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We use the recently determined rotation state, shape, size and thermophysical model of Apophis to pre-
dict the strength of the Yarkovsky effect in its orbit. Apophis does not rotate about the shortest principal
axis of the inertia tensor, rather its rotational angular momentum vector wobbles at an average angle of
’37� from the body axis. Therefore, we pay special attention to the modeling of the Yarkovsky effect for a
body in such a tumbling state, a feature that has not been described in detail so far. Our results confirm
that the Yarkovsky effect is not significantly weakened by the tumbling state. The previously stated rule
that the Yarkovsky effect for tumbling kilometer-size asteroids is well represented by a simple model
assuming rotation about the shortest body axis in the direction of the rotational angular momentum
and with rotation period close to the precession period is confirmed. Taking into account uncertainties
of the model parameters, as well as the expected density distribution for Apophis’ spectral class, we pre-
dict the secular change in the semimajor axis is ð�12:8� 3:6Þ � 10�4 au/Myr (formal 1r uncertainty). The
currently available astrometric data for Apophis do not allow an unambiguous direct detection of the
Yarkovsky effect. However, the fitted secular change in semimajor axis of ð�23� 13Þ � 10�4 au/Myr is
compatible with the model prediction. We revise the Apophis’ impact probability information in the sec-
ond half of this century by extending the orbital uncertainty derived from the current astrometric data
and by taking into account the uncertainty in the dynamical model due to the thermal recoil accelera-
tions. This is done by mapping the combined uncertainty to the close encounter in 2029 and by determin-
ing the statistical weight of the known keyholes leading to resonant impact orbits. Whereas collision with
the Earth before 2060 is ruled out, impacts are still possible from 2060 with probabilities up to a few
parts in a million. More definitive analysis will be available after the Apophis apparition in 2020–2021.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

There are few orbits among near-Earth asteroids that would be
more remarkable than that of 99942 Apophis as far as efforts of
their future propagation are concerned. The interest in Apophis is
naturally powered by the impact threat of this asteroid in the sec-
ond half of this century. The study of Apophis’ hazard has already
benefited from significant observational efforts, including dedi-
cated radar and optical astrometry observations and efforts in
understanding possible biases or local systematic errors in optical
astrometry. The most important aspect of the Apophis orbit is an
extraordinarily close approach to the Earth in April 2029 that will
have a hugely amplifying effect on the orbital uncertainty. As a
result, predicting Apophis’ future orbit requires forefront tech-
niques in modeling even very tiny perturbations in order to ascer-
tain the circumstances of the 2029 encounter. Thus the Apophis
case shares the same strict accuracy requirements on the dynami-
cal model as other asteroids with known possibility of far-future
impacts, e.g., (29075) 1950 DA (Giorgini et al., 2002; Farnocchia
and Chesley, 2014), (101955) Bennu (Milani et al., 2009; Chesley
et al., 2014) and (410777) 2009 FD (Spoto et al., 2014). And yet
for Apophis the impact hazard lies decades rather than centuries
in the future, and so the need to solve the problem soon is higher.

While the ‘‘standard artillery’’ of gravitational perturbations,
including the relativistic effects and perturbations from massive
asteroids, is being used in these highly-demanding cases, it has
been also recognized that the main factor of uncertainty in the
dynamical model arises from our inability to accurately model
the non-gravitational effects. Of these, the Yarkovsky effect (e.g.,
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Bottke et al., 2006; Vokrouhlický et al., in press) plays the most
important role. Chesley (2006) provides a very good introductory
analysis of the Yarkovsky effect for Apophis, while more recent
works of Giorgini et al. (2008), Chesley et al. (2009, 2010), and
Farnocchia et al. (2013b) basically profit from longer astrometry
databases, their better treatment or a more complete statistical
analysis of the unknown parameters needed to estimate the
strength of the Yarkovsky effect. Fundamental improvement in
modeling the thermal accelerations is possible only after these
parameters, such as the spin state, size, bulk density and surface
thermal inertia, become well constrained.

Luckily, recent results from Pravec et al. (2014) and Müller et al.
(2014) provide new physical constraints on Apophis, and the goal
of this work is to use the new information for refinement of Apo-
phis’ orbit prediction, including revision of its future impact haz-
ard. However, the solution is not as straightforward as it might
look. This is because Pravec et al. (2014) found that Apophis does
not rotate in the energetically lowest mode about the principal axis
of inertia, but rather exhibits moderate tumbling. Since virtually all
previous studies of the Yarkovsky effect assumed rotation about
the principal body axis, we first need to describe in some detail
how we deal with it in our approach1 (Section 2). Next, we review
the currently available astrometric observations of Apophis, both
radar and optical, and apply up-to-date bias corrections to them.
The dynamical model, completed by the thermal recoil accelerations,
is then used for Apophis’ orbit determination. This allows us to prop-
agate its uncertainty to 2029, when Apophis encounters the Earth,
and finally revise the impact threat in the second half of this century
(Section 3).
2. Modeling the Yarkovsky effect for Apophis

The degenerate case of principal-axis rotation of an asteroid is
characterized by a single (sidereal) rotation period in the inertial
space. The general case of non-principal-axis rotation of an asym-
metric body makes the description more complicated by involving
two fundamental periods (e.g., Landau and Lifschitz, 1960). The
first period, Pw, fully describes motion of the rotational angular
momentum vector in the body fixed frame B. Adopting the popular
description of a transformation between the inertial space and B
using a set of Euler angles ð/; h;wÞ (see, e.g., Landau and Lifschitz,
1960; Kaasalainen, 2001), Pw sets the periodicity of the proper rota-
tion angle w and the nutation angle h. The second period, P/,
describes the precession of B in the inertial space and it is needed
to describe the Euler angle /. Observationally, Pw and P/ are the
primary parameters set by the data analysis (e.g., Kaasalainen,
2001; Pravec et al., 2005). In a physical description of the rotation,
they are however derived quantities depending on (i) the initial
conditions, and (ii) parameters Ia ¼ A=C and Ib ¼ B=C, where
ðA; B;CÞ are the principal moments of inertia. The fundamental
periods Pw and P/ could be obtained either by analytical formulas
(e.g., Landau and Lifschitz, 1960, or Appendix B in Breiter et al.,
2011, who use Andoyer canonical variables rather than Euler
angles and their associated momenta). An alternative possibility
is to use direct numerical integration of Euler kinematic equations
(e.g., Landau and Lifschitz, 1960, or Appendix in Kaasalainen,
2001).

Apart from rotation, the asteroid undergoes also a translational
motion in the inertial space. This is obviously its heliocentric
1 In passing, we note that our method is similar, but refines the one we used in the
case of (4179) Toutatis (e.g., Čapek and Vokrouhlický, 2005; Vokrouhlický et al.,
2005). At that time the need to compute thermal accelerations for tumbling objects
was rather an academic exercise without having significant practical importance.
With Apophis, and possibly other similar cases in the future, we believe this situation
has changed.
motion, which is at the zero approximation (i.e., unperturbed orbit)
characterized by the orbital period Porb. This brings a third inde-
pendent fundamental period to the problem. The rotation-related
periods Pw and P/ would set up what is known as the diurnal
component of the Yarkovsky effect, while the translation-related
period Porb would yield the corresponding seasonal component.
However, since we derive a fully numerical solution of the Yarkov-
sky effect here, we do not need to adopt any particular split of the
complete effect (which would be anyway difficult, especially when
Pw is not significantly smaller than Porb as in the Apophis case).

Before we proceed with some details of our solution, we note
that the method used to solve the heat diffusion problem requires
that the solution be periodic in time. Strictly speaking, this occurs
only when Porb is an integer multiple of both Pw and P/. Despite the
fact that this may not be exactly satisfied, we can adopt the follow-
ing approximate scheme enforcing the above mentioned
periodicity2:

(i) we slightly change some of the parameters determining Pw

and P/ such that their ratio is a rational number;
(ii) we slightly change the semimajor axis of the heliocentric

orbit such that both Porb=Pw and Porb=P/ are integer numbers.

A few comments are in order. The first step (i) is performed by a
small redefinition of the Ia parameter within its uncertainty inter-
val (for Apophis we use dIa=Iaj j 6 0:5%, while the formal uncer-
tainty of this quantity, as derived from observations, is ’ 10%;
e.g., Pravec et al., 2014). There are obviously several solutions, so
we choose those which then help to satisfy the second step (ii)
with a minimum change of the orbital semimajor axis. Again for
Apophis we use da=aj j 6 1%. This is obviously more than the actual
formal uncertainty in the semimajor axis determination. Hence-
forth, in a particular solution we redefine the solar constant, i.e.,
the solar radiation flux at a normalized heliocentric distance, such
that the mean radiation flux over the true Apophis orbit is the same
as the mean radiation flux over the ‘‘faked orbit’’ with a slightly
redefined semimajor axis value. In order to justify our approach,
we also compare at least two different variants of the solution
(with two different rational values of P/=Pw). As expected, it turns
out that the resulting mean semimajor axis change hda=dti, the
most important effect in terms of orbit determination (e.g.,
Vokrouhlický et al., 2000), is insensitive to these details (see
below).

Having discussed the issue of rotation modeling in some detail,
we can now describe other components of our approach in a briefer
way because they are rather standard (see, e.g., Čapek and
Vokrouhlický (2005) or Čapek (2006) for more details). The asteroid
shape is represented using a general polyhedron model with a typ-
ical number of surface facets ranging from hundreds to thousands.
In the case of Apophis, the available model by Pravec et al. (2014)
has 2024 surface facets. We consider the thermal history of each
of the facets independently, not allowing a thermal communication
between them by either conduction (e.g., Golubov and Krugly,
2012) or mutual thermal irradiation (e.g., Rozitis and Green, 2012,
2013). The space coordinate in the heat diffusion problem is simply
vertical depth z below the facet, such that the space–time domain of
the solution is in principle ð0;1Þ� ð0; PorbÞ. In reality though, we
set an upper limit Z on the depth, such that the true domain of
2 Note that we implicitly use the same trick also in the case of the Yarkovsky
solution for asteroids rotating in the principal-axis mode by modifying the rotation
period Prot such that the ratio Porb=Prot is integer. In this case, one can keep the orbit
fixed and only slightly change the rotation period Prot to satisfy the periodicity
condition. Given typically short rotation periods of asteroids this usually involves a
change in Prot smaller than one per mille of its value, an insignificant change often
within its uncertainty interval.
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our solution becomes finite: D ¼ ð0; ZÞ � ð0; PorbÞ. The value of Z is
set to be 15 times the estimated penetration depth horb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KPorb=2pqC
p

of the seasonal thermal wave, where K is the surface
thermal conductivity, q is the surface density and C is the surface
specific heat capacity.

Our solution is made explicit by setting conditions at the
boundary @D: (i) we impose Porb-periodicity of the solution, i.e.,
identify temperatures at time 0 and Porb at any depth z, (ii) at depth
Z we have a Neumann condition ð@T=@zÞz¼Z ¼ 0, implying no fur-
ther heat flux (i.e., an isothermal core of the body), and (iii) at
the surface we have a non-linear Robin condition erT4ðz ¼ 0Þ
�Kð@T=@zÞz¼0 ¼ EðtÞ, where e is the mean thermal emissivity, r is
the Stefan–Boltzmann constant and EðtÞ is the absorbed solar radi-
ative flux. The non-linearity of the surface condition requires an
iterative method of solution.

Another non-trivial issue is a determination of EðtÞ for non-con-
vex asteroid shapes, since neighbor regions of the surface may
sometimes shadow a given facet. Our code takes into account these
shadowing effects by numerical ray-tracing of sunlight from the
instantaneous direction to the Sun to the surface facet. If any other
surface facet presents an obstacle, we set E ¼ 0 at that moment of
time. At present, though, the nominal shape model of Apophis as
available from the lightcurve inversion technique is convex and
does not involve such complications. We tested results from shape
variants with slight non-convexities that are compatible with hull
variations shown in Fig. 5 of Pravec et al. (2014), which provided
resulting secular change in semimajor axis different from the nom-
inal model by few percents at maximum. We also recall that we
determine EðtÞ for the whole timespan Porb in the domain D. This
means our solution implicitly contains both diurnal and seasonal
components of the Yarkovsky effect.

The heat diffusion equation itself is discretized according to a
chosen grid on D and a finite difference method is adopted to
obtain the solution. We use constant time-step dt, typically a small
fraction of P/, and an exponentially increasing step in depth z with
a surface value dz. The increase of the step in z is allowed by les-
sons drawn from a simplified analytical solution of the linearized
heat diffusion problem that indicates an exponential decrease of
the temperature difference with respect to the core with a penetra-
tion depth h/ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KP/=2pqC

p
. One may increment dz by a value

expðz=h/Þ to compensate for the expected approximate tempera-
ture change. However, a z-dependent step would bring extra terms
in the discretization scheme, so we opt for a simpler rule:
dzj ¼ dz expðajÞ for the step at the jth gridpoint with some value
of a parameter a (dz0 ¼ dz; see, e.g., Brown and Matson, 1987).
We typically use a ’ 0:1. We make sure that the chosen values grid
steps, dt and dz, satisfy the von Neumann stability criterion. This is
because we solve the heat diffusion equation using a simple expli-
cit method described in Čapek (2006). The constant equilibrium
temperature set on the whole grid in D is our starting condition,
and we perform iterations until the temperature change at any
gridpoint is less than 0.1%.

Once the heat diffusion solution converged, we know the sur-
face temperature for each of the surface facets at any time along
the revolution about the Sun. Assuming Lambertian thermal emis-
sion, the recoil acceleration Df of the re-emitted radiation reads
Df ¼ �ð2=3Þ ðerT4=mcÞDS, where c is the light velocity, m is the
total mass of the body and DS is the outward-oriented area of
the facet. The contribution from all surface facets is summed-up
to obtain a total thermal acceleration fðtÞ ¼

P
Df at a given time

t along the orbit. These acceleration values are exported into a
lookup table as a function of true anomaly that is used to compute
hda=dti from the Gauss planetary equations, and could be used for
the orbit propagation of the asteroid.
With this approach we determine f along the unperturbed ellip-
tical orbit rather then along the true heliocentric orbit of the aster-
oid. This is justified because the Yarkovsky effect is small enough
that it does not directly produce a significant change in the orbital
elements during the time span of interest. Of course, if the orbit
undergoes a major change due to a planetary encounter, as is the
case for Apophis in 2029, then the use of the unperturbed orbit
becomes inappropriate and the lookup table must depend also
on the orbital elements. Chesley et al. (2014) describe such an
implementation approach, but as we show below, such sophistica-
tion is not needed for Apophis at present, but likely will be in the
future.

At this moment we do not take into account the effects of sur-
face roughness with a characteristic length scale smaller that the
surface facets directly in our model. Rozitis and Green (2012,
2013) have shown that they could result in a slight increase of
the Yarkovsky effect; this potential increase is empirically included
in Section 2.2.
2.1. Parameters of the numerical solution for Apophis

In what follows, we use two thermal solutions A and B for Apo-
phis along the lines explained above. Solution A has Ia ¼ 0:61042,
while for solution B we set Ia ¼ 0:60710. In both cases we keep
the nominal value Ib ¼ 0:965 from Pravec et al. (2014). Note that
the currently nominal value for Ia is 0:61þ0:11

�0:08 (3r confidence inter-
val; Pravec et al., 2014), so our A and B variants use Ia within the
uncertainty interval of this parameter. The choices are made such
that for case A we have Porb=P/ ¼ 280 and Porb=Pw ¼ 29 with
Porb ¼ 319:5972 day, and for case B Porb=P/ ¼ 288 and Porb=Pw

¼ 30 with Porb ¼ 328:5353 day. The current Apophis orbit has, in
fact, an orbital period of ’ 323:5 day, so solution A corresponds
to an orbit with somewhat smaller semimajor axis and vice versa
for solution B. In quantitative terms we have da=a ’ �0:8% for
solution A and da=a ’ þ1:0% for solution B, assuming a to be the
Apophis’ current semimajor axis value. As mentioned above this
is significantly more than the formal relative uncertainty in a but
does not present a problem for our method. In each of solutions
A and B we recalibrate the solar constant such that the mean influx
of sunlight over these orbits is exactly the same as for the real orbit
of Apophis.

We rescaled the polyhedral model of Pravec et al. (2014) such
that it has a volume equal to a sphere with D ¼ 375 m (Müller
et al., 2014). For definiteness we adopted the following set of ther-
mal parameters in our simulations: (i) the specific heat capacity
C ¼ 680 J/kg/K, (ii) both surface and bulk densities of 2 g/cm3,
(iii) the Bond albedo A ¼ 0:14, and (iv) the thermal emissivity
approximated as e ¼ 1� A ¼ 0:86. These are median values of the
parameters in the distributions derived by Farnocchia et al.
(2013b); see Fig. 2 or follow from the solution by Müller et al.
(2014). The last parameter, surface thermal conductivity K, was
varied in the interval 0.01–1 W/m/K, sufficiently covering all plau-
sible values of the surface thermal inertia C between ’ 116 to
’ 1150 (SI units). Note that Müller et al. (2014) report surface iner-
tia values in the 250–800 range (SI units). Their best fit solution of
the thermal inertial of 600 (SI units) would correspond to
K ’ 0:265 W/m/K in our case. In all solutions we used a timestep
dt ¼ 3 s and a step dz ¼ 3� 10�3 ffiffiffiffi

K
p

m at the surface. The lower
conductivity K solutions require somewhat smaller step in the
depth z, because the penetration depth h/ becomes smaller. Our
initial step dz at the surface represents about 1/100 of h/.

Fig. 1 shows the orbit-averaged value hda=dti for both solutions
A and B as function of the surface thermal conductivity K. In fact,
the difference between the two solutions is less than 0.1%, so the



Fig. 1. Secular drift of the orbital semimajor axis hda=dti (averaged over Porb

timescale of our solution) due to the Yarkovsky effect for 99942 Apophis (in
10�4 au/Myr) as a function of the surface thermal conductivity K (in W/m/K; other
physical parameters as in the text). The solid line shows results from our numerical
runs for both variants A and B (they both coincide with differences much smaller
than the scale of the ordinate). The highlighted black segment shows the hda=dti
values that correspond to solutions with the surface thermal inertia between 250
and 800 (SI units) from Müller et al. (2014) (the arrow indicates the thermal inertia
value corresponding to the best-fit thermal inertia of 600 in SI units). The dashed
line is an analytic approximation valid for a spherical body of size 375 m rotating
about a fixed spin axis in the inertial space. The assumed rotation period in this case
is PwP/=ðPw � P/Þ ’ 30:56 h and the spin axis direction at ecliptic longitude 250�
and latitude �75�, equal to the nominal direction of the rotational angular
momentum of the tumbling solution for Apophis (see Pravec et al., 2014).

Fig. 2. Secular drift of the orbital semimajor axis hda=dti (averaged over Porb

timescale of our solution) due to the Yarkovsky effect for 99942 Apophis (in
10�4 au/Myr) as a function of the obliquity c, defined by the angular distance
between the rotational and orbital angular momentum vectors. Open triangles are
results from individual runs where the Apophis angular momentum vector was
sampling the boundary of its 3r uncertainty region as in Fig. 4 in Pravec et al.
(2014). The star shows the nominal solution of Apophis rotation with obliquity
’ 167:1� . All runs had the nominal value of the surface thermal inertia of 600 (SI
units). The dashed line shows the expected hda=dti / cos c dependence from the
linear analysis of the Yarkovsky effect for a spherical body. The solid line is the
analytic result multiplied by a factor 0.85. The shape and rotation state uncertain-
ties give a �3% uncertainty in hda=dti for a given obliquity.

3 Note that this value replaces the guessed correction factor f ¼ 0:7 in Section 4.1 of
Pravec et al. (2014).
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two solution entirely overlap at the available resolution of the
figure. This is an important justification of our method. The dashed
line shows an analytical result from a linearized heat diffusion
theory valid for a spherical body in simple rotation on a circular
heliocentric orbit (e.g., Vokrouhlický, 1999; Bottke et al., 2006).
We assumed a body with 375 m diameter, 30.56 h rotation period
and rotation axis directed along the total rotational angular
momentum given by Pravec et al. (2014, Table 2). As advocated
in Pravec et al. (2014), and confirmed here, such an analytical
approximation provides a very good zero approximation for the
Yarkovsky effect on Apophis despite its tumbling state. Our numer-
ical solution gives a hda=dti that is about 85% of that obtained with
the analytical solution. The reasons for this difference are: (i)
non-spherical shape of the body (see Pravec et al., 2014), (ii)
non-linearity of the numerical solution, and (iii) non-principal-axis
rotation. The dark segment of the solid line shows solutions for
which the surface thermal inertia C ranges between 250 and 800
(SI units), the interval of values resulting from analysis in Müller
et al. (2014). Thanks to the nonlinear dependence of hda=dti on
C; hda=dti only varies between �15� 10�4 au/Myr and �11�
10�4 au/Myr over the Müller et al. (2014) interval for C.

The above solutions A and B used the nominal, best-fit solution
of Pravec et al. (2014) for the Apophis rotation. However, there is
presently a considerable uncertainty in the Apophis rotation solu-
tion, see Fig. 4 in Pravec et al. (2014). To test the effect of this
uncertainty, we selected 50 solutions from Pravec et al. (2014),
all at the 3r boundary of the angular momentum vector solution
(and each individually providing its own shape and other rotation
parameters). We reran our Yarkovsky model for each of these rota-
tion models, fixing the value of the surface conductivity at its nom-
inal value 0.265 W/m/K (Müller et al., 2014; other physical
parameters as in Fig. 1). In Fig. 2 we plotted the orbit-averaged
semimajor axis drift hda=dti as a function of the Apophis ‘‘obliq-
uity’’ angle c. The latter is approximated by the angular distance
between the rotational and orbital angular momentum vectors.
The solid line in Fig. 2 shows the expected hda=dti / cos c depen-
dence from the linear analysis of the Yarkovsky effect (e.g.,
Vokrouhlický, 1999; Vokrouhlický et al., 2000), accounting also
for the ’ 0:85 factor mentioned above. We note that the sensitivity
of hda=dti to uncertainty in c is modest because cJ 150�.

2.2. Statistical distribution of semimajor axis change

With the new physical constraints outlined above we could run
the previously described Yarkovsky code many times to obtain the
statistical distribution of the future Apophis position. We think this
high-accuracy approach will eventually become imperative as the
parameter space of the Yarkovsky effect is more and more con-
strained, and in particular when the effect is unambiguously
detected (see Section 3). With that approach it will be important
to ensure that the computed accelerations are consistent with
the asteroid’s actual heliocentric orbit as it evolves under close
planetary encounters.

For the present we instead employ a simpler method that uses
the approach outlined in Farnocchia et al. (2013b). What we need
first is a statistical distribution of the current mean semimajor axis
drift hda=dti for Apophis, and from this we derive the distribution
of a proxy transverse acceleration that fully captures the salient
effects of the thermal recoil acceleration. As we discuss briefly
below and as described in detail by Farnocchia et al. (2013b), this
transverse acceleration is modeled through usual the nongravita-
tional acceleration parameter A2, which depends only on the aster-
oids physical and spin characteristics and does not have a
significant dependence on the object’s semimajor axis and eccen-
tricity. Here we derive the distribution of hda=dti, and in the fol-
lowing section we use that to obtain the distribution in A2.

The important message from the tests presented above is that
we may use a simple analytical formula for the diurnal effect from
Vokrouhlický (1999), valid for a spherical body rotating about the
fixed spin axis in space, multiplied by the correction factor f ¼ 0:85
for the non-sphericity and non-linearity effects,3 to obtain the
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needed information. This is similar to what has been used in Pravec
et al. (2014), but we use here proper correlations among the param-
eters from Müller et al. (2014). In particular, the assumed values of
obliquity are those derived for the rotational angular momentum
vector in Fig. 7 (left panel) of Pravec et al. (2014). In order to com-
pute hda=dti we need to set the values of (i) the effective size D,
(ii) thermal inertia C, and (iii) Bond albedo A. These are taken from
Müller et al. (2014) distributions that provide also a full correlation
analysis between these parameters (see also Müller and Lagerros
(1998, 2002) for tests and validation of the thermal model).

One other key parameter is the asteroid’s bulk density. This last
parameter has not been constrained by either of the two papers
used above. Our nominal guess of 2 g/cm3 assumed above was
based on the the density value derived for other S-type asteroids
of a comparable size: (i) the ’1 km size asteroid (5381) Sekhmed
(e.g., Neish et al., 2003), (ii) the ’1.1 km size asteroid (35107)
1991 VH (e.g., Carry, 2012), (iii) the ’0.4 km size asteroid
(25143) Itokawa (e.g., Fujiwara et al., 2006; Abe et al., 2006), and
(iv) the ’1.3 km size asteroid (66391) 1999 KW4 (e.g., Ostro
et al., 2006). Note, however, that the’0.45 km satellite of the latter
has a bulk density of ’2.8 g/cm3, reflecting lower macroporosity
than the primary component in this binary system. Additionally,
Lowry et al. (2014) analysed implications of the detected YORP
effect for Itokawa by using a detailed thermophysical model and
concluded that the asteroid consists of two very different parts:
(i) the main body with the density ’1.75 g/cm3 and (ii) the head
with the density ’2.85 g/cm3. While this striking difference may
be in part due to their model incompleteness (e.g., Golubov et al.,
2014; Ševeček et al., 2015), the two values again roughly bracket
the expected interval of Apophis bulk density. We thus use the
same bulk-density distribution function as shown in Fig. 2 of
Farnocchia et al. (2013b), which is based on Binzel et al. (2009).

Rozitis and Green (2012) showed the Yarkovsky effect is always
enhanced by the effect of surface unresolved roughness. Since we
do not have surface roughness information for Apophis, we take
an approach analogous to that adopted by Chesley et al. (2014),
see Fig. 10 for asteroid (101955) Bennu. Specifically, we scaled
hda=dti by a surface roughness enhancement factor that, for the
Apophis thermal inertia range, increases the semimajor axis drift
by a value as large as 20%. Given a value of the thermal inertia,
the maximum estimated factor has served to define a template
interval. Without more detailed information, we considered med-
ian enhancement to be half of this maximum factor with a Gauss-
Fig. 3. Statistical distribution of hda=dti obtained from the theoretical modeling
with parameters described in the text. The gray horizontal bars correspond to 1r
and 3r intervals.
ian distribution reaching limits of the interval at the 3r
significance level.

Finally, we need to account for the uncertainties of the Pravec
et al. (2014) shape and rotation models. As shown by Fig. 2, and
further tested by clone variants of Apophis having slightly different
shape, these uncertainties map into a �3% dispersion in hda=dti
(formal 1r value). Therefore, we added a 3% random noise to the
sampled hda=dti.

The distribution of hda=dti computed according to the parameter
distributions described above has a mean of �12:8� 10�4 au/Myr
and a formal standard deviation of 3:6� 10�4 au/Myr. Fig. 3 shows
the corresponding hda=dti distribution, which is actually not sym-
metric around its peak hda=dti ¼ �11:8� 10�4 au/Myr. As a matter
of fact, the median value is �12:4� 10�4 au/Myr, the 1r interval
spans from �15:7� 10�4 au/Myr to �8:6� 10�4 au/Myr, and the
3r interval from �26:4� 10�4 au/Myr to �3:4� 10�4 au/Myr.

3. Implications on the trajectory and impact hazard

Chesley (2006), Giorgini et al. (2008), and Farnocchia et al.
(2013b) prove that the Yarkovsky effect is the main source of
uncertainty for the Apophis ephemeris prediction. As an example,
for the gravity-only orbital solution the formal 3r uncertainty of
the time of closest approach in 2029 is about 1 s. On the other
hand, the Yarkovsky effect can change the time of closest approach
by tens of seconds.4

To account for the Yarkovsky accelerations, we added a tangen-

tial acceleration A2 ð1au=rÞ2 to the force model (Farnocchia et al.,
2013a). One way to constrain A2 is to use the fit to the astrometric
observations. We selected the most reliable optical astrometry
available for Apophis through February 26, 2014, namely observa-
tions by Tholen et al. (2013), and MPEC 2014-R71, Pan-STARRS PS1,
and Magdalena Ridge Observatory. Moreover, we included thirteen
delay and seven Doppler radar observations,5 including the ones
from the most recent radar apparition of late 2012 and early 2013.
By using the Farnocchia et al. (2015) statistical treatment for the
optical astrometry as well as some ad hoc weights (see Farnocchia
et al. (2013b) for details) we obtain A2 ¼ ð�51� 28Þ � 10�15 au/d2,
which is a notable indication, but only a marginal detection, of the
Yarkovsky effect.

Another way to constraint A2 is to use the physical model of
Apophis. The semimajor axis drift distribution obtained in Section
2.2 can be converted to A2 as (see Farnocchia et al., 2013a):

A2 ¼
1
2

n
a

1au

� �2
ð1� e2Þ da

dt

� �
; ð1Þ

where e and a are the eccentricity and semimajor axis assumed in
Section 2, and n the orbital mean motion.

Fig. 4 shows the A2 distribution obtained from the astrometry
and that obtained from the physical model. The figure also shows
the A2 distribution obtained by combining the independent infor-
mation coming from both astrometry and physical model. It is
worth noticing that, since the constraint from the astrometry is
weak, the combined distribution is close to that coming from the
physical model only.

We now use the combined distribution of A2 to make ephemeris
predictions. In particular, we want to assess the implications on
the Earth impact hazard. As already discussed in full detail by
4 See also Žižka and Vokrouhlický (2011) for a discussion of a smaller effect of the
direct radiation pressure and pressure of the sunlight scattered by the asteroid
surface. Altogether, these effects would produce orbital perturbation amounting to
about few percent of that due to the Yarkovsky effect. For that reason we neglect
them in the present study.

5 http://ssd.jpl.nasa.gov/?radar.

http://ssd.jpl.nasa.gov/?radar


Fig. 4. Probability density distribution (ordinate) of the A2 transverse acceleration
parameter: (i) from the Apophis orbital fit using the currently available optical and
radar astrometry (gray curve labeled 1), (ii) from the theoretical modeling with
parameter distributions described in the text (gray curve labeled 2), and (iii)
resulting combination of (i) and (ii) shown by the black solid line.

Table 1
Possible Earth impacts for Apophis. Columns are impact epoch, 2029 keyhole location
and width, probability density function (PDF) of f2029 � f0 at the keyhole, and impact
probability (IP). Here f0 ¼ 47;677 km is an arbitrary point of reference, as depicted in
Fig. 5. Only the impacts with probability greater than 10�7 are shown.

Date f2029 � f0 Width PDF IP
TDB km m 10�3 km�1 10�6

2060-04-12.6 �241 0.03 3.3 0.1
2065-04-11.8 �237 0.08 3.2 0.3
2068-04-12.6 �230 2.25 3.0 6.7
2076-04-13.0 �224 0.19 2.8 0.5
2077-04-13.5 �230 0.06 3.0 0.2
2078-04-13.8 �236 0.07 3.2 0.2
2091-04-13.4 �236 0.07 3.2 0.2
2103-04-14.4 �230 0.18 3.0 0.5
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Farnocchia et al. (2013b), this analysis is best performed on the
2029 b-plane, i.e., the plane including the geocenter and normal
to the incoming asymptote of the Apophis trajectory with respect
to the Earth during the 2029 encounter (Valsecchi et al., 2003).
The coordinates ðn2029; f2029Þ on the b-plane are defined so that
the projection of the Earth’s heliocentric velocity onto the b-plane
defines the negative f2029-axis. Thus, the f2029 coordinate defines
how early or late Apophis for the minimum possible encounter dis-
tance with the Earth. Because of Keplerian motion the orbital
uncertainties stretch into a slender ellipsoid along the orbit. The
Yarkovsky effect is the largest to affect the along-track position
since the semimajor axis drift causes an along-track runoff that
accumulates quadratically with time. Since the along-track uncer-
tainty is strictly related to the time uncertainty, it is convenient to
parameterize the projection of the orbital uncertainty by using the
f2029 coordinate (for more details see Farnocchia et al., 2013b).
Fig. 5. The gray curve shows the probability density function of f2029 for a gravity-
only orbital solution, with the origin arbitrarily shifted to zero at the nominal value
f0 ¼ 47;677 km. The peak of this distribution is 0.07 km�1 and is therefore outside
the vertical range of the plot. The black curve shows the probability density
function of f2029 obtained including the Yarkovsky effect in the model. The vertical
bars correspond to the keyholes and their height is proportional to the keyhole
width. The impact probabilities can be computed as the product of the f2029 density
function and the keyhole widths.
Fig. 5 shows the distribution of f2029 for both a gravity-only
solution and the one accounting for the Yarkovsky effect. The sta-
tistically significant difference between the two predictions is evi-
dent: the gravity-only prediction is f2029 ¼ ð47;677� 6Þ km, while
the solution including the Yarkovsky effect yields f2029 ¼
ð47;354� 90Þ km. It is worth noticing how the inclusion of the
Yarkovsky effect produces a � 300 km shift in the nominal predic-
tion and increases the uncertainty by more than a factor of ten. The
mean value and width of the distribution function accounting for
the Yarkovsky effect mostly depends on the obliquity, size and
thermal inertia, and bulk density constraints. Overall it would shift
toward smaller f2029 values for smaller obliquity, larger size or
smaller surface thermal inertia, and larger bulk density (and vice
versa).

To obtain the hazard assessment we use the keyholes on the
2029 b-plane, namely the regions on the 2029 b-plane leading to
an impact at a later encounter (e.g., Chodas, 1999). The 2029 key-
holes have already been computed in Farnocchia et al. (2013b) and
are shown, along with their widths, in Fig. 5. To compute the prob-
ability of an impact during one of the post-2029 encounters, all we
have to do is integrate the f2029 probability density function over
the corresponding keyhole. Table 1 reports all the possible impacts
with impact probability greater than 10�7. The highest risk
encounter is that of April 2068 with an impact probability of seven
in a million.

Since the rotation state of Apophis could change during the
2029 encounter (Scheeres et al., 2005), the post-2029 trajectory
cannot be exactly known until the post-2029 rotation state is
determined. As a consequence, the exact location of the keyholes
depends on the post-2029 Yarkovsky effect, unknown to us at
the moment. Luckily, as already discussed in Farnocchia et al.
(2013b), whatever post-2029 strength of the Yarkovsky effect,
the keyhole structure can only change slightly: they can shift by
up to ’0.5 km without significantly changing their width. There-
fore, the current impact probability computations are not signifi-
cantly affected by this unknown aspect of Apophis dynamics.
4. Conclusions

We performed a detailed numerical determination of the Yar-
kovsky effect for potentially hazardous asteroid 99942 Apophis.
To that goal we used the up-to-date information of this body’s
rotation state and its surface thermal inertia. The currently uncon-
strained parameters of the model were simulated using a Monte
Carlo scheme from other asteroid analogs. We also collected the
currently available astrometric dataset, both optical and radar
measurements, of this asteroid. Our orbit determination provides
a low-SNR indication of the Yarkovsky effect from the astrometry
fit.
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As already anticipated in Pravec et al. (2014), our solution mod-
ifies the impact probabilities of Apophis given by Farnocchia et al.
(2013b) in two ways: (i) first, some impact possibilities were elim-
inated or their probability became negligible, and (ii) second, the
composite impact probability increased by a factor of about three.
Both are principally due to the constrained spin solution for Apo-
phis. Thus the impact possibilities that were related to prograde
rotation state of Apophis in Farnocchia et al. (2013b) analysis have
now effectively null probability. On the other hand, those that
reside near the confirmed retrograde spin state of Apophis reveal
slightly larger impact probability. This concerns a cluster of reso-
nant return solutions in the 2029 b-plane led by the April 12.6,
2068 Earth impact solution.

As discussed in Farnocchia et al. (2013b), the next favorable
observational window of Apophis starts in November 2020 and
extends through spring and summer of 2021, when high quality
radar measurements could be taken. If successful, these observa-
tions will certainly help shrink the current astrometric constraint
of the Yarkovsky effect from SNR of about 1.8 to a value near or lar-
ger than 10. At that moment, the fate of the Apophis orbit for the
future century will be much better known. Interestingly, the role
of astrometry and modeling as far as the Yarkovsky effect is con-
cerned will likely interchange. Fig. 4 indicates that currently the
broad Yarkovsky constraint comes basically from the model side
with virtually no astrometric contribution. After 2020/2021 obser-
vational campaign, the astrometric determination of the Yarkovsky
effect will likely overwhelm the modeling part. This is actually
desirable, because such a constraint is less dependent on model
assumptions and parameters. However, the approach to the Earth
in March 2021 will also offer a possibility for a wealth of photo-
metric observations both in the optical and thermal wavebands.
These could serve to refine the currently coarse constraints on
the rotation state and thermal inertia of this body. If combined
with the astrometric value of the Yarkovsky effect, such data
may help determine the bulk density of Apophis with the approach
demonstrated by Chesley et al. (2014), who used the Yarkovsky
effect to obtain a density constraint for asteroid (101955) Bennu.
Such information will also be very important if the impact possibil-
ities persist.
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Čapek, D., 2006. Thermal Effects in Physics and Dynamics of Small Bodies of the
Solar System, Ph.D. Thesis. Charles Univesity, Prague.
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Žižka, J., Vokrouhlický, D., 2011. Solar radiation pressure on (99942) Apophis. Icarus
211, 511–518.

http://refhub.elsevier.com/S0019-1035(15)00017-2/h0005
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0005
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0010
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0010
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0015
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0015
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0165
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0165
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0165
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0020
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0020
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0030
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0030
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0030
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0035
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0040
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0040
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0040
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0040
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0045
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0045
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0055
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0055
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0060
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0060
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0065
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0065
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0070
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0070
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0075
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0075
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0080
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0080
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0085
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0085
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0090
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0090
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0095
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0095
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0100
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0100
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0110
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0110
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0115
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0120
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0120
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0125
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0125
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0130
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0130
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0135
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0135
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0140
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0140
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0145
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0145
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0150
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0150
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0155
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0160
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0160
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0170
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0170
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0170
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0175
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0175
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0180
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0180
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0190
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0190
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0195
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0195
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0200
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0200
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0205
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0205
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0210
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0210
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0215
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0215
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0220
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0220
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0220
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0225
http://refhub.elsevier.com/S0019-1035(15)00017-2/h0225

	The Yarkovsky effect for 99942 Apophis
	1 Introduction
	2 Modeling the Yarkovsky effect for Apophis
	2.1 Parameters of the numerical solution for Apophis
	2.2 Statistical distribution of semimajor axis change

	3 Implications on the trajectory and impact hazard
	4 Conclusions
	Acknowledgements
	References


