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Abstract. We discuss the effects of taking into account the
Earth’s polar flattening when modelling the solar radiation force
which perturbs the orbit of Earth satellites during their penum-
bra transitions. For this purpose, we generalize our previous the-
ory for these perturbations (Vokrouhlicky et al. 1993b), which
assumed a spherical Earth. The new theory is then applied to
two satellites for which the penumbra perturbations may pro-
duce detectable effects. The main changes with respect to the
case with a spherical Earth appear in the timing of the transition
phases leading from sunlight to shadow and vice versa, and in
the overall duration of the eclipse intervals. These changes can
cause short—periodic dynamical effects, and might be directly
observable through in situ microaccelerometric measurements
with good time resolution. On the other hand, we show that no
additional long—term orbital effect on LAGEOS-type satellites
is expected as a consequence of the Earth’s polar flattening, ow-
ing to a symmetry in the shadow entry/exit phases, which causes
the perturbations to average out along one satellite revolution.

Key words: celestial mechanics — artificial satellites, space
probes — atmospheric effects

1. Introduction

In this series of papers, we have tried to develop in a rather
systematical way a theory for the direct solar radiation pressure
acting on artificial Earth satellites. The problem is complex (and
interesting) especially during the so—called “penumbra transi-
tions”, when the satellite is about to enter into or exit from the
Earth’s shadow, so that the Earth’s body and atmosphere par-
tially absorb and/or refract the sunlight illuminating the satel-
lite. The general background and motivations of this work have
been outlined in Vokrouhlicky et al. (1993b; Paper I), where a
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new method for the calculation of the radiation force has been
described.

The penumbra phenomena can cause detectable effects on
spacecraft trajectories over both long and short term. As for the
short—periodic effects, these may be relevant to understand the
source of some unmodelled perturbations on the GPS constel-
lation satellites (Fliegel et al. 1992), as well as to analyse the
data from future accelerometric missions which aim at carrying
out in situ measurements of non—gravitational forces in space
(Sehnal & Vokrouhlicky 1994; Vokrouhlicky 1994a and ref-
erences therein). To a lesser extent, penumbra phenomena also
affect the motion of satellites devoted to geodesy and geodynam-
ics. In Paper II (Vokrouhlicky et al. 1994a), we have discussed
such effects in the framework of the analysis of the unmod-
elled residuals in LAGEOS’ orbital evolution (see also Inversi
& Vespe 1994).

The theory developed in Paper I was based on the assump-
tion of a spherical shape of the Earth. Recently it has been
pointed to us by some colleagues that the Earth’s polar flattening
might somewhat affect the results, and if so the corresponding
corrections should be incorporated in the theory. The reason why
such corrections cannot be discounted a priori as negligible is
that according to Paper I the refraction of lightrays in the Earth’s
atmosphere proves to be crucial in determining the behaviour
of the radiation force during penumbra transitions. Most of the
relevant refraction effects take place in an atmospheric layer of
just a few tens of km in thickness, quite comparable to the devi-
ation of the Earth’s figure from a perfect sphere. Thus one may
wonder whether our refined model for the optical effects of the
atmosphere is justified in view of the rough approximation for
the Earth’s global shape.

Therefore, we have decided to devote some work to the pur-
pose of generalizing our theory to the case of a more realistic
shape for the Earth, and to analyze the resulting discrepancies
with respect to the spherical-Earth case. Of course, nothing is
changed in the computation of the solar radiation force when the
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satellite is in full sunlight (see Sect. 3 in Paper I) or in complete
shadow, and we will be concerned only with a more refined cal-
culation of the Earth’s shadow boundaries and of the force which
is generated during the corresponding umbra/penumbra transi-
tions. Since these perturbations are anyway small, we are going
to model the Earth as an axisymmetric spheroid, neglecting its
triaxiality (which is about three orders of magnitude smaller
than the polar flattening). Moreover, in order to simplify the
mathematical treatment, we will use as much as possible our
previous spherical-Earth theory, by defining local spherical—
like models for the atmosphere matching its global spheroidal
shape. This constitutes a reasonable trade—off between rigor and
tractability, because:

i) The Earth’s polar flattening is relatively small and we expect
that the theory developed for a spherical Earth provides a
good zero—order approximation;

ii) The main effect of the Earth’s non—spherical figure will be
a slightly delayed or advanced occurrence of the penumbra
transition, depending on the actual geometry of the satellite
orbit, the orientation of the polar axis and the direction of
the Sun, while the local structure of the atmosphere is not
significantly affected by its global shape;

iii) This choice allows us to exploit most of the previously de-
veloped (and tested) software while dealing with the more
general case.

We expect that such an extension of the theory will not signifi-
cantly change our previous conclusions related to the long—term
effects on LAGEOS, as they are described in Paper II. These per-
turbations were mainly caused by the asymmetry of the penum-
bra pattern between the shadow entry and exit, as a result of
the large inclination of the orbit of LAGEOS combined with
the annual climatic changes in the atmosphere. Such an asym-
metry resulted into a nonzero component of the orbit—-averaged
transverse perturbation. As mentioned in item (ii) above, the
dominant effect of the Earth’s flattening is just a symmetrical
advance or delay in the occurrence of the penumbra/umbra phe-
nomena, without changing significantly the average value of the
solar radiation force over one satellite revolution. As a conse-
quence, most of the calculations developed below are relevant
mainly for the short—periodic perturbations.

The remainder of this paper is organized as follows. In
Sect. 2 we derive an eclipse condition including the effect of
the Earth’s polar flattening in the case of a purely geometrical
shadow (no atmospheric effects — such models have been fre-
quently used in orbit prediction/analysis software). Sect. 3 is the
core of the paper and contains the additional mathematical tools
needed to include in the theory the effects of the non—spherical
figure of the Earth. (We remark that this paper uses extensively
the formalism introduced in Paper I, which will be frequently
referred to. Thus we advise the reader to have a look at Pa-
per I before embarking on Sect. 3.) In Sect. 4 we illustrate some
relevant examples in which the generalized theory is applied.
Finally, Sect. 5 provides a short summary and conclusion.
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2. Earth’s flattening effects in modelling solar radiation
pressure — the geometric approach

The easiest approach, and the most widely used, to model solar
radiation pressure in numerical codes for orbit prediction and
analysis is based on the assumption of sharp “step-like” pas-
sage across the boundary of the Earth’s shadow zone (McCarthy
1992). The solar radiation field is represented as a homogeneous
field with intensity related to the value of the solar constant. For a
spherical Earth of radius Rg (not necessarily coinciding with the
geometrical radius in this approximation; see McCarthy 1992),
if we call r and w the geocentric distance of the satellite and
the geocentric angular distance of the satellite from the Sun,
respectively, we have the following straightforward condition
for the occurrence of an eclipse:

Ra\2
<T®> >sinfw, cosw <0, )

which just corresponds to assuming that the satellite is located
in the cylindrical shadow cast by the Earth, on the night side.

Consider now a more general situation with a non—spherical
Earth. We assume that the boundary of the Earth is a well-
defined convex surface (this is a basic assumption) and that the
solar rays propagate along straight lines. Therefore the shadow
occupies the interior of a quasi—cylinder defined by the surface
with generators in the Sun—Earth direction. The satellite is in
shadow whenitis located in the night side of this quasi—cylinder.

Let F(z,y,2z) = 0 be the equation of the surface of the
Earth. In the following we will approximate this surface by
an oblate spheroid with the major axis on the equatorial plane
(twice the equatorial radius R.) and a shorter polar axis (twice
R, < R,). The flattening parameter is given by

_R.—R,

==

2

and the equation of the surface can be written as

22
(11— 1y
If we call the satellite’s radius vector from the centre of the Earth
r and the unit vector toward the Sun s, then we can split r into
a component along s and another, r , normal to s and lying in

the plane defined by the Earth’s centre, the Sun and the satellite.
Then one has

?+yt + =RZ.

rp=r—(r-s)s. 3)

A necessary and sufficient condition for the satellite to be in the
shadow zone is that the tip of the vector r starting at the centre
of the Earth should be below the Earth’s surface. Mathematically
this means that if the components of r; are X ,Y , Z, one must
have F(X ,Y ,Z) < 0.

By Eq. (3), this condition translates into:

F(x—uo,y—va,z—wo)<0,‘ 4)
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where 0 =r-s =7 cos w and s = (u,v,w). In the case of a
spheroid, condition (4) becomes:

(z —wo)?

(x—ua)2+(y—va)2+W<R§, )
or equivalently
(z —uo)? +(y—vo)l+(z—-wo)
2 —
—(z—w a)z% <R}, (6)

The first three terms reduce to 72 sin® w. With z = r cos 6 and
w = cos §’, one gets the conditions for an eclipse to occur as

2
sinw — {1(—2__?]52(0059 — cosw cos )% < <%) ,
cosw <0, @)

where Eq. (1) is recovered with f = 0.

Other approaches include theories based on the occultation
of the atmospherically undistorted solar disk behind the Earth
(e.g. Métris 1986, Berlin 1988) or semi—analytical models based
on the introduction of a shadow function (such as the one set
forth by Ferraz—-Mello 1964, 1972). Although we aim at devel-
oping a more refined theory, by no means we claim that these
approaches are useless and should not be seen as more suit-
able in particular situations. We shall now move directly to the
presentation of the full penumbra theory, including both the ge-
ometrical and the physical effects related to a spheroidal Earth
figure.

3. Approximate theory for the penumbra effect
3.1. Mathematical technique and general principles

We systematically base our computations on the use of light
rays (which describe all the geometrical aspects of light propa-
gation), along which the radiative intensity is transported (thus
conveying all the physical aspects). At any given point of the
space (including the location of the satellite) we can thus con-
struct a radiative field, defined by the intensity distribution.
Then, in a separate step, the radiation pressure can be calcu-
lated taking into account the specific shape of a satellite as well
as its orientation and surface properties.

In order to solve for the geometry of light rays, one needs
to specify the refractive index x everywhere between the light
source (the Sun) and the satellite. We neglect refraction in the
interplanetary medium, thus taking x = 1 outside the Earth’s
atmosphere. Within the atmosphere, like in Paper I we adopt
the model for the refraction of sunlight developed by Garfinkel
(1944, 1967). Interestingly enough, in the case of a spherical
Earth and a spherically stratified atmosphere, the geometry of
the light rays can be handled analytically [see Paper I, Egs. (23)-
(28)]. This is an important point for concrete applications, as it
considerably speeds up the evaluation of the radiative force.

As for the transport of the radiative intensity, the problem
can be divided into two parts: (i) specification of the boundary
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conditions, (ii) specification of the propagation rules. For the
boundary conditions in the solar photosphere, we resort to the
Eddington solution for the solar limb—darkening, which allows
one to set the value of the intensity according to the direction of
emission. Although more refined solutions are now available,
Eddington’s one provides a good enough approximation for our
needs. The intensity along the rays is obtained as a solution
of the radiative transfer equations, and depends on the optical
properties of the medium crossed by the light.

To stick to the theory developed for a spherical Earth, and
considering that a more general treatment would be both very
complex and irrelevant, we have adopted the following sim-
plifying principle: for any light ray reaching the satellite, we
introduce an “osculating spherical Earth” with an “osculating
spherically stratified atmosphere”’, which best approximate the
actual conditions in the true atmosphere.

Thanks to this trick, we can translate the whole light ray
solution from the penumbra theory developed for the spherical
Earth. The essence of the problem under consideration is then
how to assign to a particular light ray and a particular point
on this ray, an osculating spherical Earth and atmosphere. This
point is elaborated upon in Sect. 3.3. It is worth noting that by
this approximation we certainly account for the intuitively dom-
inant effect of the Earth’s flattening, i.e. the advanced/retarded
occurrence of the beginning/end of the penumbra transition de-
pending on the mutual configuration of the satellite, the Earth
axis and the Sun. The mismodelled effects — non—planarity of
light rays, departure of the osculating plane of the ray from the
ellipsoid normal etc. — are supposed to be minor and neglected.

3.2. Geometrical tools

We will need below some classical geometrical results con-
cerning the curvature of the ellipse and the intersection of an
ellipsoid by a plane. They are briefly restated here for the sake
of completeness. The parametric equations of an ellipse with
semimajor axis a and eccentricity e are given by,

y=av1—e2cos),

where the parameter A ranges in the interval (0, 27). At a point
defined by A the radius of curvature has the following form:

r=asin\ ,

2y 3/2
Roe V) =a (1 —é?) [cos2 A+ Sli 62} , (8)
Hence the coordinates of the centre of curvature are:
\) = ae? cos® A \) = € i’ 9
. (A) = ae” cos , o Ye )—-a—ﬁ sin” A . 9

Let us next consider the intersection of a spheroid by a plane.
More in general, the intersection of a triaxial ellipsoid by a plane
through its centre is an ellipse, since the the resulting equation
is still of the second order and positive—definite. We will now
determine the direction and size of the major and minor axes of
this ellipse.
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First we need the following result: any radius of a triax-
ial ellipsoid is less than the semimajor axis and more than the
semiminor one. This is easily proved analytically with a little
algebra, but can also be seen by a simple geometric argument.
Such an ellipsoid is inscribed in a sphere with radius equal to the
semimajor axis but circumscribes a sphere with radius equal to
the semiminor axis. Therefore any radius is between these two
extremes.

Now consider the plane (defined by its normal N) which
goes through the origin, namely the centre of the spheroid. We
assume the spheroid to be oblate with equatorial radius a and
flattening parameter f. Any point (z, y, 2) of the spheroid is
such that

2

2,2 Z 2
Tty +t———=a". (10)
YA
With the usual spherical coordinates (r, 8, ¢), this becomes
2
2.2 cos” 6 } 2
r° |sin” 8 + =a ¢8))
[ (1 - f)?

The plane intersects the equator of the spheroid, so there is a
radius of the ellipse drawn in the plane whose magnitude equals
the equatorial radius of the spheroid, that is to say its semimajor
axis. As no radius can be of greater magnitude, this is also the
semimajor axis of the ellipse, which therefore lies along the line
of intersection between the plane and the equator. Its magnitude
is a and its direction is the same as the vector N x k, where k is
the unit vector directed toward the pole of the spheroid.

Now the minor axis of the ellipse is normal to both N and
the semimajor axis and its vertex belongs to the spheroid. If the
spherical coordinates of N are (6, ®), then the semimajor axis
vector is specified by (a, 7 /2, ® + 7/2) and the direction of the
minor axis by (7/2 — ©, ® + 7). From Eq. (11), one gets the
magnitude b of the semiminor axis as

)
©
b? cosz@+—sin~—— =a?, (12)
(1 - fy
or equivalently the eccentricity of the ellipse:
2 — f) sin’
2= fQ2—=f)sin"© (13)

T 1—fQ2—-f)cost®
With the axes of the spheroid a and c and b the minor axis of
the ellipse, a more aesthetic form of Eq. (12) is
cos?® sin’© 1

2 2 R

(14)

Also, with E? = f(2 — f) for the eccentricity of the meridian
section of the ellipsoid, one has for Eq. (13)

,  E?sin*©

¢ T 1 Ecos?O

15)
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3.3. Approximate theory for the penumbra effects caused by
a spheroidal Earth

As we are changing the basic geometrical assumption of the
theory — using a spheroidal Earth model instead of a spherical
one — it is clear that we must concentrate mainly on the geo-
metrical aspects, that is on the light rays. Thus, the modelling
of the extinction process remains the same as in Paper I, and we
shall just summarize it briefly in Sect. 3.6.

We recall that a particular advantage of our method for the
calculation of the geometrical aspects of photon trajectories in
the Earth’s atmosphere consists in the fact that we formulated
(and analytically solved) the corresponding equations in a spe-
cial plane — specified by the geocentric position vectors of the
Sun and the satellite, and also called ¢ = 0 slice plane (¢ being
a spherical angle in the satellite~bound local reference system
introduced in Paper I). From the standpoint of the satellite, this
plane corresponds to a particular (vertical) slice of the solar
image. The behaviour of light rays which do not lie exactly in
this plane has been proven to be identical to those in the ¢ = 0
slice, provided several geometrical quantities (the Sun—Earth
distance, the solar radius, the Sun—satellite geocentric angular
distance) are properly redefined. We shall use this scheme also
in this paper, so that our primary concern is to formulate the
geometry of the light rays in the plane given by the geocentric
position vectors of the Sun and the satellite.

The unit vector IN(©, ®) normal to the plane defined by
the geocentric position vectors of the Sun [n(9¥’,¢’)] and the
satellite [n(V, )] is given by

sinw N(0,®) = n@', ¢) x n, ), (16)

where w is the geocentric angular distance between the Sun and
the satellite and the angles ©, ® and alike refer to geocentric
spherical coordinates. As mentioned in the previous section, the
intersection of the Sun—satellite plane with the Earth body is an
ellipse whose eccentricity is given by Eq. (13). We also define
the auxiliary angles ¢ and ¢/ by the following transformation:

cost' = —[sin® sin (¢’ — @) |, (17a)
cost =|sindsin(p — @) |, (17b)
sing= 4 v/1 —cos?¢, (17¢)

where the plus sign in the last relation holds for ¢ + ¢/ + w = 27
or ¢/ > w, while the minus sign holds for ¢ + ¢/ + w # 27 and
¢ < w. Geometrically, ¢ is the angle between the satellite and
the semimajor axis of the ellipse drawn on the Earth (see Fig. 1).

Let us introduce now the osculating spherical Earth, which
approximates the true Earth body in the vicinity of the grazing
point G. We stress that this object is defined for each of the light
rays in the Sun—satellite plane separately.

The angular distance of the grazing point G from the major
axis of the ellipse defined on the Earth by the intersection of the
Sun-satellite plane is parametrized by A. Then the radius of the
osculating Earth is given by Eq. (8), that is

2y 3/2
Ro(\) = Re(1 — €?) <cos2,\+ o ) : (18)

1—e2

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996A%26A...307..635V&amp;db_key=AST

FTIOBAGA = —307- 635V

D. Vokrouhlicky et al.: Solar radiation pressure perturbations. IV

639

SUN

OSC. EARTH

Fig. 1. Geometrical quantities in the Sun—satellite plane introduced in the text. Note the true intersection with the Earth body (bold-line ellipse)
and the intersection with the osculating spherical Earth (thin—line circle). A particular light ray with local deflection € (to which the osculating
Earth belongs) is traced back to the emitter in the solar photosphere. Note the redefined geocentric solar and satellite distances R’ and " and
the Sun-satellite geocentric angular distance w’, which is now referred to the centre of the osculating Earth. Compare with Fig. 2 of the Paper I

where several supplementary angular parameters («, (3 etc.) are given,

while Eq. (9) gives the cartesian coordinates of its centre:

.3 62

n(A) R, sin” A ik
(note that these values apply to the system of axes rotated by
the angle m — w — ¢ with respect to the axis given by the solar
position — see Fig. 1).

Now what remains to be done is introducing the parameter
A in all the general formulae of Paper I, remembering that the
centre of the pseudo—Earth is no longer coincident with the
centre of the spheroid, but changes depending on the light ray
(note the difference between the formal parameter A and the
geocentric angle A between the direction to a specified point
on the Earth’s surface and the direction of the Earth—cut major
axis). Thus, hereinafter the geocentric distance of the Sun will
become R/()) instead of R and that of the satellite 7'(\) instead
of r, where “geocentric” will mean with respect to the centre
of the osculating sphere. Likewise, the Sun—satellite geocentric
angular distance is redefined as w’()) instead of w.

We recall our previous definitions

m(\) = Ree?cos® \ |

19)

R@ T
p1= f y P2 = § > (20)
to which we can formally add
R, R
== =—]=1. 21
pR=p o P ( R) (21)

The parametrized counterparts of these quantities in the flat-
tened Earth case are:

LTy,
A= o =

Rg(N)
R b)

RO
R b

ACNE

(22)

using again primed letters to distinguish them from those ap-
plying to the spherical Earth case. We also define

m(\) n(A)

Pm(N) = —— pn(/\) = — .

R R 3)

The last quantity which must be redefined for a particular light
ray is the deflection 8’ = 0 + ny60()\) from the z—axis of the
satellite-bound local frame. The parameter 7 takes two possi-
ble values (£1) and provides the sign of the angle 66()). Note
that one has to add it to the “true deflection” # (as shown in
Fig. 1) when the angle between the centre of the osculating
Earth and the solar direction (measured in the clockwise sense)
is greater than w. In that case we define 79 = +1. When the
angular distance between the centre of the osculating Earth and
the Sun is smaller than w, we have to subtract the variation §6()\)
from the nominal value 6 and thus 7y = —1.

Simple geometrical considerations lead to the following for-
mulae:

P57 = P2 + Pl + 0 — 20 (P COS L+ prsin L) 24)
pf‘2=1+pfn+pfl—2[pmcos(1,+w)+pn sin(t+w)]  (25)
and to
1 .
cos 66(A) = ,—'7 (p2 — pmcost — ppsine) (26)
2
cosw'(\) = — {pz COSW — Py [COS (L + w) + pacose] —
P2P4
Pr [sin (L +w) + ppsine] + p,zn + pi} . 27)

All these quantities can be determined once the angle A is
known. With the help of Fig. 1 and a little algebra, the angle
A is determined from the following implicit equations

. 1
COS A = = {pm+ (28)
\/pé + P+ 7+ 2p5
/
% [pzcos(7'+1,) — Pm COST + aninT] } s
2
tan \ = -/ ni, (29)

V1—f@2— f)cos?© @
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where we have introduced the auxiliary quantities

v(A, 0, h) =;)17{p2 [pm cOS (T + L) + pp sin (T + ¢)] —
2

pfn cos T — p2 sin T} (30)

and

7 (h,6,) = 5 +Relh, Rg(\)] — 6 — 1g60() . 31)
Eq. (29) relates the formal parameter ) to the angle X appear-
ing in Fig. 1. Re[h; Rg(A)] stands for the refraction angle of
the light ray grazing the atmospheric layer at the altitude h.
Eqgs. (28)—(29) are not given in a closed form, since ) is hidden
in the primed quantities. This basic set of equations together
with the following Eqgs. (32)—(34), already discussed in Paper I,
relate all the important geometrical quantities for a given light
ray, yielding a one—to—one correspondence between the surface
elements E on the solar photosphere and the direction of emis-
sion [ with respect to the normal direction.

Now the bending of the light ray is related to the refractive
index & (h, A) by
PH(N) sin [0 + 1956 (V)] = [pgm ¥ %] KA (32)
In the case of Garfinkel’s model of the Earth atmosphere we
have

k(h,A\) =1 +ag [1 (33)

n
2
T e h] |
where (ay, 7y) are model parameters and n is the polytropic index
of the air. We recall that the top of this assumedly polytropic
atmosphere is given by Ar(\) = Rg(MN27y? — D! = (n +
1).%2T4/ g0, where 78 is the gas constant for the air, Ty and gg
the temperature and gravity at the bottom of the atmosphere.
The atmospheric height is primarily dependent on 73 and to a
lesser extent on the radius of the osculating Earth Rg(\); the
dependence on the gravity field gy is very small. Finally the ray
geometry is determined by the equations:
p1sino = py(N)sin(c +a) , (34a)
Py(A) sin [ +ng60(N)] sin o = 1y p4(N) sinasin(o +mp3) |
(34b)

B=m(a—mé), (340)

where
£@B,\) = m+2Re[h; Rp(V)] — w'(\) — 6 — ng0(N) .

Here, (71, 72) are auxiliary quantities having values %1, as de-
fined in Paper 1. Egs. (28)—(29), (32)—(34) together with the
previous definitions form an algebraically intricate system link-
ing the quantities (o, 8, 0, 8, h; A, X). Note that this list contains
more parameters than the number of the equations. This is due
to the fact that in practice we always fix some of these quantities
solving for the other ones, depending on the nature of the prob-
lem. We shall now give some examples of this (more details can
be found in Paper I).
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3.4. Phases of the penumbra transition

As in Paper I, we can distinguish five different phases between
full sunlight and complete shadow: phase 0: out of shadow;
phase I partial atmospheric penumbra; phase II: full atmo-
spheric penumbra; phase III: true penumbra with part of the
solar disk covered by the solid Earth’s horizon: IV: full umbra.
During these phases the instantaneous position of the satellite
can be specified through w, the geocentric Sun—satellite angu-
lar distance. For example, the onset of phases (I and II) is ob-
tained by solving first iteratively Eqgs. (28)—-(29) for the param-
eter A = \; with

T\ = g — arcsin {p'z—l()\) [pg()\) + hT(A)] } .

7 (35)

Then two auxiliary quantities wa; and wa, (generalizing the
corresponding parameters in Paper I) are computed as

WAl =323 — A(r37, R, RyAY) (36)
37

wA2="i’ _A—(\IJT;Ta ROaR))‘I) 3 (37)
where \I’T = \If[hT()\l), )\1] and

A4(¥:r, Ro,R, ) = arcsin E—”2—( :I:E>:F (38)

+ s 1y 104, = r Pépf; P1 R
P2 U, 2 . L g 2
iR B o 7).

U(h,\) = (Re +h)k(h, N) . (39)

We are in phase 0 when w < wa; whereas the phase I occurs
when wa; < w < was.

In a similar way, the conditions for the occurrence of phases
I and IV are found by solving Eq. (28) for the parameter A = A,
with

() = 3 +Re [0: Rg(V)]

— arcsin { o' (VPN (1 + ag)} . (40)
Then the following quantities must be computed:
wp=  +2Re[0; ReO)] — Au(Toir, R, R, Do), (4D)
wg = 37” +2Re[0; Rg(M)] — A_(¥g; 7, R, R, \2) . (42)

Here ¥y = ¥[0; Rg(A2)]. Eventually we get the boundaries for
the penumbra/umbra phases: phase I/ for wa; < w < wp, phase
I for wp < w < ws and phase IV for ws < w.

3.5. The image of the distorted Sun

A piece of important information to be determined from the light
ray geometry equations are the f—limits of the solar image in
the local satellite—-bound, Sun—oriented reference frame. This is
the most cumbersome geometrical task, as we have to solve
Egs. (28), (32) and the following equation (43) for a set of
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three parameters (A, h, §). From Egs. (34) by fixing a constraint
B = /2 we obtain

sin [0+ 1960 ()] = ¢ (cos , pb/4) [mpr o (5

pft cos w) + sin w\/C (cos w, pé/pg) — (Pl/pé)z] , (43)

w(h, A) = w'(X) — 2Re[h; Rg(N)]
((z,0) =1+a% —2za .

The parameter 7); takes values of +1 and —1 when determining
the upper an lower limb, respectively, giving 6, and 6_. It is
an easy task to eliminate [6 + 1p60()\)] using either Eq. (43) or
Eq. (32). The remaining two equations to be solved for the pa-
rameters (A, h) cannot be expressed in a simple algebraic form
and have to be handled together. We have developed a fast it-
erative procedure to get the two roots (A3, h3). Then, one can
finally determine the two 6-limits of the solar image and define
its apparent vertical width Af = (6, — 6_).

Up to now, we have considered the solution in the plane
defined by the geocentric directions of the Sun and the satellite.
An important property of this solution is that solutions in other
“misaligned” planes (parametrized by the spherical angle ¢ in
the satellite—bound local frame) are closely related to it. The only
difference is that a few quantities have to be properly redefined.
The normal vector M (O, ®) to the plane of interest generalizing
the previous N (0, @) is given by
sin ¢

M(@©,®)=cos¢p N —
Sin w

[coswn (9,9) —n (¥, ¢)] ,
(44)

where n(¥9, ) and n(¥’, ¢’) remain the same as before. Sim-
ple geometrical arguments also show that the solar radius
R, should be rescaled to the value of Ro(¢) = Ro(l —
py 2 sin’ ¢ sin® w) 2
Sun must be rescaled to R(¢) = R(1 — sin” ¢ sin? w)l/z. In
the same manner, one shows that the geocentric angular dis-
tance between the satellite radius vector and the Sun must be
rescaled to cosw(¢) = cosw(1 — sin® ¢ sin’ w)—l/z. The pro-
cedure to compute the geometrical properties of the light rays
in the generic ¢—slice thus consists in redefining all of these
quantities, as a first step. Then, all the other derivations valid in
the ¢ = 0 plane can be applied. The ¢—width of the solar image
in the satellite—bound local frame ¢,,.x = arcsin (p1 sin~! w)
remains the same in the ¢—plane.

, whereas the geocentric distance to the

3.6. The geometrical flux attenuation and the Rayleigh
extinction

The last point of this section concerns the modelling of other
physical processes (in particular the Rayleigh extinction) oc-
curring in the Earth’s atmosphere. Once the osculating Earth
has been defined by the procedure described above, we can ap-
ply the scheme discussed in Sect. 4.2 of Paper I without any
change. Basically, we adopt a two—stage procedure: first only
the geometrically induced attenuation of the radiative fluxes
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with constant radiative intensity along the individual light rays
is considered. Then the true physical extinction is modelled by
an exponential damping proportional to the optical depth along
the light ray. In the latter case, the decrease of the density in the
Earth’s (polytropic) atmosphere is taken into account.

3.7. Derivation of the radiative force

As in the previous papers of this series, the final step is the
computation of the radiation force acting on the satellite from
the radiative flux vector, that is

F= / d(cos 0)dd (0, $) I(8, ¢) . (45)
0,9)

The integration is performed over the radiative field I(6, ¢) im-
pinging on the satellite (of course, this can also as an integration
over the distorted solar image observed in the satellite—bound
local frame). The radiative force is directly proportional to the
flux vector (45) in the case of a spherical satellite (Vokrouhlicky
et al. 1993a). This is a fairly good approximation for LAGEOS.
We have applied the same approximation also to the case of the
CESAR satellite (to be equipped with the MACEK accelerome-
ter; see later), despite its more complex shape. The main reason
is that we wanted to avoid mixing the effects induced by the
Earth’s flattening with those due to the satellite geometry, which
can be treated independently (see Vokrouhlicky 1994b).

4. Applications

As in the previous papers of this series, we apply the theory
developed in this paper to some concrete cases in which it may
prove relevant. We are going to deal with two satellites, LA-
GEOS and CESAR. The former one is an example of an existing
geodesy/geodynamics satellite orbiting at intermediate altitude
(= 5500 km), whereas the latter one is a planned accelerometric
spacecraft to be be inserted into a low orbit, a few hundred km
above the Earth’s surface. The pattern of penumbra phenomena
is somewhat different in the two cases (see Paper I), in part be-
cause of the difference in orbital speed and in part as a result of
the different angular extent of the Earth’s atmosphere as “seen”
from the satellite.

In order to assess the effects of the Earth’s flattening we have
compared the results obtained either taking it into into account
or not in the model for the computation of the radiation force.
Of course, at the same time we have checked that the spherical—
Earth results agree with those obtained in Paper I, where we had
used a (partially) independent software.

4.1. Results for the CESAR satellite

The CESAR satellite is planned for launch into a low—altitude
orbit with a semimajor axis of about 7100 km, an eccentricity
of 0.04 and an inclination 70°. A highly sensitive accelerom-
eter (MACEK) will be carried on—board to perform instanta-
neous measurements of the non—gravitational forces acting on
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the satellite (Sehnal & Vokrouhlicky 1994). The time resolution
of the MACEK measurements will be roughly 2 seconds, with
a sensitivity of about 5 x 107! m s~2 (R. Pefesty, private com-
munication). At such levels of time resolution and sensitivity
we show conclusively that the slight modification of the radia-
tion pressure force brought about by the Earth’s non—spherical
shape should be accounted for in the analysis of MACEK data.

In order to get a clearer picture of the effects of the Earth’s
flattening on the radiation force in low orbits we consider two
possible inclinations, 90° and 60° respectively. In our first run,
we put the Sun on the Earth’s equator and in the orbital plane of
the satellite (in other words, either Q = Ag or 2 = Ag+7) . With
the inclination set at 90°, the orbital configuration minimizes the
duration of the penumbra transition, because the satellite enters
(or exits) the penumbra region in the normal direction. Fig. 2a
shows the results for this case.

Solid curves are derived from the spheroidal Earth model
(with the true flattening parameter f), while the dashed ones cor-
respond to the spherical Earth model (with the radius equal to the
equatorial one in case of the oblate Earth, i.e., we just formally
put f = 0 in the theory). In either case, we assumed “normal
atmospheric conditions” as defined by Garfinkel (1967). The
most significant feature is the delayed onset of the penumbra in
the spheroidal Earth case, as a result of the smaller diameter of
the shadow zone in the polar direction than in the equatorial one.
In Fig. 2a, this shows up as an time shift (the origin of the time
axis has been fixed at the beginning of the penumbra phase in
the oblate Earth case). Although a more detailed analysis shows
that the Earth flattening effect cannot be completely reduced
to a simple time shift (this fact is better seen in the following
Fig. 2b, where the relative configuration of the Earth, the Sun
and the satellite orbit has been changed), the approximate extent
of the time shift observed in Fig. 2a (and 3a, see later) can be
estimated by simple geometrical arguments as

Ah
~ NReA/(r/Re)? — 1 ’

where n is the satellite’s mean motion and Ah is the difference
between the equatorial and polar radii of the Earth. For the
CESAR satellite one gets AT = 7 s, in good agreement with the
numerical results. Similarly, for the LAGEOS satellite we obtain
AT = 5 s, a good match for the result of the corresponding
numerical run (Fig. 3a).

In the second run, the orbital plane is rotated by 90°, so that
Q = A\g + /2, and the inclination is reduced to about 60°, so
that the orbit just grazes the quasi—cylindrical Earth’s shadow.
This orbits is closer to that foreseen for CESAR. Moreover, as
discussed in Paper II, such a grazing configuration maximizes
the differences between the refined models of the penumbra and
those neglecting atmospheric refraction. Fig. 2b shows that the
results in this case are qualitatively similar to those of Fig. 2a.
However, as expected, the Earth flattening effects are quantita-
tively much larger in this case. Thus the CESAR data analysis
would be significantly degraded if the Earth flattening effects
were not properly accounted for in the computation of the solar
radiation force.

AT

(46)
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Fig. 2a and b. Amplitude (a) of the solar radiation pressure acceleration
vs. time (¢, in seconds) since the beginning of the penumbra transition in
the case of the (low—altitude) CESAR satellite. Parts a and b correspond
to the two different Sun vs. satellite orbit configurations discussed in the
text. Solid curves correspond to the spheroidal Earth model with f =
1/298.28, and dashed curves to a spherical Earth model. Labels 1 and 2
refer to the presence or absence of atmospheric extinction, respectively.
Ordinate units are 10~% m/s”.

4.2. Results for the LAGEOS satellite

We have performed a similar analysis in the case of LAGEOS,
which orbits the Earth at a much higher altitude. The corre-
sponding results are plotted in Figs. 3a and 3b. We can again
conclude that the most important consequence of the Earth’s
flattening is an earlier/later onset of the penumbra phenomenon,
with a somewhat shorter time shift for the reasons discussed
above (and a longer penumbra transition, as already found in
Paper I). The fact that a delayed entrance into penumbra is par-
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Fig.3a and b. The same as in Figs. 2 but for the (higher-altitude)
LAGEOS satellite. Ordinate units have been changed to 107 m/s?.

alleled by a symmetric advance of the exit from it suggests that
the Earth’s flattening effects do not contribute significantly to
the long—term perturbations studied in Paper II. However, since
the shift of the eclipse conditions does not operate in the same
sense at the shadow entry and exit, there is a net shortening of
the eclipse interval (of the order 6f 15-20 seconds for the true
LAGEOS orbit). This means that for the analysis of short—term
perturbations on LAGEOS orbit, the Earth flattening phenom-
enadiscussed in this paper may become more important than the
short—term perturbations related to the penumbra effect itself,
as treated in Papers I and II. However, for LAGEOS the cor-
responding displacement should remain below the measurable
threshold with current SLR technology (about 1 cm).

Let us now address in a more direct way the long—term
perturbations. To investigate the effect of the Earth’s flattening
on the long—term along—track perturbing acceleration acting on
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Fig.4. Difference in the orbit-averaged along-track acceleration of
LAGEOS I between a model with a spherical Earth and one allowing for
polar flattening. Time is in days, starting at launch. Curve 1 shows the
acceleration due to the penumbra effect and and curve 2 the difference
between the two models. Accelerations are in 10~"* m s ™2,

LAGEOS we have repeated some of the computations described
in Paper II, but using the oblate Earth model developed here.
On order to do this efficiently, we have relied on a simplified
version of the full penumbra theory, along the same lines as
discussed in Paper I In particular:

i) the double integration of Eq. (45) is reduced to a single one
by omitting the ¢—dimension;

ii) the magnitude of the perturbative force is estimated by mul-
tiplying the force computed just before the onset of the
penumbra transition times a factor giving the vertical com-
pression of the solar disk (to account for refraction) and
times the exponential damping parameter which accounts
for absorption, averaged over the vertical slice of the solar
image seen in the satellite local frame;”

iil) the direction of the radiation force is determined by the light
ray emitted from the effective centre of the solar disk image
[8 = m/2in Egs. (34)].

In Fig. 4, curve 2 shows the change in the acceleration due to
the penumbra phenomenon depending on whether the flattening
effect is included in the model or not. The net signal predicted
by our simplified theory is shown by curve 1 and should be com-
pared with Fig. 4b in Paper II. We have selected the first interval
after the launch of LAGEOS I when the shadow—crossing con-
dition was fulfilled and kept the same model for the seasonal
and latitudinal variations of the meteorological parameters at
the bottom of the atmosphere as in Paper II. We remark that
the difference represented by curve 2 is at least one order of
magnitude smaller than the signal itself (which reaches up to
~ 5 x 10713 ms~2), and therefore can be safely neglected in
the analysis of LAGEOS data. The spikes just at the beginning
and at the end of the shadow—crossing interval are due to tran-
sient effects in the numerical averaging over the first and the
last orbit included in this interval.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996A%26A...307..635V&amp;db_key=AST

FTIOBARA = —307- 635V

644

5. Conclusions

The main results obtained in this paper can be summarized as
follows:

1. We have generalized our previous scheme for modelling the
perturbing forces on artificial satellites arising from solar ra-
diation pressure during the passages from the full sunlight
to complete shadow (and vice versa). A spheroidal model
of the Earth’s shape with an arbitrary flattening coefficient
is used instead of a simple spherical model. We have shown
by a series of examples that no major difference appears
between a model assuming a spherical Earth and a more
realistic one including polar flattening. The most obvious
change appears in the timing of the penumbra phases lead-
ing from the full sunlight into darkness and vice versa, with a
time shift effect which can be easily explained by geometric
arguments. It appears worth accounting for this tiny effect
when dealing with data provided either by geodetic satel-
lites, because of the improving quality of orbital tracking, or
by future microaccelerometric experiments dedicated to in
situ measurements of non—gravitational forces. (One such
mission is being currently prepared by the Ondfejov research
team; see Sehnal & Pefesty 1992 and Sehnal & Vokrouh-
licky 1994). Also, some short—periodic perturbation terms
might be mismodelled when the Earth flattening effect is
not considered in the evaluation of the radiation forces.

2. A special attention has been devoted to the possible role of
the penumbra effect in the analysis of the long—term evo-
lution of the orbit of LAGEOS. The tests performed in this
paper, although of limited scope, indicate that our previ-
ous results based on a spherical Earth model are still valid.
The reason is that the main feature affecting the long—term
effects (that is, after averaging the perturbations over one or-
bital period) is the asymmetry of the perturbing acceleration
pattern between entry in, and exit from shadow. However,
the introduction of a spheroidal Earth does not modify sig-
nificantly this asymmetry, and thus leaves the long—term
perturbations unchanged. Of course, for the real Earth some
global asymmetry is associated to the pear—like shape of
the geoid, as represented e.g. by the J3 term in its spher-
ical harmonics expansion. But quantitatively this effect is
of the order of 50 m (Vani¢ek & Krakiwsky 1992), which
is quite negligible with respect to the spheroidal flattening
and also to the meteorologically induced optical asymmetry
analysed in Paper II.
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Appendix A

In this appendix, we wish to correct a few misprints which ap-
peared in previously published papers of the current series, de-
voted to solar radiation pressure perturbations. We apologize
for these errors to any colleague who might have tried to apply
our penumbra theory.

In Paper I (Vokrouhlicky et al. 1993b), one should replace
p2(¢) with 7 in Eq. (37), so that the correct equation reads
Y[h(@,$)]=rsind. 37
In the same paper, labels 2 and 3 should be interchanged in
Fig. 14 (we thank R. Hujsak for pointing this error to us). Also,
the law for “rescaling” the Sun—satellite geocentric angular dis-
tance, mentioned at p. 303, has been mistyped. The correct equa-
tion reads

cosw(@) = cosw (1 — sin” ¢ sin® w) ~1/2
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