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Abstract

Understanding the evolution of asteroid spin states is challenging work, in part because asteroids have a variety of orbits, shapes, spin states,
and collisional histories but also because they are strongly influenced by gravitational and non-gravitational (YORP) torques. Using efficient
numerical models designed to investigate asteroid orbit and spin dynamics, we study here how several individual asteroids have had their spin
states modified over time in response to these torques (i.e., 951 Gaspra, 60 Echo, 32 Pomona, 230 Athamantis, 105 Artemis). These test cases
which sample semimajor axis and inclination space in the inner main belt, were chosen as probes into the large parameter space described above.
The ultimate goal is to use these data to statistically characterize how all asteroids in the main belt population have reached their present-day spin
states. We found that the spin dynamics of prograde-rotating asteroids in the inner main belt is generally less regular than that of the retrograde-
rotating ones because of numerous overlapping secular spin–orbit resonances. These resonances strongly affect the spin histories of all bodies,
while those of small asteroids (�40 km) are additionally influenced by YORP torques. In most cases, gravitational and non-gravitational torques
cause asteroid spin axis orientations to vary widely over short (�1 My) timescales. Our results show that (951) Gaspra has a highly chaotic rotation
state induced by an overlap of the s and s6 spin–orbit resonances. This hinders our ability to investigate its past evolution and infer whether thermal
torques have acted on Gaspra’s spin axis since its origin.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Astronomers have long been drawn to study the movement
of planetary bodies across the sky. The rotation of these objects,
however, did not receive extensive attention until the 1960’s–
1970’s (with the obvious exception of the Earth and Moon),
when high-quality data from radio astronomy and spacecraft
exploration became available. This has led to numerous insights
into how the spin vectors were set during the planet forma-
tion epoch (e.g., Lissauer et al., 2000) and how they evolved
over Solar System history (e.g., Goldreich and Peale, 1968;
Wisdom et al., 1984; Laskar and Robutel, 1993; Néron de Surgy
and Laskar, 1997; Correia and Laskar, 2001, 2004). Moreover,
recent papers dealing with planets (e.g., Ward and Hamilton,
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2004; Hamilton and Ward, 2004) and satellites (e.g., Wisdom,
2004, 2006) show that many interesting results can still be ex-
pected in this field.

While there has been abundant theoretical work on plane-
tary and satellite spin dynamics to date, asteroid spin states has
been largely neglected. We believe the primary reason for this
is that it is difficult to obtain high quality data. This means that
most of the detailed modeling work done on specific asteroids
has either been associated with spacecraft data (e.g., NEAR at
433 Eros; Souchay et al., 2003; Souchay and Bouquillon, 2005;
Vokrouhlický et al., 2005) or has come after years of painstak-
ing observational work (e.g., the “Slivan-state” objects in the
Koronis-family; Slivan, 2002; Vokrouhlický et al., 2003). The
scientific pioneers who have attempted to make a system-
atic theoretical analysis of asteroid rotation have mostly come
from the Uppsala group (e.g., Skoglöv et al., 1996; Skoglöv,
1997, 1999; Skoglöv and Erikson, 2002). They have focused
their attention on the paucity of asteroid spin vectors point-
ing toward low ecliptic latitudes (e.g., Pravec et al., 2002).
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Their work, while interesting and important, was completed
before thermal torques were found to play an critical role in
the evolution of asteroid spin vectors (e.g., Rubincam, 2000;
Bottke et al., 2002a). These torques have been shown to rad-
ically change the rotation rates and obliquities of diameter
D � 40 km asteroids in the main belt. Together with several
advances in numerical methods, we can now investigate the
long-term evolution of asteroid spin states in greater detail than
was previously possible.

In this paper, we analyze how spin–orbit secular resonances
and thermal torques (for D � 40 km objects) affect the evo-
lution of asteroid spin vectors in the inner main belt, the
zone where asteroids are most easily observed. We avoid the
“infiniteness-of-cases trap” by selecting a limited number of
specific asteroids here (e.g., 951 Gaspra). Using these bodies,
we investigated how particular parameter dependencies affect
spin vector evolution and explored several examples of possi-
ble asteroid spin evolution for representative asteroids across
the inner main belt.

We believe our work is timely because spin rate and orien-
tation data for both near-Earth and the main-belt asteroids have
increased significantly over the past decade. There are currently
more than 120 main-belt asteroids with known rotation states
determined using various techniques as opposed to about 80 in
2002. In the coming years this trend will likely accelerate, espe-
cially if the data from astrometric surveys (e.g., Pan-STARRS)
and/or the GAIA space project can be used to derive this infor-
mation (e.g., Kaasalainen, 2004). Ideally, this data will alllow
us to examine the evolution of spin vectors in a statistical sense,
which in turn will yield a better understanding of secular spin
dynamics in the main asteroid belt.

While the results of these future observation programs are
unknown, we can use the existing asteroid-rotation data to
probe several interesting unsolved problems (see also Pravec
et al., 2002). For instance, it is well established that the dis-
tribution of rotation rates of main-belt asteroids changes from
a near Maxwellian for large (D � 40 km) objects to more ir-
regular distribution for small (D � 40 km) objects. In partic-
ular, the small body rotation distribution is characterized by
an excess of both fast and slow rotating asteroids. Some re-
searchers have attempted to empirically fit the rotation rate
distribution of small asteroids (e.g., Fulchignoni et al., 1995;
Donnison and Wiper, 1999) and relate them to samples of bod-
ies with different spectral taxonomy. The existing data, how-
ever, is ambiguous on whether taxonomic type plays a strong
role in asteroid spins. We argue that as of yet, no model of ro-
tation rate evolution is fully consistent with the distribution of
rotation rates of small objects. Of particular interest is the origin
of the anomalously slowly-rotating asteroids with spin periods
lasting, in some cases, days or weeks.

There are also several on-going mysteries involving related
to the distribution of asteroid spin poles (see discussion in
Pravec et al., 2002). For example, since the 1980s researchers
have suspected that the pole distribution might be skewed to-
ward ecliptic poles, with significantly fewer asteroid rotation
axes residing in the ecliptic plane. The newest data compila-
tions (e.g., Skoglöv and Erikson, 2002) still appear to support
this conclusion. This irregular behavior seems to affect both
large and small asteroids, while considerably less information is
known about poles of D � 40 km main-belt asteroids. La Spina
et al. (2004) suggested that the ecliptic-pole deficiency still ex-
ists for near-Earth asteroids (NEAs). While several hypotheses
have been suggested to solve this problem, none, in our opinion,
are yet completely satisfying.

A second example is the surprising abundance of retrograde-
rotating NEAs; they are twice as numerous as the prograde-
rotating ones (La Spina et al., 2004). Models that track the
delivery of asteroids from the main belt to the NEA region
(e.g., Bottke et al., 2002b; Morbidelli and Vokrouhlický, 2003)
suggest this difference may be a byproduct of both Yarkovsky
drift and resonant dynamics in the main belt. In particular, the
powerful ν6 secular resonance at the innermost border of the
main belt, which provides nearly 40% of all NEAs (Bottke
et al., 2002b), can only be approached by main-belt asteroids
drifting inward. According to Yarkovsky thermal drift models,
this means the objects entering into the ν6 need to have must
have retrograde spins. Despite the success of this hypothesis,
however, theorists have yet to study in detail how spin pole dis-
tributions evolve during NEA delivery from the main belt to the
planet-crossing region (for an example see Vokrouhlický et al.,
2005).

Another motivation for investigating the spin vector evolu-
tion of small main-belt asteroids comes from an analysis of the
asteroid families’ structures in proper element space. Vokrouh-
lický et al. (2006a, 2006b, 2006c) showed that small family
members are frequently the most distant from each family’s
center in terms of semimajor axis. This may be because thermal
YORP torques cause their rotation poles to slowly align with
their ecliptic poles and hence increase their Yarkovsky drift
rates (see also Rubincam, 2000; Vokrouhlický et al., 2003). By
carefully comparing model results with observations in several
families, they found it might be possible to use this information
like a clock to determine the time elapsed since the family’s
formation. These models of pole evolution, however, contain
several rather crude approximations and do not include all of
the relevant torques that can affect asteroid evolution. We have
tried to rectify some of these issues in this paper (Section 5).
When we are satisfied we have a reasonable model of how these
torques feedback into our asteroid spin vector and Yarkovsky
drift evolution computations, we will then be able to return our
family age estimates and revise them accordingly.

2. Secular spin–orbit dynamics: Basic formulation

We first briefly review the rigid-body spin dynamics for-
malism needed for our work. We restrict our work here to
the case of principal-axis rotation; this means that free motion
(tumbling) of the spin axis in the body-frame is not allowed.
Only a limited number of asteroids with large-amplitude tum-
bling spin axes are known today (e.g., Pravec et al., 2005).
We also will not be modeling short-period effects or small-
amplitude details of asteroid rotation (see Souchay et al., 2003;
Souchay and Bouquillon, 2005). Instead, we focus here on char-
acterizing the evolution of the spin axis over long timescales
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(comparable to or longer than the asteroid’s orbital period about
the Sun). The asteroid’s orbital motion is assumed to be de-
coupled from the spin axis evolution, but it can be affected by
gravitational perturbations from the planets.

We denote the rotational angular momentum vector by L.
The Euler equation, central to our problem, can then be defined
as (e.g., Colombo, 1966; Holland and Sperling, 1969):

(1)
dL
dt

= −[
α(n · e)n + σ

] × L + TNG.

The right side of (1) contains two explicit contributions. The
first term in the bracket is the orbit-averaged gravitational
torque due to the Sun (e.g., Bertotti et al., 2003). It depends
on the direction of the spin axis (unit vector e) with respect to
the normal n to the instantaneous (osculating) orbital plane. De-
pendence on the rotation rate, ω, appears through the factor:

(2)α = 3

2

n2

ω

�

η3
,

which determines also precession frequency at zero obliquity.
Here n is the mean orbital motion, η = √

1 − e2, with e the
orbital eccentricity, and

(3)� = C − 1
2 (A + B)

C
.

This last equation characterizes the dynamical flattening of the
body (A � B � C are the principal values of the inertia tensor).

The value of α is fundamental for understanding the spin dy-
namics of an asteroid. We have α � 1330.6ξ/(aη)3 arcsec/yr,
where the semimajor axis a is given in AU and ξ = �(P/6 h),
with P = 2π/ω is the rotation period in hours (since e � 0.15 in
most cases one can also put η � 1). Since 6 h is a characteristic
rotation period for most asteroids, we introduce a scaled vari-
able P6 = P/6 h of the order of unity. The parameter � ranges
from 0 for near-spherical bodies to 0.5 for highly-elongated ob-
jects. Most D � 40 km asteroids are thought to have values in
the 0.2–0.4 range (e.g., Vokrouhlický and Čapek, 2002, their
Fig. 2). Observational lightcurve data can usually be used to
determine P to reasonable accuracy. Determining the asteroid’s
spin vector e from this data, however, is more challenging un-
less observations were taken at several different times during
the asteroid’s revolution around the Sun. Still, the main uncer-
tainty in computing α for a given body usually stems from a
badly constrained value of �.

The second term in the bracket of Eq. (1)—L×σ—is due to
the fact that the quantities in this equation have been defined in a
moving reference frame. The vector σ characterizes the motion
of the reference frame with respect to an inertial system. Tradi-
tionally, one chooses the asteroid’s osculating orbit plane to be
the reference frame. That has the advantage of turning the nor-
mal vector n = (0,0,1)T and σ into simple expressions. The
latter expression depends on the orbit plane’s evolution in space
(i.e., changes to the longitude of node Ω and inclination I ). As
described by Breiter et al. (2005) as well as many others, it is
convenient to define the x-axis as a line in the orbital frame
rotated by −Ω from the nodal line. That convention removes
any problem that might occur for small inclinations and yields
σ = (A,B,−2C)T with (see also Laskar and Robutel, 1993;
Néron de Surgy and Laskar, 1997):

(4)A= İ cosΩ − Ω̇ sin I sinΩ,

(5)B = İ sinΩ + Ω̇ sin I cosΩ,

(6)C = Ω̇ sin2 I/2.

Note that the over-dot means a time derivative of the variable.
The last term in (1)—TNG—describes all perturbing torques

of non-gravitational origin. Neglecting internal dissipation ef-
fects for this study, the most important long-term torque is
caused by reflected and thermally re-radiated sunlight, or what
is commonly now called the Yarkovsky–O’Keefe–Radzievskii–
Paddack (YORP) effect (e.g., Rubincam, 2000; Vokrouhlický
and Čapek, 2002; Čapek and Vokrouhlický, 2004).

Like many other problems in mathematical physics, ana-
lytical and numerical approaches often profit when different
formulations are used. The minimum-parameter approach—
suitable in analytical methods—would first split L into com-
ponents of angular frequency of rotation ω and e. This would
allow us to write L = Cω e, with the unitary vector e de-
fined in the second step using two angular parameters: e =
(sin ε sinψ, sin ε cosψ, cos ε)T . Recall that the x-axis has been
rotated by −Ω with respect to the usual orbital frame with
origin at the nodal line. Here ε is the obliquity and ψ is the pre-
cession angle (note dψ/dt > 0 means retrograde precession).
When TNG = 0, or when it is analyzed from a perturbation the-
ory perspective, the problem is reduced to a 1-D Hamiltonian:

H(X,ψ; t) = α

2
X2 − 2CX

(7)+
√

1 − X2(A sinψ +B cosψ),

where the momentum is defined as X = cos ε.
A useful approximation occurs when A, B and C are repre-

sented using a finite Fourier series such as2

(8)A=
∑
j

Aj sin
(
sj t + φA

j

)
,

(9)B =
∑
j

Bj cos
(
sj t + φB

j

)
,

(10)C =
∑
j

Cj cos
(
sj t + φC

j

)
.

Note that the problem is still challenging to deal with because
the equations of motion are both non-linear and contain time-
dependent forcing terms. It reduces to an integrable case only
when the A, B and C spectrum contains just a single line with
a frequency s (i.e., when the orbital plane maintains a con-
stant inclination to the reference frame and precesses uniformly
in space with the frequency s). This problem has been thor-
oughly studied and is generally known as a Colombo top (e.g.,
Colombo, 1966; Henrard and Murigande, 1987). We will not
repeat its many known properties here except for those relevant
to our study.

2 We note that the Fourier spectrum of A, B and C at low inclinations closely
matches that of the inclination complex vector sin I/2 exp(ıΩ).
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The Colombo top is a two-parameter problem, with the first
parameter being the inclination I of the precessing orbital plane
and the second being κ = α/(2s). Given particular values of
these two parameters, the phase space can contain 2–4 equilib-
rium points (i.e., fixed positions of the spin axis with respect to
the moving orbital plane). For a chosen value of I , the bifurca-
tion from 2 to 4 points occurs for (e.g., Henrard and Murigande,
1987)

(11)κ� = −1

2

(
sin2/3 I + cos2/3 I

)3/2

which ranges from −0.5 (for I = 0◦ and 90◦) to −1 (for
I = 45◦). In the more interesting case of 4 equilibria, when
κ < κ�, one of them—the Cassini state 4—becomes an unstable
locus of homoclinic orbits that surround a resonance zone about
a stable equilibrium—the Cassini state 2. The resonance is then
characterized by the libration of a critical angle φ ∼ −ψ − st .
Since the dynamics here concerns the commensurability of the
asteroid’s orbital plane and its spin axis precession frequencies
s and −ψ̇ , this introduces the possibility of secular spin–orbit
resonances. Understanding such resonances is essential to com-
puting the long-term spin dynamics of asteroids with prograde
rotation states.

Secular spin–orbit resonances tend to complicate the evo-
lution of asteroid spin vectors across the main belt (and es-
pecially in its inner zone) because at least two frequencies
contribute, and usually dominate, the spectrum in (8)–(10):
(i) the proper frequency s, and (ii) the forced frequency s6 �
−26.34 arcsec/yr. The value of s depends on proper orbital el-
ements and ranges from � −35 arcsec/yr in the inner belt to
� −75 arcsec/yr in the outer belt3 (Fig. 1). In spite of other
(weaker) frequencies contributing, we find it useful to introduce
this two-frequencies model as an approximate tool. The main
advantage is that the problem reduces the to a 2-D Hamiltonian
flow. A classical chaotic-zone-tracer technique of surfaces-of-
section (e.g., Morbidelli, 2002) can then be used to explore the
properties of an asteroid’s spin axis evolution. We take advan-
tage of this approach in Section 3 to determine the fundamental
properties of long-term spin dynamics for selected asteroids.

Fig. 2 shows the ratio κ/κ� for a large number of main-belt
asteroids and for the secular spin–orbit resonances associated
with the s- and s6-modes. The proper elements and frequency
s were taken from the AstDyS database (http://newton.dm.
unipi.it/). We assumed an arbitrary value of ξ = �P6 = 0.5.4

As mentioned above, the resonance exists when κ/κ� > 1 (note
κ is negative). Fig. 2 indicates the s6 spin–orbit resonance
is present throughout the entire asteroid belt. Its importance,
however, is restricted because of the small forced inclination
values (�1.5◦). Still, this resonance can produce spectacular
phenomena such as the near-parallel orientation of several Ko-
ronis members (i.e., those in Slivan states; Vokrouhlický et al.,
2003). On the other hand, the powerful s spin–orbit resonance
can affect asteroids with large proper inclination values (∼5◦–

3 For Trojan group of asteroids, librating about the Lagrangian points of
Jupiter, the s frequency is typically small.

4 Because α ∝ ξ , we note that the results in Fig. 2 scale as ∝ ξ .
Fig. 1. Proper frequency s of the nodal drift (dots) for nearly 100,000 main-belt
asteroids (source: AstDyS as of July 2005). The mean value of s approxi-
mately increases as s ∼ a5/2; the large scatter at each a is due to eccentricity
and inclination dependence. Solid lines indicate the value of −α for different
values of the parameter ξ = �(P/6 h) (where P is rotation period in hours;
� is the dynamical flattening) and assuming mean eccentricity e ∼ 0.1.

Fig. 2. The ordinate shows ratio κ/κ� (see the text) probing existence both of the
s frequency (bottom symbols) and s6 frequency (upper symbols) spin–orbit res-
onance for nearly 100,000 main-belt asteroids. A value larger than unity implies
the resonance exists (conversely, the resonance does not exist when κ/κ� < 1;
shaded zone). For definiteness, we chose a particular value of ξ = �P6 = 0.5,
but the ratio κ/κ� scales as ∝ ξ for different values of this parameter. While
the s6 resonance exists basically across the whole main asteroid belt region, the
typically stronger s resonance occurs merely in its inner zone. Simultaneous
existence of the close-by s and s6 resonances is expected to trigger irregular
behavior of asteroid spin parameters for prograde-rotating bodies.

10◦; Fig. 3). Under normal conditions, however, it only exists in
the inner main belt. For this reason, we pay particular attention
to this zone in our numerical runs below, with the interaction
between the s and s6 spin–orbit resonances producing many
curious effects. Note that in Appendix A, we derive a simple
resonance overlap criterion in order to characterize the impor-
tance of this interaction.

To explore asteroid spin dynamics numerically, it is more
useful to examine the evolution of ω and e directly (e.g., Breiter

http://newton.dm.unipi.it/
http://newton.dm.unipi.it/
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Fig. 3. Synthetic proper elements of nearly 100,000 main-belt asteroids from the AstDyS database projected onto the semimajor axis a vs sine of inclination sin I

plane. Symbols highlight asteroids whose spin axis evolution is studied in this paper: (i) 1—(951) Gaspra (very similar to (8) Flora), (ii) 2—(60) Echo, (iii) 3—(32)
Pomona, (iv) 4—(230) Athamantis, and (v) 5—(105) Artemis. They sample different values of the heliocentric distance and different inclination values, both relevant
for the spin axis behavior.
et al., 2005). We have done this by rewriting Eq. (1) as

(12)
de
dt

= e ×
[
∂H
∂e

+ τ �

]
,

(13)
dω

dt
= ω e · τ ,

where TNG is represented by two orthogonal components: τ =
TNG/(Cω) and τ � = τ × e. The Hamiltonian H, now rewritten
using the new variables, is

(14)H = α

2
e2

3 + σ · e.

The Hamiltonian-only part meets the conditions needed to al-
low us to use an efficient Lie–Poisson integrator set (Breiter et
al., 2005), while the remaining part, which depends on τ and
τ �, may be treated using the perturbation equations if small.

In this paper, we solve the Hamiltonian part of the equation
using the two-component splitting (LP2) method of the Lie–
Poisson integrator (Breiter et al., 2005). This formalism yields
computational speeds that are 1–2 orders of magnitude higher
than general-purpose integrators. An additional advantage of
LP2 splitting is that we avoid calculating σ ; instead, we only
need the time series of the orbital elements Ω and I . Those are
obtained by direct numerical integration of the asteroid orbit
using swift code (e.g., Levison and Duncan, 1994) with all
relevant planetary perturbations taken into account. The appli-
cation of YORP torques TNG are simplified by (i) only using
orbit-averaged values and (ii) dropping the YORP contribu-
tion to the precession rate. The relevant equations then become
(see also Rubincam, 2000; Vokrouhlický and Čapek, 2002;
Čapek and Vokrouhlický, 2004)

(15)
dω = f (e3),

dt
(16)
de3

dt
= g(e3)

ω

(e1 and e2 are constants), where f (x) and g(x) are functions
that are numerically precomputed for a given asteroid. With
this, the formal solution of (15) and (16) becomes:

(17)ω = ω0Ψ (e3; e3,0),

(18)
t − t0

ω0
=

e3∫
e3,0

dx g(x)Ψ −1(x; e3,0),

with

(19)Ψ (x; e3,0) = e

∫ x
e3,0

dy f (y)/g(y)
.

Although this method neatly circumvents the problems that
would arise for solutions near ω � 0 and |e3| � 1, its practical
use is undermined by its complicated algebraic structure and
an implicit solution of e3(t − t0; e3,0) in (18). For this reason,
we use here the simplest possible, Euler-type solution of (15)
and (16).

3. Examples of spin dynamics the inner-belt: No YORP
included

We consider here a number of inner and central main-belt
asteroids as sample test cases for how bodies in these regions
might undergo spin axis evolution. Fig. 3 shows their location
projected in proper semimajor axis a vs. proper inclination I .
We have chosen 3 asteroids that follow a progression toward
larger a while keeping roughly the same I : (951) Gaspra →
(60) Echo → (32) Pomona. Two more were chosen because
they have the same a as (60) Echo but different I values: (60)
Echo → (230) Athamantis → (105) Artemis. These cases were
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also chosen because we have some information about their rota-
tion rate and spin axis orientation. Our main source for this data
is the catalog compiled at the Poznaǹ Observatory under the
auspices of A. Kryszczyńska (http://www.astro.amu.edu.pl/).
Their work builds on an earlier effort of P. Magnusson (http:
//www.psi.edu/pds/). Additional data, when needed, is obtained
from the literature.

Sections 3 and 4 contain our analysis of these objects, which
was taken in two steps. For the first step, we only included
gravitational torques and set TNG = 0 in Eq. (1) (Section 3).
This choice allowed us to study how various parameters and
interacting secular spin–orbit resonances would affect the evo-
lution of asteroid spin vectors without the added complication
of YORP torques. Note that these results are especially rele-
vant for D � 50 km asteroids that are minimally affected by
YORP torques. We selected asteroids in our sample with obliq-
uity values ε < 90◦ because only those bodies with prograde
spins are affected by spin–orbit resonances. The long-term spin
dynamics of retrograde-rotating objects is mostly influenced by
regular precession; we do not consider those effects in this pa-
per. For the second step, we added thermal torques into our
analysis (Section 4), which significantly increases the complex-
ity of evolutionary scenarios for asteroid spins.

3.1. (951) Gaspra

(951) Gaspra, a member of the Flora family with osculating
orbital elements of semimajor axis a = 2.21 AU, eccentricity
e = 0.174, and inclination I = 4.10◦, was visited by the Galileo
spacecraft during its short flyby in October 1991. As a result,
we have high-quality data on its shape and rotation. Here we
use the rotation rate and pole determination made by Davies et
al. (1994), who give P = 7.04 h, � = 19◦ and b = 21◦ for the
ecliptic longitude and latitude of the pole. Their pole parame-
ters have a one degree standard deviation, small in comparison
to estimates of asteroid spin vectors determined by ground-
based data. Galileo imaging also provided us with an approxi-
mate shape of the asteroid (e.g., Thomas et al., 1994). Here we
use the 2◦ × 2◦ shape model found in http://www.psi.edu/pds/,
that we converted into a 5040-hedron with triangular facets
for our YORP modeling. Assuming Gaspra has a homoge-
neous density distribution, we estimate that � = 0.305 with a
∼1% uncertainty. Gaspra’s cratering record suggests it is rel-
atively young, ∼200–500 My (e.g., Greenberg et al., 1994;
Chapman, 2002). The upper limit on Gaspra’s age is set by
the age of the Flora family, which ranges from 0.5–1.0 Gy
(Nesvorný et al., 2002). Note that Gaspra’s mean collisional
lifetime is likely longer than a Gy (Bottke et al., 2005). Thus, at
present we cannot say whether Gaspra’s surface has recorded
cratering events since the formation of the Flora family or
whether it has been subject to one or more powerful crater era-
sure events since that time.

The orbit of Gaspra, as well as all other asteroids considered
in this paper, was taken from the AstOrb database (Bowell et
al., 1994). We propagated Gaspra’s current orbit forward 50 My
and backward 1 My to get a reasonable characterization of its
orbital evolution (the initial time was Jan 1.0, 2000). The same
Table 1
Sample of asteroids considered in this paper and orbital parameters relevant for
their long-term spin dynamicsa

Asteroid a

(AU)
s

(arcsec/yr)
Ip
(◦)

Ωp
(◦)

I6
(◦)

Ω6
(◦)

32 Pomona 2.587 −50.63 6.10 228 0.68 307
60 Echo 2.393 −46.58 4.09 205 0.74 307
105 Artemis 2.373 −37.57 21.56 167 1.77b 240
230 Athamantis 2.382 −38.12 10.17 242 1.10 307
951 Gaspra 2.210 −35.93 4.88 275 1.16 310

a Listed are: proper semimajor axis a, proper frequency of the orbital plane
precession in the inertial space s, proper inclination Ip, proper longitude of
node Ωp at J2000.0 (i.e., phase of the proper term in Fourier representation
of the osculating non-singular inclination vector sin I/2 exp(ıΩ)), forced in-
clination associated with s6 frequency I6, and forced longitude of node Ω6 at
J2000.0 (i.e., phase of the s6 term in Fourier representation of the osculating
non-singular inclination vector sin I/2 exp(ıΩ)).

b The s6 spectral line is not well resolved in this case since there is power in
a broader zone about its value.

technique was used by Vokrouhlický et al. (2005) to analyze
different modes in the Fourier representation of the orbital plane
precession in space. Namely, the complex inclination vector
sin I/2 exp(ıΩ) is passed piecewise through a Fourier filter us-
ing a running window of 1 My width. The proper mode with
frequency s � −35.93 arcsec/yr and amplitude of I � 4.88◦
was found to dominate, with its initial phase � 274.8◦, close to
the osculating longitude of the node. The second most impor-
tant term was that of the forced s6 frequency, with I � 1.16◦
and an initial phase of � 309.8◦. These data, together with
similar information about the other asteroids considered in this
paper, are summarized in Table 1. Because Gaspra is located in
the inside part of the inner part, a number of other Fourier terms
also affect the local representation of sin I/2 exp(ıΩ), which
limits the usefulness of the two frequency model. Nevertheless,
we find our analysis allows us to glean several interesting in-
sights into the long-term dynamics of Gaspra’s spin vector.

With two spectral lines in sin I/2 exp(ıΩ) we introduce
Cassini resonance variables that are associated with the two fre-
quencies s and s6 (from here on, we call them the s and s6
resonances). The resonant obliquity is just the angular distance
of the instantaneous orientation of the spin axis from normal
of each of the precessing reference frames defined by spectral
terms in sin I/2 exp(ıΩ). The critical angles of each of the res-
onances are defined as in Section 2, namely, φ = −(ψ + Ω),
where Ω is the nodal longitude of the corresponding term in
the inclination vector (see also Appendix A). Figs. 4 and 5 show
surfaces-of-section (SOSs) for a number of orbits shown in the
plane of resonant obliquity εs and associated critical angle φs

of the s resonance when the critical angle of the s6 resonance
is null and its time derivative is positive. Each orbit was started
at φs = 0◦ and was given different values of εs . We computed
SOS not only for the nominal parameters of Gaspra’s rotation
state (bottom and right in Fig. 4) but also for modified values
of Gaspra’s rotation period (shorter in previous panels of Fig. 4
and longer in Fig. 5). This approach was repeated for all of the
cases discussed in Sections 3.2–3.5.

We first discuss the results for our nominal parameters. The
SOS is composed of two regions with qualitatively different be-

http://www.astro.amu.edu.pl/
http://www.psi.edu/pds/
http://www.psi.edu/pds/
http://www.psi.edu/pds/
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Fig. 4. Surfaces-of-section for a toy model consisting of only two spectral lines—proper s and forced s6—in Gaspra’s non-singular inclination vector
sin I/2 exp(ıΩ). Amplitudes and phases of all necessary terms are taken from numerical integration. Here we show the spin axis evolution in the variables of
the proper mode—proper obliquity εs and the critical angle of the s spin–orbit resonance φs—when the critical angle of the s6 spin–orbit resonance is zero and its
time derivative positive. Different panels for different (modified) values of Gaspra’s rotation period: (i) top left—P = 0.5PGaspra (where PGaspra = 7.04 h is the
observed value), (ii) top right—P = 0.75PGaspra, (iii) bottom left—P = 0.85PGaspra, and (iv) bottom right—P = PGaspra. The last panel thus corresponds to the
nominal Gaspra situation. The symbol in the last two panels indicates current position of Gaspra’s spin axis in the same variables.
havior: (i) for small values of εs (top of figures), we observe a
large chaotic zone triggered by an overlap of the s and s6 res-
onances, and (ii) for large values of εs (bottom of figures), the
motion becomes quasi-regular. The current position of Gaspra’s
pole in these variables—εs � 72◦ and φs � 14◦—places it at the
border of the chaotic zone. Rubincam et al. (2002), who were
the first to notice this feature, found that Gaspra’s obliquity can
wander over a large range of values from 0◦ to nearly 75◦.
Note there is no stable island of quasi-regular orbits left near
the Cassini state 2 of the s resonance (the structure at εs � 15◦
is associated with one of the secondary resonances). We there-
fore predict that the long-term evolution of Gaspra’s spin axis
is highly irregular at present.

The purpose of computing SOSs for modified values of
Gaspra’s rotation period is that this parameter is secularly af-
fected by the YORP torques. Over long time periods, the indi-
vidual SOSs seen in Figs. 4 and 5 might only be snapshots of
Gaspra’s spin axis behavior at that particular value of its pe-
riod. Obviously, YORP-induced changes of the rotation period
depend on the history of Gaspra’s obliquity (e.g., Rubincam,
2000; Vokrouhlický and Čapek, 2002), with a complicated
feedback taking place between the two parameters. We shall
study this process in Section 4. Here we only note that for suf-
ficiently small values of P (�4 h; Fig. 4), the chaos is limited
because the s resonance ceases to exist; the s6 resonance is the
only one left behind. If Gaspra’s rotation period were reduced to
6 h (bottom left panel in Fig. 4), it would place the current pole
position out of the chaotic zone, which in turn would make its
obliquity evolution much more regular. This explanation is con-
sistent with numerical results shown in Rubincam et al. (2002).
Longer P values for Gaspra lead to a more limited chaotic zone
(Fig. 5) because widths of the s and s6 resonances both shrink
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Fig. 5. Continuation of Fig. 4 now for the following rotation period values: (i) top left—P = 1.1PGaspra, (ii) top right—P = 1.5PGaspra, (iii) bottom
left—P = 3PGaspra, and (iv) bottom right—P = 5PGaspra.
and migrate close to 90◦ obliquity (see Appendix A). Stable li-
brations about Cassini state 2 then become possible (note also
the pronounced effect of the 3/1 secondary resonance when
P = 3PGaspra; this feature, however, seems to disappear in our
full numerical model below where we included all frequencies
in the inclination vector). Reviewing these results, we conclude
that Gaspra’s obliquity is currently in its most violent evolution
phase.

To check the results presented above, we propagated Gas-
pra’s spin axis parameters into the future using the Euler equa-
tion (12) (and τ � = 0) as well as a full representation of
Gaspra’s orbit precession. Fig. 6 shows the evolution of the os-
culating obliquity during the next 50 My. A timestep of 200 yr
was used (i.e., the same value was used in all of the rest of
our numerical simulations). Here the large-scale variations of
Gaspra’s obliquity and its chaotic nature are easily seen. The
bottom panels of Fig. 6 show that the critical angles of both
the s and s6 resonances temporarily librate, but their mutual
interaction prevents them from entering into a long-term, stable
libration regime. At the end of the integration timespan, the spin
axis detaches from the s resonance and becomes more stable
in a higher obliquity regime. Fig. 7 confirms that this interest-
ing behavior is reasonable. Gaspra’s spin trajectory is projected
onto the plane of resonance variables εs and φs , with the left
panel the SOS of the simplified two-frequency model while the
right panel is the relevant projection of the complete solution.
We note the real orbit nearly-uniformly fills the same zone as
predicted by the two-frequency model, with only minor exten-
sion.

Our results were found to be robust against small changes in
Gaspra’s spin and orbital integration data, even though the orbit
of Gaspra is chaotic with a Lyapunov characteristic timescale of
�100 ky (e.g., http://newton.dm.unipi.it/). We found that while
our alternative solutions (such as the obliquity’s dependence on
time) diverged on a 0.1–1 My timescale, they remained qual-
itatively the same. In some cases, Gaspra’s spin axis left the
s resonance zone in order to enter into temporarily-stabilized
conditions at higher obliquities (such as at the end of the nom-
inal simulation in Fig. 6) before again being captured by the
resonance.

http://newton.dm.unipi.it/
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Fig. 6. Gaspra’s spin integration over 50 My time interval. Upper panel shows osculating obliquity as a function of time. The evolution is characterized by intermittent
librations and circulations about the Cassini state 2 of both s and s6 resonances. The shaded intervals point out temporary libration stages: (i) the s resonance (also
bottom left) and (ii) the s6 resonance (also bottom right). The bottom figures show behavior of the critical angle of both resonances—φs for the s resonance and φ6
for the s6 resonance—during their prevailing librations. YORP torques are not included in this simulation.

Fig. 7. Left: Surface-of-section for a toy model consisting of only two spectral lines in the Gaspra’s orbit non-singular inclination vector sin I/2 exp(ıΩ)—proper s

and the forced s6. Amplitudes and phases taken from numerical analysis of the Gaspra’s orbit. Axes as in Fig. 4. Right: Gaspra’s spin integration over 50 My time
interval projected onto the plane of resonant variables of the s secular spin–orbit resonance. The bold section of the trajectory is the period shown in the light-shaded
box in Fig. 6 when the spin predominantly librates in the (εs ,φs) plane.
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Fig. 8. Surface-of-section for a toy model consisting of only two spectral lines in the Echo’s orbit non-singular inclination vector sin I/2 exp(ıΩ)—proper s

and the forced s6. Amplitudes and phases taken from numerical analysis of Echo’s orbit. Different panels for different (modified) values of Echo’s rotation pe-
riod: (i) top left—P = 0.3PEcho (where PEcho = 25.2 h is the observed value), (ii) top right—P = 0.4PEcho, (iii) middle left—P = 0.5PEcho, and (iv) middle
right—P = 0.75PEcho, (iv) bottom left—P = 0.9PEcho, and (v) bottom right—P = PEcho. The two symbols P1 and P2 are pole solutions by Michałowski (1993).
This analysis supports and actually explains in greater de-
tail an earlier suggestion by Rubincam et al. (2002) that large
variations in Gaspra’s obliquity is related to proximity to the
s resonance (somewhat incorrectly called “the obliquity reso-
nance” by these authors). In Section 4, however, we take issue
with their conclusion that this configuration can be considered
positive evidence that YORP has influenced the evolution of the
spin state (i.e., we agree that YORP has likely affected Gaspra’s
spin state, but proving it using current data is challenging).

3.2. (60) Echo

Unlike (951) Gaspra, all of our other test asteroids are not
members of any asteroid family. This implies their past spin
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Fig. 9. Echo’s spin integration over 50 My time interval. The evolution is fairly regular as compared to the Gaspra’s case (Fig. 6), mostly because the spin–orbit
resonances are located at higher obliquity due to Echo’s anomalously slow rotation. A weak chaos, documented by the behavior in between 18 and 23 My (shaded
zone), is related to a tiny resonance associated to the � −58 arcsec/yr precession frequency of Echo’s orbital plane which produces a chaotic layer sticked to the
separatrix of the s resonance. YORP torques are not included in this simulation.
evolution could be as long as >4 Gy. We will use this in-
formation in Section 4. (60) Echo, a � 60 km size asteroid
(Tedesco et al., 2002) with osculating orbital elements of semi-
major axis a = 2.39 AU, eccentricity e = 0.184, and inclina-
tion I = 3.59◦, resides at a somewhat larger heliocentric dis-
tance than Gaspra (Fig. 3) while having about the same orbital
inclination. Michałowski (1993) determined the following pa-
rameters of the rotation state of this asteroid: rotation period
P = 25.15 h, and two possible pole orientations P1: (�, b) =
(95◦,34◦) and P2: (�, b) = (275◦,42◦). We use the axes-ratio
of the best matching ellipsoid from the same reference to es-
timate Echo’s value of � � 0.34. There is considerable uncer-
tainty in this value, but we use it for the sake of our numerical
experiment. Below we use the same diagnostic techniques to in-
vestigate Echo’s spin axis evolution as in Section 3.1; some of
Echo’s orbital data are given in Table 1.

Fig. 8 shows SOSs computed for nominal and modified val-
ues of Echo’s rotation period P . Because P is already large,
we also investigate here cases where P was smaller. We see
similar behavior in Fig. 8 as that for Gaspra (Figs. 4 and 5),
namely as P decreases, the s resonance migrates toward smaller
obliquity values and covers a broader zone until it disappears at
P � 10.2 h. For Echo’s nominal parameters, both pole solu-
tions are located inside the stable zone of the s resonance and
hence the obliquity evolution of Echo’s spin axis is expected to
be more regular than in Gaspra’s case. The pole solution P2
is closer to the separatrix of the s resonance, which is why
we choose it for the numerical investigation described below
(the solution for P1 would be even more stable). In passing, we
note that contrary to previous experience with Gaspra, the sta-
ble libration zone about the Cassini state 2 shrinks in size over
the last two panels of Fig. 8. We hypothesize that the extended
chaos zone is triggered by the chain of secondary resonances
that terminate the regular zone in these two last panels. Another
interesting feature is the quasi-stable layer that intersects the
chaotic zone in the first three panels at large obliquity values.
This is the stable libration zone of the s6 resonance projected
onto the resonant variables of the s resonance.

Fig. 9 confirms the quasi-regularity of Echo’s obliquity evo-
lution over a 50 My time interval. The anomalous behavior be-
tween 18 and 23 My, however, suggests there is more complex-
ity in the full numerical experiment than in the two-frequency
model. We found the highlighted feature is caused by the pres-
ence of a third line in the Fourier representation of the non-
singular inclination vector sin I/2 exp(ıΩ) that has a frequency
� −58.2 arcsec/yr. In spite of the small forced inclination of
�0.23◦ associated with this line, it produces a thin chaotic layer
that adheres to the separatrix of the s resonance. In our nu-
merical experiment, Echo’s spin axis was temporarily confined
to this chaotic zone between 18 and 23 My. In Section 4.2,
we constructed a toy model showing how this tiny additional
resonance may have significantly affected Echo’s past spin evo-
lution. Thus, the take away message from these results are that
the spin evolution of asteroids in the inner main belt can be re-
markably complex.

3.3. (32) Pomona

Asteroid (32) Pomona, with osculating a = 2.59 AU, e =
0.086, and I = 5.52◦, is the most distant asteroid examined in
this paper. It resides in the central main asteroid belt (Fig. 3).
This D � 80 km asteroid (Tedesco et al., 2002) has been exten-
sively observed, allowing Kaasalainen et al. (2002) to unam-
biguously determine its rotation-state parameters: P = 9.45 h,
(�, b) = (267◦,58◦). This shape model indicates � � 0.28,
somewhat less elongated than in the previous two cases.

Fig. 10 shows the SOSs for the nominal parameters of
Pomona’s rotation state (top right), together with five more
cases corresponding to smaller and larger P values. Because
Pomona has an increased proper precession rate of the orbital
plane (s = −50.6 arcsec/yr; Table 1), and a comparably small
value of �, the s resonance about Cassini state 2 only bifurcates
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Fig. 10. Surface-of-section for a toy model consisting of only two spectral lines in the Pomona’s orbit non-singular inclination vector sin I/2 exp(ıΩ)—-proper
s and the forced s6. Amplitudes and phases taken from numerical analysis of the Pomona’s orbit. Different panels for different (modified) values of Pomona’s
rotation period: (i) top left—P = 0.5PPomona (where PPomona = 9.45 h is the observed value), (ii) top right—P = PPomona, (iii) middle left—P = 1.5PPomona,
and (iv) middle right—P = 2PPomona, (iv) bottom left—P = 3PPomona, and (v) bottom right—P = 5PPomona. The s resonance does not exist in the first three
panels; the arrows in the nominal case indicate width of the s6 resonance projected onto the variables used here and the symbol is a pole position derived by
Kaasalainen et al. (2002).
when the P value exceeds its current value by a factor of 2.
Thus, the nominal spin dynamics of Pomona is not affected by
the s resonance. Instead, it resides closely to the s6 resonance.

This result is confirmed by Fig. 11, which shows what hap-
pens when we numerically propagate Pomona’s spin axis for-
ward 50 My. The evolution of its obliquity, which overall is
quasi-regular, undergoes intermittent excursions toward larger
values forced by the s6 resonance. Moreover, the proper incli-
nation is large enough (I � 6.1◦) that the orbit only temporary
visits the libration zone of the s6 resonance. A better exam-
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Fig. 11. Pomona’s spin integration over 50 My time interval. Obliquity evolution is much more regular than in the inner part of the main belt, mainly because of
absence of the Cassini resonance associated with the s frequency. The high-obliquity excursions (ligth shaded and zoomed in bottom figures) mark large amplitude
librations about the s6 resonance, while the low-obliquity mode (dark shaded) occurs during circulation above the s6 resonance. The bottom figures show behavior
of the resonant obliquity ε6 and resonant angle φ6 during the libration phase. YORP torques are not included in this simulation.
ple of this behavior is seen in Fig. 12, where the evolution is
projected onto the plane of resonant variables associated with
the s6 frequency in sin I/2 exp(ıΩ). Interestingly, the spin axis
occasionally performs a large amplitude libration in the s6 res-
onance while mostly staying outside this resonance in a region
characterized by a smaller obliquity. The shorter period su-
perimposed on the large obliquity oscillations (∼12◦) are just
the geometric (but not resonant) effect of the proper term in
sin I/2 exp(ıΩ).

3.4. (230) Athamantis

With (320) Athamantis, we shift toward exploring spin his-
tory for asteroids residing on higher-inclination orbits, although
the proper inclination of this case—I � 10.2◦—is still close to
the average in the main-belt. For reference, it has osculating
a = 2.38 AU, e = 0.06, and I = 9.43◦. Torppa et al. (2003)
collected available lightcurve observations and determined a
rotation period P = 23.98 h and two possible pole solutions:
P1 with (�, b) = (74◦,28◦) and P2 with (�, b) = (238◦,27◦).
Here we use P2 for our analysis but P1 yields comparable re-
sults. A mild elongation for this D ∼ 110 km asteroid yields an
Fig. 12. Pomona’s spin integration over 50 My time interval (dots) projected
onto the plane of resonant variables of the s6 spin–orbit resonance. The bolt
section is a 17 My segment between time 6 and 23 My, when the Pomona axis
resides librating about the Cassini state 2 (see also Fig. 11).
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Fig. 13. Surface-of-section for a toy model consisting of only two spectral lines in the Athamantis’ orbit non-singular inclination vector sin I/2 exp(ıΩ)—proper
s and the forced s6. Amplitudes and phases taken from numerical analysis of the Athamantis’ orbit. Different panels for different (modified) values of
Athamantis’ rotation period: (i) top left—P = 0.5PAthamantis (where PAthamantis = 24 h is the observed value), (ii) top right—P = 0.7PAthamantis, (iii) mid-
dle left—P = 0.9PAthamantis, and (iv) middle right—P = PAthamantis, (iv) bottom left—P = 1.1PAthamantis, and (v) bottom right—P = 2PAthamantis. The two
symbols P1 and P2 are pole positions determined by Torppa et al. (2003).
approximate value of � � 0.15, but we caution that the uncer-
tainty in this value is large.

Fig. 13 gives SOSs for various P values of Athamantis. In
spite of its small � value, the slow rotation makes ξ = �P6

large enough that both s6 and s resonances exist at the same
time (middle right). The s resonance is broad and even par-
tially extends into the retrograde rotation zone. This is ex-
pected because the resonance width scales as W ∝ √

sin I (e.g.,
Eq. (A.2)). The width of the s6 resonance is more limited be-
cause the forced inclination I6 is roughly the same throughout
the main belt (see also Table 1). This in turn makes the s res-
onance less perturbed. Overall, the variety of possible motions
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Fig. 14. Athamantis’ spin integration over 50 My time interval. The shaded intervals indicate (from left to right): (a) initial period of librations about the Cassini
state 2 of the s resonance, (b) temporary capture to another stable point associated with the s resonance at φs ∼ 180◦ (alike the Cassini state 1) but with much
smaller stability zone, and (c) temporary capture to the s6 resonance (see also Fig. 15). Phases (a) and (b) of various librations in the s resonance are zoomed in the
middle and bottom panels. YORP torques are not included in this simulation.
are less irregular for Athamantis because the chaotic layer is
confined to a region near its separatrix. This means that a large
zone of quasi-regular libration about Cassini state 2 is possible.

Both of Athamantis’ pole solutions are located near the
edge of these regular/chaotic zones. This makes their evolution
nearly identical. Except when Athamantis has a slow rotation
rate and a small obliquity, which ties the spin vector to the
precessing orbit, the variations of Athamantis’ obliquity values
are always large. In part, this is caused by strong resonance ef-
fects. Even when the s resonance does not exist (e.g., the first
two panels in Fig. 13), however, the obliquity still oscillates at
�2I ∼ 20◦ amplitude for geometric reasons.

Figs. 14 and 15 show results where we numerically tracked
the evolution of Athamantis’ spin vector over 50 My. As ex-
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Fig. 15. Athamantis’ spin axis evolution in between 39–49 My—interval (c) in Fig. 14—when the spin axis undergoes anomalous oscillations in the s6 resonance:
(i) left is the obliquity in the s6 resonance reference frame, (ii) right is the critical angle of the s6 resonance. Oscillations occur about the φ6 = 180◦ center.

Fig. 16. Left: Surface-of-section for a toy model consisting of only two spectral lines in the Athamantis’ orbit non-singular inclination vector sin I/2 exp(ıΩ)—
proper s and the forced s6. Amplitudes and phases taken from numerical analysis of the Athamantis’ orbit. Right: Athamantis’ spin integration over 50 My time
interval (dots) projected onto the plane of resonant variables of the s secular spin–orbit resonance. The bolt sections show: (i) the initial libration about φs ∼ 0◦
(“regular position of the Cassini state 2” shown as (a) in Fig. 14) during the first 10 My of the simulation, and (ii) temporary oscillation about the new stable point
near φs ∼ 180◦ (shown as (b) in Fig. 14).
pected, the first 12 My show large obliquity oscillations, but a
closer inspection reveals a number of intricate dynamical ef-
fects likely related to the fact that the power spectrum of the
non-singular inclination vector sin I/2 exp(ıΩ) contains many
more lines than the two used in our simplified model. For in-
stance, we note that both periods of normal libration about the
Cassini state 2 of the s resonance (Fig. 14 left bottom pan-
els) and also an anomalous oscillation about stable point at
φs = 180◦ about Cassini state 1 (Fig. 14 right bottom pan-
els). Similarly, Fig. 15 shows a long-lasting period of oscil-
lation about an anomalous stable point in the s6 resonance.
Both features are also shown in Fig. 16, where they are com-
pared to previous SOS for Athamantis’ nominal rotation para-
meters. The two-line model seem to prohibit oscillations about
the Cassini state 1, but surprisingly the full numerical integra-
tion treatment allows it. We also note that the extension of the
stable libration zone about the Cassini state 2 is somewhat re-
duced in the full model as compared to the two-line model,
perhaps as a result of perturbations by other spectral lines in
sin I/2 exp(ıΩ).

3.5. (105) Artemis

Asteroid (105) Artemis is the largest (D ∼ 110 km size)
member of the Phocaeas, a dynamical group of asteroids char-
acterized by high-inclination orbits. It has osculating a =
2.37 AU, e = 0.18, and I = 21.5◦. The proper inclination of its
orbit, Ip � 21.6◦ (see Table 1), is high enough that we expect
significant variations should occur in its spin orientation with
respect to the orbit. Tungalag et al. (2002) obtained the follow-
ing solution for this asteroid’s rotation state: P = 18.55 h and
pole position (�, b) = (192◦,68◦). Axes-ratio of the best-fitting
ellipsoid suggests � � 0.30, though we caution there is con-
siderable uncertainty in this value. Tests indicate, however, that
even a 30% reduction in � does not significantly affect our re-
sults.
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Fig. 17. Surface-of-section for a toy model consisting of only two spectral lines in the Artemis’ orbit non-singular inclination vector sin I/2 exp(ıΩ)—proper s

and the forced s6. Amplitudes and phases taken from numerical analysis of the Artemis’ orbit. Different panels for different (modified) values of Artemis’ rotation
period: (i) top left—P = 0.5PArtemis (where PArtemis = 18.6 h is the observed value), (ii) top right—P = 0.7PArtemis, (iii) middle left—P = 0.9PArtemis, and
(iv) middle right—P = PArtemis, (iv) bottom left—P = 1.1PArtemis, and (v) bottom right—P = 2PArtemis. The symbol is a pole position by Tungalag et al. (2002).
Fig. 17 shows SOSs for Artemis’ nominal and slightly modi-
fied rotation rate. As soon as the s resonance bifurcates (roughly
the upper right panel), it essentially covers all of the prograde
states and even a fair portion of the retrograde ones. It is no
surprise, then, that the current pole position for Artemis’ falls
inside the libration zone of the s resonance. The s6 resonance
triggers chaos in a restricted region near the separatrix of the
s resonance within two-spectral-line model. Most of the initial
conditions result in quasi-regular motion, either libration or cir-
culation in the s resonance.

A full-fledged numerical simulation of the Artemis’ spin
evolution (Figs. 18 and 19), however, indicates that more chaos
is present than suggested by the two frequency model, pre-
sumably because the Fourier spectrum of sin I/2 exp(ıΩ) is
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Fig. 18. Artemis’ spin integration over 50 My time interval. Shaded interval points to a temporary capture in the libration zone about the Cassini state 2 of the s

resonance. Bottom panels show behavior of the resonance obliquity εs and resonance angle φs during this phase. YORP torques are not included in this simulation.

Fig. 19. Left: Surface-of-section for a toy model consisting of only two spectral lines in the Artemis’ orbit non-singular inclination vector sin I/2 exp(ıΩ)—proper
s and the forced s6. Amplitudes and phases taken from numerical analysis of the Artemis’ orbit. Right: Artemis’ spin integration over 50 My time interval (dots)
projected onto the plane of resonant variables of the s secular spin–orbit resonance. Stability of the Cassini state 2 is clearly reduced in the complete model as a
result of perturbations due to additional spectral lines in sin I/2 exp(ıΩ).
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crowded with many more terms. Indeed, instead of finding sta-
ble librations about the Cassini state 2 of the s resonance, the
spin often drops in and out of this resonance during our sim-
ulation. A significant reduction of the space of quasi-regular
librations is also clearly seen in Fig. 19.

4. Examples of how spin dynamics in the inner-belt is
affected by YORP torques

The previous analysis shows that long-term spin dynamics
of prograde-rotating asteroids in the inner and central main
belt is complicated by spin–orbit resonances. The full pic-
ture, however, is even more complicated for D � 40 km ob-
jects that are affected by the thermal (YORP) torques (e.g.,
Rubincam, 2000; Vokrouhlický and Čapek, 2002; Čapek and
Vokrouhlický, 2004). As a zero-order approximation, we can
simulate YORP torques as a slow change of the previously
constant parameter ξ = �P6. This makes asteroid spin histo-
ries, described for the nominal set of parameters above, pass
through an additional dimension of the changing parameter ξ .
The spin dynamics here, though, is closely linked to the obliq-
uity history; this means a complicated relationship exists be-
tween the previously-studied long-term cases and the very-
long-term cases that are governed by changes in ξ . This section
is “yet another initial step” in our effort to fully understand-
ing these processes (see also Vokrouhlický and Čapek, 2002;
Rubincam et al., 2002).

4.1. (951) Gaspra with YORP included

Gaspra’s rotation state and its relation to the YORP effect
is of interest for several reasons. First, it is the smallest aster-
oid in our sample; this means that the YORP effect can more
readily modify its spin state than those of the other bodies dis-
cussed here. Rubincam (2000), using a model where the surface
thermal conductivity (K) of Gaspra was set to zero, determined
that a characteristic timescale to double Gaspra’s rotation rate
by YORP could be as short as 200–250 My. This value is com-
parable to or shorter than the age of the Flora family (Nesvorný
et al., 2002). In a subsequent paper, Rubincam et al. (2002)
pointed out that Gaspra’s spin pole is residing close to the s

resonance, which suggested to them that the previous YORP
evolution may have drove the asteroid to this state. Although we
cannot exclude this possibility, we argue below that this connec-
tion is less likely than the case of Slivan-state asteroids in the
Koronis-family (Vokrouhlický et al., 2003).

Using the same shape model as described in Section 3.1,
we confirm the results of Rubincam (2000), namely that for
a Gaspra model with K = 0 W/m/K, YORP torques tend to
tilt Gaspra’s spin axis toward its orbital plane and decelerate
its rotation rate. If K values are non-zero, however, these re-
sults are turned on their head. High K values (�0.01 W/m/K)
force the spin axis to evolve to an orientation perpendicu-
lar to the orbital plane, with its rotation rate accelerated (see
also the evolution of (433) Eros; Čapek and Vokrouhlický,
2004). Interestingly, when K corresponds to a likely value
for Gaspra (∼0.005 W/m/K), YORP mainly affects the rota-
tion rate; the obliquity experiences no meaningful changes (cf.
Fig. 4 of Čapek and Vokrouhlický, 2004). Note that YORP-
induced changes to the spin rate are weakly dependent of the
K value. Thus, as a simplifying approximation in the work de-
scribed below, we only account for how YORP secularly affects
an asteroid’s rotation rate and purposely neglect how it affects
obliquity.

We start with the 50 My simulation of Gaspra’s spin his-
tory as in Section 3.1 but now include our best estimate of the
YORP torques (i.e., corresponding to Čapek and Vokrouhlický
(2004) model with K = 0.005 W/m/K). We find that the result
is essentially the same as that shown in Fig. 6; the spin state
stays bound in the chaotic zone of the s resonance. There ap-
pears to be a minor modification of P from the initial value
of 7.04 to 6.8 h at the end of our simulation, less then ex-
pected from the pure YORP model. This is because the switch
from YORP-driven spin deceleration vs. acceleration occurs at
∼53◦ (see Rubincam, 2000; Fig. 4) and resonance effects make
the obliquity oscillate about this value. As a result, there is
no coherent accumulation of the YORP effect on the rotation
rate of Gaspra. Only the slight asymmetry of obliquity oscilla-
tions near ∼53◦ force the rotation rate to slowly decrease. Over
longer timescales, which are not studied here, this slow evo-
lution may accelerate by bringing the s resonance toward the
range of smaller obliquities (see Fig. 4).

We next considered possible past evolutionary paths for
Gaspra’s spin. In accordance with its cratering record and the
dynamical evolution of the Flora family, we assume Gaspra
is ∼(200–500) My. These timescales are computationally ex-
pensive to deal with in our spin vector evolution code. For this
reason, we tracked the evolution of smaller asteroids and then
scaled the results to the size of the asteroid in question (i.e., the
strength of the YORP torques and hence the timescale needed
to produce modifications to an asteroid’s spin state are ∝ D−2,
e.g., Rubincam, 2000). Thus, instead of considering the spin
history of Gaspra with D ∼ 12 km, we instead computed what
happens to a D = 3.64 km size asteroid (a “pseudo-Gaspra,”
using the terminology of Rubincam, 2000) over a timescale of
few tens of My. The chosen size ratio of the pseudo-Gaspra and
real Gaspra is such that Gaspra’s evolution would be a factor 10
longer than for pseudo-Gaspra. Thus the 50 My spin evolution
of the latter translates into 500 My evolution of the former.5

We ran a series of simulations using small pseudo-Gaspra
asteroids started with initial P values of 6, 7, 8, 8.5, 9 and 10 h.
Their initial obliquities were chosen between 10◦–80◦ with an
increment of 10◦. The initial longitude of the pseudo-Gaspra
spin axis was that of Gaspra today, but this value had little influ-
ence on our conclusions. In total, we computed 48 simulations,
each spanning 50 My.

5 Note, our approach is not an exact scaling procedure of the dynamical
Eq. (1) because it ignores the effects of gravitational and inertial torques on
their right-hand sides. Nevertheless, it is a good zero-order approximation when
the characteristic YORP timescale is still very long compared to any periodic
effects resulting from the gravitational and inertial torques (such as the libration
period about the Cassini state).



20 D. Vokrouhlický et al. / Icarus 184 (2006) 1–28
Fig. 20. Rotation period P (in h) from numerical simulations of pseudo-Gaspra
starting with 5 different initial values (6, 7, 8, 9 and 10 h). Each time 8 dif-
ferent initial obliquity values in between 10◦ and 80◦ (with a step of 10◦) is
considered, thus altogether 40 evolutionary tracks are seen here. Only some
of them manage to meet the currently observed rotation period of �7.04 h
shown in the shaded strip (its extension reflects uncertainty in the Gaspra’s age,
∼(20–50) My in the timescale of our pseudo-Gaspra evolution). Three possible
evolutionary tracks, with different initial rotation periods and obliquity values,
are highlighted in bold.

Fig. 20 shows 40 evolutionary P tracks from our simula-
tions. Interactions with secular spin–orbit resonances causes
P to fluctuate; in fact in some cases the rate of change in P

even temporarily changes its sign. Only some end up matching
the pseudo-Gaspra spin-state constraints for the scaled age of
∼(20–50) My. The positive matches are for those whose initial
P was larger than the current value, most likely in the range (7–
10) h. Bold curves emphasize three such solutions that started
with three different initial P values.

The evolution of Gaspra’s obliquity for these 3 solutions is
shown in Fig. 21. The diversity of results indicates that Gaspra’s
could have had a wide range of obliquity values in the past. Ex-
cept for a short period of time, the solution in the upper panel
is always confined to the chaotic zone located near the s reso-
nance. The solution in the middle panel starts as a quasi-stable
librator about the Cassini state 2 of the s resonance, but then it
evolves out of this resonance. As P decreases, the resonance,
together with its chaotic layer, increases in size. The bottom
panel solution starts as regular circulation outside the s reso-
nance, but as P decreases due to the YORP torques, it falls into
its chaotic zone; this latter evolutionary tracks is perhaps the
closest to the scenario envisaged by Rubincam et al. (2002).

We conclude from this that Gaspra’s current rotation state
is chaotic enough that an infinite number of past evolutionary
tracks are possible. Except for some broad constraints, such as
the likely value of Gaspra’s initial P value, no definitive answer
to the Gaspra’s previous spin vector evolution can be given at
this time.

Worse still is the fact that the anomalously large s resonance
covers ∼30% of all prograde rotation states for Gaspra’s cur-
rent rotation period (see Fig. 4 and Henrard and Murigande,
1987). This means that a Gaspra spin state located near the out-
skirts of a chaotic zone does not necessarily mean it emerged
from the resonance earlier in its history via YORP torques.
We find a no-YORP model would still be statistically mean-
ingful because a broad range of initial conditions could lead
toward the current state. As such, the only true and a clear-cut
case for past YORP evolution known to date are the group of
prograde-rotating asteroids in the Koronis family (Slivan, 2002;
Vokrouhlický et al., 2003).

4.2. (60) Echo and (32) Pomona with YORP included

The remaining test cases described in paper do not have
precise shape models, which makes it difficult to accurately
evaluate how YORP torques have affected their spin vectors.
For this reason, we apply here statistical results from Čapek
and Vokrouhlický (2004), who computed YORP torques for a
large number of irregularly-shaped bodies. We use an average
of their results, corresponding to the low thermal conductiv-
ity K = 0.001 W/m/K, as a characteristic YORP torque in our
simulations.

A second issue is that the asteroids discussed below are sig-
nificantly larger than Gaspra, such that YORP is less likely to
have played a significant role in their past evolution. We can
still use these bodies, however, as proxies of how YORP-related
effects could modify the spin states of smaller asteroids with
similar orbits. To do this, we scaled all of our results by a given
factor. For example, our pseudo-Echo asteroid (D = 3 km) is
a factor 20 smaller than Echo itself (D = 60 km). Thus, the
timescale in our simulation should be scaled by a factor of 400
to infer how Echo may have evolved in the past.

The purpose of our simulation is to determine the importance
of various dynamical structures that could complicate how spin
vectors of small, inner main-belt asteroids have evolved with
time. Fig. 22 shows an example run where we numerical tracked
a pseudo-Echo that started with an initial obliquity of 70◦ and
P = 10 h. We see that it has a fairly complex evolution: (i) it
evolves through a non-resonant phase (0–7 My), (ii) it falls
into the s resonance (7–20 My), (iii) it escapes the s resonance
only to be captured into the weak secular resonance associ-
ated with the third spectral line in Fourier decomposition of
sin I/2 exp(ıΩ) at6 sx � −58 arcsec/yr (20–33 My), and (iv) it
evolves toward the slow-spinning YORP end-state seen in this
figure (33–41 My). Its passage through the s resonance actu-
ally has two phases: (i) temporary librations about Cassini state
2 associated with large variations in obliquity, and (ii) oscilla-
tions about Cassini state 1 with much more confined obliquity
variations. The secular trends while in the s and sx resonances
are driven by YORP deceleration of P for obliquity �54◦. For
example, between 20–33 My, the solution follows the motion of
Cassini state 2 of the sx resonance in the small libration regime.
A similar situation was reported by Vokrouhlický et al. (2003)
for the Koronis asteroids where the s6 resonance played a simi-
lar role.

As an aside, we note that just as the asteroid is about to jump
out of the sx resonance, the spin state resembles that of (60)

6 For sake of brevity we use sx to denote frequency of this term since we
were not able to properly track its origin.
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Fig. 21. Time-evolution of the osculating obliquity from numerical simulations of pseudo-Gaspra for the three highlighted tracks in Fig. 20. Upper panel starts with
rotation period of 8 h and obliquity 40◦, middle panel starts with rotation period of 9 h and obliquity 50◦ , and bottom panel starts with rotation period of 10 h and
obliquity 20◦; each of the cases meet parameters of the observed rotation state of Gaspra at their respective terminal times.
Echo. Thus, by scaling the results up to Echo’s true size, the
shaded interval in Fig. 22 potentially represents the evolution of
Echo’s spin state over the past 4 Gy. YORP perturbations would
then be responsible for a ∼20◦ increase in the obliquity and an
∼8 h increase of the rotation period, with the underlying trans-
fer route being the sx resonance (recall Echo is a D = 60 km
size asteroid). There is obviously a large number of other pos-
sible evolutionary outcomes, but this one does a good job of
illustrating the complexity one should expect in the spin vector
histories of small bodies in the Solar System.

The steady increase in obliquity seen in Fig. 22, associated
with small-amplitude resonant librations, might also be driven
by the s resonance. In Section 3.3, we stated that Pomona’s cur-
rent rotation-state parameters do not support the existence of
the s resonance. According to our simulation, however, when
P ∼ 12 h from YORP torques, the resonance bifurcates and im-
mediately captures the pseudo-Pomona spin vector (Fig. 23).
Further deceleration of the rotation rate makes the Cassini state
migrate toward higher obliquity values, dragging the pseudo-
Pomona spin state along at small-amplitude librations. Eventu-
ally, though, the amplitude increases to the point that the spin
state reaches a chaotic zone near the resonance separatrix and
leaves the resonance. Then, the spin state evolves toward the
end state of the YORP cycle where the obliquity approaches
zero. Compared to non-resonant case, the evolutionary track to-
ward the YORP end state was significantly extended by capture
into the resonance.

4.3. (105) Artemis with YORP included

In Sections 3.4 and 3.5, we stated that the spin histories of
objects residing on high-inclination orbits are strongly affected
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Fig. 22. A toy model for a possible past evolution of 60 Echo spin state. Osculating obliquity ε (top) and rotation period P (bottom) as a function of time for a 3 km
size object on the current Echo’s orbit. For a 60 km body the timescale would stretch by a factor ∼202 = 400, thus the shaded segment might correspond to ∼4 Gy
time interval for that body.
by the large size of the s resonance. In this section, we inves-
tigate its further implications within our spin vector evolution
model that includes YORP torques.

As before, we propagated the spin histories of pseudo-
Artemis test asteroids (D = 3 km) residing in the same orbit as
the real Artemis. To obtain a better statistical characterization of
our results, we ran 21 close clones7 starting from Artemis’ cur-
rent spin state and then tracked them 50 My into the future. For
each case, we allowed the rotation rate to both accelerate and
decelerate (see Čapek and Vokrouhlický, 2004) via averaged
YORP torques. Thus in total, we performed 42 simulations.

Fig. 24 shows 3 characteristic evolutionary tracks of pseudo-
Artemis obliquity. The upper panel shows a case where, for
the entire evolutionary span, the spin axis either librated about
Cassini state 2 of the s resonance or adhered to its separa-
trix. The ε value in the middle panel eventually decelerated
enough that the spin axis dropped out of the s resonance per-
manently; this allowed it to evolve toward the YORP endstate
of zero obliquity without entering another resonance. Inter-
estingly, there were 13 cases among our 42 simulations that
were similar to the evolution shown in the bottom panel. Like
the previous cases, ε left the s resonance but this time it
reached far enough into the retrograde-rotating state (obliquity
�90◦) that it ultimately evolved toward the YORP end state of
180◦ obliquity. In this manner, the initially prograde-rotating

7 These clones were produced by adding ±0.01◦ to the nominal value of the
pole longitude for Artemis; other spin parameters were kept the same.
states can feed the retrograde-rotating states in course of the
YORP evolution. Note that the reverse process, with the ret-
rograde states evolving toward the prograde ones, is unlikely
because there are no significant secular spin–orbit resonances
affecting retrograde rotation. The strongest of them, with fre-
quency � +77 arcsec/yr and forced amplitude of �0.5◦ in
sin I/2 exp(ıΩ), affects the evolution at ∼150◦ obliquity. This
trend toward retrograde rotation states implies that asteroids re-
siding on high inclination orbits, such as the Phocaeas and Hun-
garias, may have obliquity values that are somewhat skewed to-
ward retrograde rotation states. This hypothesis might be tested
by observing Hungaria asteroids, which happen to be the clos-
est high inclination population to Earth on stable orbits.

5. Discussion and conclusions

Our runs indicate that the long-term evolution of asteroid
spin vectors can be extremely chaotic and complex for inner
main-belt asteroids. The main reason for this is that they are
strongly affected by interacting spin–orbit resonances. The is-
sue in front of us now is whether this information can be used
to determine the statistical parameters of a large sample of as-
teroids. Note that this problem was previously addressed by
Skoglöv (1999) and Skoglöv and Erikson (2002), who predicted
that asteroids should have a fairly uniform obliquity distribu-
tion but that a small excess of asteroids with large obliquities
was possible. Their results were based on an analysis of a lim-
ited number of test asteroids whose spin states were tracked for
short integration timescales.
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Fig. 23. Spin-state evolution for pseudo-Pomona asteroid (size 3 km) and YORP torques included. Initial data that of the currently observed spin state of (32) Pomona.
Upper panel is the osculating obliquity, middle panel is the rotation period P and bottom panel is the resonant angle φs of the s resonance. During the time interval
pointed out by the dashed interval the spin axis librates about the Cassini state 2 of the s resonance. After leaving the chaotic buffer near separatrix of this resonance,
the evolution heads toward the zero-obliquity end-state of the YORP evolution.
Here we repeat their experiment, but in our case we have
brought both our model and additional computational power to
bear on the problem. Our method was to numerically track the
spin vector evolution of pseudo-Gaspras over a range of ini-
tial parameters. We assumed a fixed initial rotation period of
P = 7.04 h (YORP was not included at this stage of analysis)
and a grid of 40 equidistant values of cos εs and 36 values of
φs (recall εs and φs are obliquity and resonant angles in the
reference frame of s resonance). Thus, in total we performed
1440 numerical simulations, each spanning 2 My (sufficiently
longer than any period seen in the obliquity oscillations). At
each timestep, i.e., each 200 yr, we recorded the position of the
spin axis in the same grid that defined the initial data. This pro-
cedure allowed us to compute the time spent by each spin axis
over a series of cells in εs and φs .
By folding together all φs values, we obtained a distrib-
ution in Fig. 25 that corresponds to an expected equilibrium
distribution of obliquity values. Our results indicate the resul-
tant obliquity distribution is fairly uniform. No clustering was
observed in the longitude angle φs . Each initial latitude bin
among the prograde rotators was nearly-equally populated by
all prograde states, while each of the initially retrograde lati-
tude bins was populated mostly the same and neighboring bins.
We repeated our numerical experiment for different values of
initial P , namely 5.3, 10.5 and 21 h. All results closely resem-
bled that in Fig. 25, with slightly larger fluctuations for longer
rotation periods. Thus, in the end, we arrived at a similar con-
clusion to that of Skoglöv (1999) and Skoglöv and Erikson
(2002). The chaos that affects prograde rotators, together with a
quasi-regularity among retrograde rotators, produces a uniform
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Fig. 24. Three characteristic evolution scenarios for obliquity in our simulations of pseudo-Artemis (size 5 km) and YORP torques included. The upper panel shows
the spin state permanently confined, or adhered, to the s resonance. The bottom two panels are examples of tracks that left the s resonance and evolved toward the
end-states of YORP cycle: either 0◦ obliquity (middle) or 180◦ obliquity (bottom). For high-inclination orbits this feeding of retrograde spin state from initially
prograde ones is a significant phenomenon and may affect distribution of obliquities among Phocaea and/or Hungaria populations.
obliquity distribution (provided the initial data were also uni-
form). Because our data does not include YORP torques, we
consider these results applicable to D > 50 km asteroids.

Skoglöv and Erikson (2002) pointed out that asteroids on
low- and high-inclinations orbits may have different latitude
distributions for their rotation poles. This evidence at present
is based purely on observational work; no dynamical mecha-
nism has yet been identified that can explain this difference. For
this reason, we repeated our numerical experiment by determin-
ing what happens to an object on the high-inclination orbit of
Artemis with rotation periods of P = 12 and 18 h. By track-
ing the time spent by the rotation vector at various latitudes, we
determined the expected equilibrium distribution of the ecliptic
latitude (Fig. 26). We find that it appears to be fairly uniform,
except possibly the first bin for P = 18 h. It is possible, how-
ever, that the integration timescale was a factor in our results;
future work will be used to confirm this.

We thus conclude that large asteroids have not had their
obliquity values and ecliptic latitudes significantly affected
by long-term chaotic dynamics. This implies that the bi-
modality of obliquities observed among large asteroids, which
are skewed toward the ecliptic poles, may be primordial (i.e.,
were produced during the planetesimal formation epoch; Pravec
et al., 2002; Bottke et al., 2005). To confirm this, a detailed
study of the spatial distribution of the spin axes needs to be
coupled with an analysis of their rotation frequency distribu-
tion. This work must also account for various factors such as
orbital location in the main belt, asteroid size, observational se-
lection effects, the effects of YORP on small bodies, etc. We
consider this task beyond the scope of the present paper, but we
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Fig. 25. Distribution of equilibrium cos εs from our numerical experiment
where numerous spin histories were started on a uniform grid of (cos εs ,φs)

values. Orbital and physical parameters were that of (951) Gaspra, including
the rotation period 7.04 h. Occupancy in each bin is normalized to an average
expected value, thus unity would mean a uniform distribution. We see small
fluctuations about this value that only occasionally exceed one sigma level from
Poissonian statistics (shown as a shaded interval; note the ordinate shows only
a small interval of values near unity). This may be due to insufficient length of
the integration (2 My).

believe the analytical and numerical methods described here
will allow us to realistically attack this problem in the near fu-
ture.

Next, we address how secular spin dynamics affect our ef-
forts to model the dynamical evolution of various asteroid fami-
lies via the Yarkovsky effect. Vokrouhlický et al. (2006a, 2006b,
2006c) found that many asteroid families have unusual semima-
jor axis distributions, with many smaller family members con-
centrated skewed toward extreme values. They interpreted these
features as being the byproduct of a combination of thermal ef-
fects: (i) YORP torques driving the spin poles of small family
members toward orientations that are normal to the ecliptic, and
(ii) changes in the spin vector direction producing an increase
in their Yarkovsky da/dt drift rates. By modeling these cou-
pled effects and then comparing their results to observations,
Vokrouhlický et al. (2006a, 2006b, 2006c) showed they could
use the semimajor axis distribution of asteroid families to de-
termine a family’s approximate age of formation.

Vokrouhlický et al., however, did not consider how the evo-
lution of asteroid spin axis orientations were affected by over-
lapping spin–orbit resonances. We briefly examine this issue
here by tracking how gravitational and YORP torques affect
the spin evolution of a D = 3 km body with the orbit and shape
of (951) Gaspra. Here we use the mean thermal torque values
derived by Čapek and Vokrouhlický (2004) for such a body.
We assume the thermal conductivity is K = 0.001 W/m/K,
while the specific heat capacity was set to Cp = 680 J/kg/K
and bulk/surface densities were 2.5 g/cm3. Our analysis con-
sidered the possibility that the body’s rotation rate might ac-
celerate or decelerate via YORP torques. The spin integration
timespan was limited to 50 My, the length of our orbital in-
tegration. We started our test asteroid with different values of
Fig. 26. Distribution of equilibrium cosb (b is the ecliptic latitude) from our
numerical experiment where numerous spin histories were started on a uniform
grid of (cos εs ,φs) values. Orbital and physical parameters were that of (105)
Artemis. The upper panel is for the rotation period 12 h, the lower for 18 h
(close to Artemis’ real value). Occupancy in each bin is normalized to an aver-
age expected value, thus unity would mean a uniform distribution. We see small
fluctuations about this value that only occasionally exceed one sigma level from
Poissonian statistics (shown as a shaded interval; note the ordinate shows only
a small interval of values near unity). This may be due to insufficient length of
the integration (2 My).

the initial obliquity ε0 and precession longitude ψ0 = 0◦, with
the latter not affecting our results. In each case, we determined
the total accumulated semimajor axis change �a = ∫

da. Note
that we used the linearized thermal theory to estimate da =
(da/dt)Yarkovskydt and the obliquity- and spin-rate-dependent
value of the Yarkovsky semimajor axis drift (da/dt)Yarkovsky

(e.g., Vokrouhlický, 1999). For sake of comparison, we also
computed the accumulated semimajor axis change when only
the YORP torques were activated (and the effect of gravitational
and inertial torques neglected); this was the same approxima-
tion used by Vokrouhlický et al. (2006a, 2006b, 2006c).

Fig. 27 summarizes our results. Retrograde rotators (cos ε0 <

0) are unaffected by gravitational torques and the YORP-only
model does a good job of estimating their accumulated semi-
major axis change over time. As expected, we found the body
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Fig. 27. For each initial obliquity ε0 at the abscissa we determined the ac-
cumulated change of the semimajor axis �a due to the Yarkovsky forces in
50 My. Pseudo-Gaspras with D = 3 km were assumed and the surface thermal
conductivity was set to 0.001 W/m/K, specific heat capacity to 680 J/kg/K
and surface/bulk density to 2.5 g/cm3. Open/full symbols were determined for
average YORP torques that asymptotically decelerate/accelerate asteroid’s ro-
tation. Model where we included only the YORP torques is shown with circles;
model that additionally contains the effects of gravitational torques is shown
with squares. The YORP-only results are characterized by: (i) decrease of |�a|
for extreme initial values of ε0 in the case when the rotation period becomes
very long by YORP (because the thermal lag angle producing the orbital ef-
fect rapidly shrinks), (ii) relative decrease of |�a| for extreme initial values
of ε0 in the case when the rotation period becomes short by YORP (because
the dominant diurnal variant of the Yarkovsky effect ceases to be efficient for
fast rotation). Secular spin–orbit resonances (s and s6) produce �a fluctuating
about a mean value for initially prograde rotators in the model where the grav-
itational torques have been included. While the difference is not very large, our
results may imply the asteroid families’ ages may have been slightly underesti-
mated in Vokrouhlický et al. (2006a, 2006b, 2006c).

drifted ∼10−3 AU in 50 My. This is because gravitational
torques for retrograde rotators produce uniform precession with
constant obliquity. For prograde rotators, the YORP-only model
produces the same accumulated �a as retrograde rotators (with
a changed sign).

When gravitational torques were included in the simulation,
however, the presence of spin–orbit secular resonances s and
s6 had a strong effect on the accumulated �a. We found a
“flattenting” of �a for cos ε0 � 0.3 (and over a timespan of
50 My), mainly because gravitational torques are driving large
obliquity ε changes. For individual objects, this means their
Yarkovsky drift rates may increase for a time before decreas-
ing (or vice versa). In certain cases, they may even change their
sign multiple times. Chaotic mixing of the obliquity histories
make the result nearly independent of ε0. The net effect after
50 My is that �a increases for the YORP-decelerating spins
and decreases for YORP-accelerating spins. Between these two
effects, the decelerating spin case is perhaps less important be-
cause bodies achieving long rotation periods are susceptible to
be reoriented and spun up by non-disruptive collisions. We ar-
gue that the accelerating rotation rate case are more significant
and hence may imply that families spread more slowly in a

than predicted by our models. Consequently, some of the fam-
ily ages derived by Vokrouhlický et al. (2006a, 2006b, 2006c)
using the Yarkovsky/YORP effects alone may be shorter than
the true ages. A detailed analysis of this effect for particular as-
teroid families will be the study of the next paper in this series.
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Appendix A. A simple resonance-overlap criterion

Here we show a simple variant of the secular spin–orbit
resonance overlap criterion that is based on our analysis of
the Hamiltonian (7). We first note that in a single-line repre-
sentation of the orbital-plane motion in space (I = const. and
Ω = st + ϕ), a canonical transformation brings (7) into a form

(A.1)Hres = α

2

(
X − s cos I

α

)2

+ s
√

1 − X2 sin I cosφ,

with X = − cos ε and φ = −(ψ + Ω). We assume here 4 equi-
libria exist for a given set of parameters. We are mainly con-
cerned about Cassini states 2 and 4 that are the stable and un-
stable loci of the spin–orbit resonance. Though the algebra can
be worked out in an implicit manner and easily programmed
on a computer, our goal here is to provide a simplified, but an-
alytic, form of the criterion for secular resonance to overlap
(and thus likely trigger a chaotic boundary near their separa-
trixes; e.g., Chirikov, 1979; Wisdom, 1987). For that reason,
we approximate the stable point location with Xres ∼ s cos I/α.
Using perturbation calculations in the immediate vicinity of the
resonance location Xres, we approximate the resonance Hamil-
tonian (A.1) with a pendulum. The resonance width then reads

(A.2)W � 2

√ |s| sin I

α

(
1 − s2 cos2 I

α2

)1/4

.

Now we can assume that two different frequencies s1 and
s2 contribute to the motion of the orbital plane. We formally
associate resonance zones with each of them and consider an
approximate criterion for their overlap. Note this is not done
using a full analysis of the 4-D phase space of the problem.
Rather, we simply compare the maximum obliquity range cov-
ered by each of the resonances and determine whether it has a
non-zero overlap. This occurs when

(A.3)|s1 cos I1 − s2 cos I2| � α(W1 + W2),

or if both inclinations I1 and I2 are small we may even write

(A.4)|s1 − s2| � 2
√

α
(√|s1| sin I1 + √|s2| sin I2

)
.

Recall α � 1330.6ξ/a3 arcsec/yr, where the semimajor axis a

is given in AU and ξ = �P6, with P6 the rotation period in 6 h
increments. One of the two frequencies (s2, say) is constant
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Fig. 28. Minimum ε− and maximum ε+ obliquity values of the secular
spin–orbit resonance associated with the s (thick lines) and s6 (thin lines)
Fourier modes in Gaspra’s non-singular inclination vector sin I/2 exp(ıΩ) as
a function of the physical parameter ξ = �P6 (� is the dynamical flattenting
and P6 is rotation period in 6 h units). Solid lines are the exact solution of the
Colombo top, while the dashed lines are the approximate (pendulum-like) so-
lution from Appendix A. The s6 resonance bifurcates first and exists for the ξ

values in the light-shaded zone. The s resonance bifurcates next, and exists to-
gether with the s6 resonance in the dark-shaded zone. Gaspra’s value ξ � 0.358
indicated by the arrow places this asteroid right at the place where the s reso-
nance starts to exist. YORP evolution may increase or decrease ξ by changing
the asteroid’s rotation period. For larger ξ values both resonances shrink and
migrate toward larger obliquity values, nevertheless they always remain over-
lapped.

throughout the whole belt and amounts to −26.34 arcsec/yr.
The corresponding forced inclination is I2 ∼ 1◦. The first line is
the proper mode (s, I ) of the orbital plane precession in space.
The smaller is the difference on the left-hand side of (A.4) as
compared to the sum of the resonance widths on the right-hand
side, the more important is the effect of the resonance overlap
and the more chaotic (irregular) evolution of the spin axis in
space is expected.

Fig. 28 shows how well this approximate formulation com-
pares to the exact solution of the Colombo top for (951) Gaspra.
Except for the parameter interval near the bifurcation of the res-
onance, this approximate analytic approach does a good job at
estimating the width of the resonance (and hence can also be
used to determine the resonance overlap criterion).

We also note that asteroid (8) Flora has a comparable or-
bit to (951) Gaspra. Because its obliquity value is also similar,
Gaspra’s long-term spin evolution (see Section 3.1) may be sim-
ilar to Flora’s. There are differences to consider, though. Flora
is much larger than Gaspra, it has a smaller flattenting parame-
ter (� � 0.17), and its rotation period P = 12.80 h is longer
(e.g., Torppa et al., 2003). Interestingly, Gaspra and Flora still
have about the same value of ξ = �P6 which is the essential
parameter needed to determine the precession rate. Indeed, our
numerical propagation of Flora’s spin state for 50 My indicates
its obliquity chaotically wanders over the same large interval as
that of Gaspra.
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