of orbital motion in a
resistive medium should be further investigated to allow
its broader applicability. As an example, in Section 2.1.2
we noted that the classical averaging in the eccentric
anomaly, inherited from classical works of King-Hele
and others, may be invalid for low eccentricities (also
Jupp, 1976). In the case of macroscopic artificial
satellites, the caveat is insignificant since the geopoten-
tial perturbations typically force eccentricity above the
critical value below which simple, King-Hele-type
averaging is unjustified. However, since d / S=m /

1=r; with r being linear dimension of the body, this
critical eccentricity may become X0:01–0.1 for milli-
metre to centimetre sized debris particles. Another
example is inability to treat high-eccentric orbits which
may be important for space debris applications. An
impulsive approximation, similar to that in Hoots and
France (1987)should be investigated.

Note. The online calculation as well as the Fortran 77
code are available through the web site http://www.a-
su.cas.cz/�bezdek/density_therm/pohtd/.
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Appendix A. Parameters of the TD model

Sehnal and Pospı́šilová (1988) derived the
following numerical parameters of the TD
model appropriate for the height range of 150–750 km:
(i) the scale height H ¼ 29 km, (ii) the parameters
an; with n ¼ 1 . . . 8; and (iii) the phases pn; with
n ¼ 3 . . . 7;>

an ¼ ½:007; :2875; :04762; :0471; 7; 7; :3333; 15�;

http://www.oig1.gsfc.nasa.gov/
http://www.asu.cas.cz/~bezdek/density_therm/pohtd/
http://www.asu.cas.cz/~bezdek/density_therm/pohtd/
http://www.asu.cas.cz/~bezdek/density_therm/pohtd/
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(iv) the constants Knj ; with n ¼ 1 . . . 7 and j ¼ 1 . . . 3;

Knj ¼

:766373ð	8Þ :16573ð	9Þ :3871ð	10Þ

	:440149ð	8Þ :33428ð	9Þ :9352ð	10Þ

:118107ð	9Þ 	:14781ð	9Þ 	:1518ð	11Þ

	:159664ð	10Þ 	:64670ð	11Þ 	:2050ð	11Þ

	:240755ð	9Þ 	:13985ð	10Þ 	:3059ð	11Þ

:643785ð	10Þ :13618ð	9Þ :3517ð	10Þ

:744666ð	11Þ :45416ð	11Þ :2080ð	11Þ

2
666666666664

3
777777777775
;

(A.1)

and (v) the constants Kn; with n ¼ 1 . . . 7

Kn ¼ ½:296815ð	14Þ; :281456ð	13Þ;	:123300ð	13Þ;

	 :114892ð	16Þ;	:390065ð	15Þ; :742439ð	14Þ;

	 :341594ð	15Þ�:

These are considered to be nominal values and used for
all satellite orbits, except for Starlette and Grid Sphere
in Section 3.5.
Appendix B. Extension of the TD model to higher

altitudes

To enable higher orbits, we used the following
modified numerical parameters of the TD model
suitable for altitudes in the 750–1200 km range: (i) the
scale height H ¼ 27:85229 km, (ii) the parameters an

an ¼ ½0:007243; 0:1778; 0:1449;	0:01179; 7:011; 6:968;

3:301; 14:91�;

(iii) the constants Knj read

Knj ¼

:766348ð	8Þ :15645ð	9Þ :1943ð	10Þ

	:440146ð	8Þ :36649ð	9Þ :2661ð	9Þ

:118107ð	9Þ 	:14007ð	9Þ 	:1470ð	11Þ

	:159664ð	10Þ 	:65029ð	11Þ 	:2317ð	11Þ

	:240756ð	9Þ 	:14318ð	10Þ 	:3506ð	11Þ

:643785ð	10Þ :14922ð	9Þ :2019ð	10Þ

:744666ð	11Þ :44938ð	11Þ :2066ð	11Þ

2
666666666664

3
777777777775
;

(B.1)

and (iv) the constants Kn; with n ¼ 1 . . . 7

Kn ¼ ½:352814ð	14Þ; :807687ð	14Þ; :845184ð	15Þ;

	 :116620ð	16Þ;	:260648ð	15Þ; :991392ð	15Þ;

:699853ð	16Þ�:

The phases pn were same as in Appendix A. These values
follow from a nonlinear fit of the 686 thousand TD
model density predictions compared with the DTM94
model values (Berger et al., 1998); isotropic spatial
distribution of the tested locations and uniform dis-
tribution of heights (in the required range), solar and
geomagnetic activity parameters was used.
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Šegan, S., 1988. Analytical computation of atmospheric drag effects.

Celestial Mech. 41, 381–388.

Sehnal, L., 1988. Thermospheric total density model TD. Bull. Astron.

Inst. Czech. 39, 120–127.

Sehnal, L., 1990a. Theory of the motion of an artificial satellite in the

Earth atmosphere. Adv. Space Res. 10 (3–4), 297–301.

http://www.celestrak.com/
http://www.spacecoretech.org/coretech2002/
http://www.spacecoretech.org/coretech2002/
http://www.eng.auburn.edu/users/kirkih/UZB411E-lectures/HW-3_Reading.pdf
http://www.eng.auburn.edu/users/kirkih/UZB411E-lectures/HW-3_Reading.pdf


ARTICLE IN PRESS
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