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Abstract. We have developed a new method to investigate the
importance of the propagation of sunlight through the Earth’s
atmosphere in modelling the perturbations due to radiation
pressure from Earth-reflected sunlight — the so—called albedo
effect. The atmosphere is considered as a refractive optical
medium, where Rayleigh scattering takes place. Our mathemat-
ical formulation is based on the theory developed in Vokrouh-
licky et al. (1993c), which allows us to model in a realistic way
a number of subtle phenomena. Contrasting with direct solar
radiation pressure, which is fairly sensitive to atmospheric pro-
cesses during the penumbra phases, the albedo effect turns out
not to be affected significantly by the atmospheric processes
considered here. We have also reinvestigated the behaviour of
the radiation specularly reflected from the Earth’s surface, and
confirm by an independent approach the validity of previous
simple models of the corresponding radiative force, provided a
“dilution factor” related to the Earth’s sphericity and introduced
by Wyatt (1963) and later on by Barlier et al. (1986) is properly
accounted for.

Key words: celestial mechanics — artificial satellites, space
probes — atmospheric effects

1. Introduction

Perturbations of artificial satellite orbits by radiative forces have
been studied extensively in the recent past (for reviews, see Mi-
lani et al. 1987; Mignard et al. 1990; Vilhena de Moraes 1994).
An approximation commonly made in these studies is that of
neglecting the optical properties of the medium in between the
radiation source(s) and the satellite. Simply speaking, the per-
turbing photons are assumed to move on straight lines, conserv-
ing the radiative intensity transported along the rays. Moreover,
the Sun is usually considered as a point-like source of radiation
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at infinite distance, giving rise to a homogeneous radiative field.
These approximations are justified not only by the small mag-
nitude of the radiative perturbations (with respect to the main
gravitational forces), but also by the fact that the interplanetary
medium is indeed optically extremely thin. The only exception
is the Earth’s atmosphere, which may even be locally thick.

It is rather interesting that the Earth’s atmosphere, being
geometrically a very thin layer covering the Earth’s surface, can
contribute non—negligible effects in the context of the radiative
forces. This can be illustrated by two well known examples.

First, we can mention the penumbra effects which determine
the direct solar radiation pressure when the satellite crosses the
transition region between full sunlight and the Earth’s shadow.
‘We have shown in two previous papers of this series (Vokrouh-
licky et al. 1993c, 1994) that atmospheric effects play a domi-
nant role in the structure of the Earth’s penumbra. Actually, this
result is not new. It was known at the beginning of the 1960’s
(e.g., see Link 1962), and taken into account in a number of
studies of lunar eclipses (Link 1969). The penumbra phenom-
ena have direct consequences for the instantaneous measure-
ment of non—gravitational perturbations during accelerometric
experiments (e.g. Pefesty & Sehnal 1992; Vokrouhlicky 1994),
and can also give rise to detectable long—term perturbations
for satellites whose orbit is tracked with very high accuracy
(Vokrouhlicky et al. 1994).

Second, the optical properties of the Earth’s atmosphere in-
fluence the perturbations due to Earth-reflected radiation pres-
sure, commonly referred to as the albedo effect. Large cloud for-
mations cause significant local increases of the effective albedo
(Taylor & Stowe 1984; Vokrouhlicky & Sehnal 1993; Vokrouh-
licky et al. 1993a). This phenomenon brings about marked fea-
tures in the resulting albedo force, which may be detected in
situ by means of accelerometric measurements (Vokrouhlicky
& Sehnal 1993).

In this paper, we intend to continue our analysis of the influ-
ence of atmospheric optics on the radiative forces (Vokrouhlicky
et al. 1993c, 1994), focusing on the albedo effect. We will not
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deal with the local variations of atmospheric optical properties
(cloud cover, etc.), but rather with the global properties of the
atmosphere, seen as a spherically stratified refracting, absorb-

_ing and scattering medium. In other words, we will describe

the average optical properties of the atmosphere by modelling
just the geometry of the rays (refraction) and the physics of the
interaction of light with a gaseous medium (absorption, single
scattering). As aconsequence, near the Earth’s shadow edges the
counterpart of the penumbra phenomena analysed in Vokrouh-
licky et al. (1993c) will be shown to play a role in the context
of the albedo effect. Our approach treats in a consistent way the
illumination of the Earth’s surface and the radiation flux on the
satellite.

The potential importance of the specularly reflected radia-
tion for the albedo effect has been an open question for a long
time. Interestingly, some of the earliest approaches to the albedo
effect considered models somewhat in between the specular and
diffuse reflection modes (e.g. Levin 1962). This choice was how-
ever criticised by Wyatt (1963) and others, who argued that the
dominant part of the reflected sunlight acting on satellites is that
diffused by the Earth’s surface. Later on, refined models of the
albedo perturbation were developed, taking into account diffuse
reflection only (e.g. Baker 1966; Rubincam & Weiss 1986; Bor-
deries & Longaretti 1990). Some renaissance of interest for the
specularly reflected radiation took place during the 80’s, when
more complex models of the albedo effect were required to un-
derstand the orbital evolution of laser—tracked satellites (e.g.
Anselmo et al. 1983; Barlier et al. 1986; Rubincam et al. 1987,
Vokrouhlicky et al. 1993b).

Another purpose of this paper is to clarify some important
details of the models for the perturbations arising from specular
reflection. As we shall see, a crucial role is played by a simple
but fairly subtle correcting factor devised originally by Wyatt
(1963) and later reintroduced by Barlier et al. (1986) — in the
terminology of the latter paper, the J(6) geometrical factor ac-
counting for the dilution of reflected radiation due to the spheric-
ity of the Earth’s surface. The omission of this term would lead
indeed to considerable errors. We will confirm the validity of the
approach of Barlier et al. by a conceptually more fundamental
argument, derived from the basic definitions introduced when
evaluating the radiative flux integral. In our approach, we split
the flux evaluation problem into various steps, the first of which
is finding out the geometry of all the rays constituting the radia-
tive field at the satellite position. Therefore, we avoid using the
above—mentioned factor J(6), as the ray geometry intrinsically
contains the information about the dilution of the radiative field
reflected from the convex Earth’s surface. The confirmation that
the method based on the J(8) factor provides a good approxi-
mation is important, as it also confirms the validity of the results
of our previous studies of the albedo long—term perturbations
for LAGEOS, where the dilution factor was used (Barlier et al.
1986; Vokrouhlicky et al. 1993a,b).

As we shalil see, contrasting with the behaviour of the direct
solar radiation pressure, the atmospheric effects contribute in
a negligible way to the albedo effect. This can be shown most
convincingly by adopting two simple extreme models for the op-
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tical properties of the Earth’s surface: either a constant—albedo,
purely diffusive surface or a global mirror causing only a spec-
ular reflection. Also, we shall assume a simple spherical shape
of the satellite. However, the latter simplifying assumption can
be easily generalized by our formalism (at least numerically;
see e.g. Yokrouhlicky et al. 1993a), and more complex satellite
shapes can also be dealt with in a straightforward way.

The remainder of this paper is organized as follows. In
Sect. 2 we shortly review the mathematical technique used
throughout this series of papers (Vokrouhlicky et al. 1993c,
1994) and then derive a precise formulation for the diffuse and
specular reflection from the Earth’s surface, taking fully into
account the main atmospheric effects. In Sect. 3 we apply the
theory in the case of the LAGEOS satellite, though the results
derived there are valid also for a wider variety of spacecraft.
The main conclusions are summarized in Sect. 4.

2. A new approach to the albedo effect

2.1. Summary of the mathematical technique

Throughout this paper we employ the mathematical formalism
introduced in Vokrouhlicky et al. (1993c). Here we shall just
give a summary in order to allow the reader uninterested in the
details to understand the main arguments.

The (scalar) radiative flux is usually the essential quantity
needed to model the radiative forces. However, in our approach
we found more convenient to use the vector quantity F' [see
Eq. (2)] — which we call vector flux. The scalar radiative flux,
defined as the energy flowing per unit time through a unit sur-
face area with a given orientation, can be derived from F' for
an arbitrary orientation of the surface by mean of a simple pro-
jection of F' on the surface normal (Vokrouhlicky et al. 1993c).
The vector flux at a given position is determined from two fun-
damental physical entities: (i) the radiative intensity I, and (ii)
the optical rays. The optical rays represent in a sense the guide-
lines along which the radiative field is transported starting from
the radiation sources, while the intensity I conveys all the in-
formation about the properties of the radiation field at a local
level (it is directly related to the photon distribution function;
see e.g. Mihalas 1970). It should be understood that a priori one
knows the radiative intensity at the sources only (in our case,
on the solar photosphere), and not everywhere in the space. To
determine I everywhere outside the sources, one has to solve
for it from a propagation model. This is very simple if the radi-
ation propagates in the vacuum, but can be relatively involved
when the Earth’s atmosphere, a rather complex optical medium,
is taken into consideration.

The key point of our study is therefore that we have first to
find out the properties of the radiative field near the satellite,
and only then to compute the radiative force. The essential tool
for finding the optical rays is the Fermat principle, while the
tool for transporting the radiative intensity along the rays is the
radiative transfer equation (see Vokrouhlicky et al. 1993c). The
solution of these two problems for the particular case of the
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sunlight reflected from the Earth’s surface is the main issue of
this paper.

After having constructed the radiative field 1(8, ¢) at the
position of the satellite, we can apply some simple rules for
computing the radiative force acting on the satellite itself. We
recall that in the case of a spherical satellite with quasi—isotropic
surface optical properties (see Borderies & Longaretti 1990;
Vokrouhlicky et al. 1993a), the radiation pressure causes an
acceleration given by

a=—é"€’1‘zF, Y]
me

where A is the satellite’s geometrical cross—section, m its mass,
cthe velocity of light, &g a dimensionless coefficient depending
on the satellite’s surface optical properties, and the vector flux
is defined as

F = d(cos B)d¢ n(6, ) I(0, ¢) . @
©.9)

Let us point out, however, that the construction of the radiative
field and the computation of the radiative force are conceptually
well separated problems. As a consequence, the method applied
in this paper can be applied as well to the case of satellites with
complex shapes, provided Eq. (1) is replaced by somewhat more
general formulae (given in Vokrouhlicky et al. 1993a).

A rather good model of the Earth’s atmosphere (i.e., its re-
fractive and physical properties) is crucial in our treatment. No
planar model can be applied here, as it would no longer be valid
for large zenith angles. Basically, we adopt Garfinkfel’s (1944,
1967) model of the atmosphere, heglecting the upper isothermal
layer and taking into account only the polytropic, bottom layer,
which is the most important as far as optical effects are con-
cerned (this entails typical errors on refraction angles of the or-
der of 5 arcsec only; see the example given by Garfinkel 1967).
As the complete theory is thoroughly described in Garfinkel
(1967), we do not repeat here a number of rather complicated
formulae appearing init. Let us just sketch out its most important
features:

o the atmospheric medium has a polytropic equation of state,
with a polytropic index n;

e therefractive index « of the atmosphere is assumed to follow
the Gladstone—Dale relation (i.e., it is linearly dependent on
the air density), and its variation with altitude is given by

h n
- _ 2
fe(h)_1+a(1 2y R@+h) :
2 _ goRg
R N T

where .72 is the gas constant and gy is the gravity at the
surface of the Earth;

e the model parameters, playing the role of boundary condi-
tions at the Earth’s surface, are the following ones: pressure
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Atmosphere

Fig. 1. Geometrical quantities introduced in the text. The solar ray is
denoted by .%2. The last two of Egs. (5) can be easily derived by noting
that the angle marked by an asterisk is just 7 — z — Re(2)

Po, temperature Ty, temperature gradient T, humidity (wa-

ter vapor pressure) p’ and refractive index kg = (1 + o).

Starting from these quantities, Garfinkel determined the re-
fraction angle (i.e., the difference between the true and appar-
entray direction) Re(z), where z is the apparent zenith distance.
[Note that here we define Re(z) as the refraction angle for the ap-
parent zenith distance z measured on the Earth surface, whereas
in our previous two papers (Vokrouhlicky et al. 1993c, 1994) we
were interested in the refraction angles of the solar rays grazing
the atmosphere at some given altitude.]

A suitable choice of the reference systems is important for
modelling the albedo effect (see Borderies & Longaretti 1990).
We proceed as follows. The satellite’s orbit (and consequently
the satellite position) is referred to the fixed (inertial) system
(X,Y, Z), where the X —axis is directed to the vernal equinox
for some given epoch and the Z-axis is close to the Earth’s
rotation axis. In the (X, Y, Z) frame we define spherical coor-
dinates (©, ®) in the usual way (X = Rsin©cos®, etc.). In
order to simplify the integration of the radiative flux (2) at the
satellite’s position, we introduce a geocentric, satellite—oriented
frame (x5, ys, 25), With the z;—axis directed to the instantaneous
satellite’s position, and the zs—axis parallel to local frame’s unit
vector eg at the satellite’s position.

2.2. Solar radiative flux at the Earth’s surface

In this section we consider the following problem: given an il-
luminated Earth’s surface element, how much radiative energy
flows out of it per unit of time? that is to say, what is the pro-
jection F'; of the vector flux F' on the normal to the surface
element? If we assume isotropic diffusion of sunlight (accord-
ing to Lambert’s law) from a surface element of albedo .4 , the
radiative intensity I. emitted towards an arbitrary direction is

L=t 3)
v

A common approach (e.g. Rubincam & Weiss 1986; Bor-
deries & Longaretti 1990) is a purely geometrical one, neglect-
ing the atmospheric effects and expressing F'| just through the
solar constant (9% ) and the cosine of the local solar zenith an-
gle (cosVg), that is: F'| = .% cos Y. On the other hand, our
approach requires that we express the normal radiative flux F'|
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in Eq. (3) through the projection on the local normal direction
of the integral (2). The latter can be computed in a local sys-

. tem bound to the Earth’s surface (ze, ¥, 2. ), defined as follows:

the z. axis is normal to the surface and the the x. axis lies in
the plane containing the geocentric position vector of the ele-
ment and the geocentric Sun—directed unit vector (in fact, this
reference frame is close to the solar—oriented frame used in
Vokrouhlicky et al. 1993c, 1994). In this local frame we can
define the polar angles (z, ¢,), where 2 is the usual notation for
the apparent zenith angle. Then, the quantity F'| can be written
as

F| = / d(cos z)d¢, cosz I(z,d,) - @)
(2,¢2)

We are going to follow the method developed in Vokrouhlicky
et al. (1993c): first, we will solve the ray geometry problem in
the ¢, = 0 “slice”; next, we will show how this solution can be
generalized to other slices ¢, = const # 0, simply by rescaling
the solar distance, the solar radius and the Sun—satellite geo-
centric angular distance. The reader is referred to Vokrouhlicky
et al. (1993c) for the details. Making use of the first integral of
Euler’s variational equations resulting from the Fermat principle
for a given ray in the atmosphere (see Garfinkel 1944, 1967) and
of trigonometric relationships in the triangles shown in Fig. 1,
we get the following set of equations:

apsinp=sin(p+0o) ,
ay(z)sinp=sinosin (p+0’) , o)
o'=0-¢,
E=z+Re(2) —w,

where w is the geocentric angular distance between the solar
centre and the considered Earth’s surface element,

_ERo
"R

(251 ) on(2) = K (%) sin z ) (6)

R, Rg and Rg are the Earth—Sun distance, the solar radius and
the Earth’s radius, respectively, and the quantities p and ¢’ are
defined geometrically in Fig. 1.

The set of Egs. (5) is essential in the developments which
follow. We can use (5) to solve for o’ provided z is known (this
can be called the individual ray problem). This problem has to
be solved, when one wants to determine the radiative intensity of
the ray characterized by the apparent solar zenith angle 2. This
quantity can be determined once one knows ¢’ (through a solar
limb darkening model) and the optical path in the atmosphere
(whenever the physical interaction of the radiation with the at-
mosphere is taken into account — see below). As for the solar
limb darkening, we use the second Eddington approximation for
a grey atmosphere as in our previous papers (Vokrouhlicky et al.
1993c¢, 1994; for a derivation, see Mihalas 1970). Rearranging

Egs. (5), we obtain
coso’ = cos [arcsin <a—2—_&ﬂl—£)] : @)
1
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Sunset phases

YN
c) d)

Fig. 2a—d. Sequence of images of the solar disk seen from the Earth’s
surface during the sunset, according to the individual ray theory of
Sect. 2.2. No significant compression of the solar disk shows up, and
its vertical width at the beginning of the sunset [image b] is about 26
arcmin, in agreement with measurements (Allen 1976)

However, solutions of (5) can be searched for also when
other quantities are known. Thus, the values z = z4 corre-
sponding to o’ = Z give the limits of the solar disk in the local
frame’s zenith distance. In this case, the equation

né(2) = arccos [a — nan(2)] — g ®)

has to be solved iteratively for zy, where 7 = 1 corresponds
to the minimum (7 = 1) and maximum (1 = —1) zenith angles
of the solar disk.

Finally, setting z = 7 and ¢’ = § or ¢’ = 0, we can de-
termine the solar disk visibility from the chosen element of the
Earth’s surface. Denoting

w = Re, +arccos (o) + ap) , ®)
wy = Ty Re, — arcsin . ) (10)
2 1—o?

w3 =7 + Re, — arccos (o] — ap) (1D
we consider the following phases: (i) forw < wy, the whole solar
disk as seen from the chosen surface element is above the local
horizon; (ii) for w; < w < wy, more than half of the solar disk is
visible; (iii) for w,; < w < ws, less than half of the solar disk is
visible; and (iv) forw > ws, the solar disk is completely invisible
from the considered location on the Earth. The refraction angle
for an Earth-grazing ray (z = 7) is Re.. The meaning of the
quantity am, will be given later in this Section.

Figure 2 shows a typical sequence of solar images for in-
creasing values of w, corresponding to various sunset phases.
The sunset starts when the Sun touches the local horizon (case
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b). The vertical width of the solar disk is then approximately 26
arcmin, depending on the atmospheric conditions. Compared
with a similar sequence of solar images seen from the LAGEOS
satellite, no significant compression of the solar disk is observed
when the horizon is approached. (See Fig. 4 of Vokrouhlicky
et al. (1993c), and the explanation given thereof.)

As for the situation when ¢, = const # 0, it can be seen by
simple but lengthy algebraic manipulations that the previous so-
lution still holds provided the solar distance (R), its radius (Rg)
and the Sun-satellite geocentric angular distance are rescaled
according to the following rules (Vokrouhlicky et al. 1993b):

Ro(és) = Ro [1 - a7 2sin? ¢, sin?w] /| (12a)
R(¢,) = R[1 - sin g, sin’w]'/* | (12b)
cos w(d,) = cosw (12¢)

[1 - sin® ¢, sin> w] 12

The previous individual ray solution [Eq. (7)] is also valid pro-
vided the coefficients a;; and a; [given by Eqs. (6)] are redefined
using R, R and w rescaled according to Egs. (12). Note that
the cosine of the departure of the ray from the normal to the
solar surface element, to be used in the solar limb darkening
law, is no longer just yi5 = cos o, but rather

pss(@2) = (1 — 07 2sin’ ¢, sinw) /2 cos o' () (13)

(here the index ‘ss’ corresponds to ‘solar surface’). In Eq. (10)
we have denoted the rescaled o, parameter for the maximum
value of the local ¢ angle (sin ¢max = sin™! w) by an,. It
should also be noted that we do not discuss here in full detail
the situation occurring on the Earth’s surface very close to the
subsolar point. Actually, for sinw < a; (= 5 x 1073), the ¢
angle can take arbitrary values in its interval of definition (0, 27).

In our approach, we include also a simple treatment of the
Rayleigh scattering in the atmosphere. We do not attempt a
self~consistent solution of the scattering problem in the atmo-
sphere, but rather model the removal of radiative energy along
the considered light ray by single scattering centres, effectively
equivalent to an absorption mechanism. Before we deal with
this effect, recall that Levin (1962) already pointed out that the
factor appearing in the expression for the radiative flux emerg-
ing from an Earth’s surface element is not simply the cosine of
the solar zenith angle. The reason is related to the atmospheric
phenomena, in part consisting of a “dilution” of the radiative
field (see Vokrouhlicky et al. 1993c), but mainly due to scat-
tering and absorption processes. From this point of view, our
approach represents a step in the direction recommended by
Levin to achieve a more realistic treatment of the albedo effect.

The radiative transfer equation in an absorbing medium is
formally solved by

I(r) = I exp(=7)

(14
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Fig. 3. Normalized scalar radiative flux (F W/ Fj_) (see text) vs. cosine
of the zenith angle z of the solar disk’s centre. Note that scales are
logarithmic on both axes

where I is the ray intensity out of the atmosphere (where it is
conserved), and I(7) is the ray intensity after an optical path 7
in the atmosphere, with

T= /ds x(s) . (15)
Here x is the absorption coefficient and s is the curvilinear
abscissa along the ray. Unfortunately, this solution is actually
very complex due to the deflection of the ray in the atmosphere.
Therefore, we shall neglect the curvature of the path. Were the
absorption coefficient constant (x = x*) throughout the atmo-
sphere, the integral (15) would have the simple solution

=y [\/R%Bcoszz+h7 (2Rg + hr) —R@cosz] , (16)

for a solar ray characterized by the zenith distance z (hr is the
atmosphere’s height). However, the solution (16) would lead
to unrealistic results, as the assumption of a constant absorp-
tion coefficient is too drastic. We have to assume at least a
simple variation of the effective absorption coefficient in the
atmosphere, mainly to model its change with the altitude. The
effective absorption coefficient due to Rayleigh scattering is at
a first approximation a linear function of the atmospheric den-
sity (McCartney 1976). Taking into account the properties of
Garfinkel’s atmospheric model (see Sect. 2.1 above), we can
improve the estimate (16) for the optical thickness of the atmo-
sphere in a given local direction 2z by using instead

=1 /] ¢ [1 -29*(1- Ry ™" (G T*))"] :
0

2 i 1/2
R%B +¢? (;{—;) +2Rg( (;;) cos z} ,

a7

together with

P (7)) =
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where x* is now the absorption coefficient at the Earth’s sur-
face (in the examples to be discussed in Sect. 3 we will adopt
the numerical value x* = 1.162 x 107> m~!, corresponding
approximately to the wavelength A = 550 nm. Note that we
neglect the dependence of Rayleigh scattering on wavelength.

Summarizing our approach, we can state that every solar ray
going through a particular point on the Earth and contributing
to the radiative flux integral [Eq. (2)] is assumed to undergo a
refractive deflection as described in the first part of this section,
while at the same time the radiative intensity carried along the
ray is attenuated by a factor f(7*; z) exp(—7*), where

@5 2) = exp{T* [1 - /01 d([l_

292 (1 — Rgp™! (c;f*))"]]} )

Figure 3 shows the dependence of the normal flux F'| given
by Eq. (4) and normalized to the value without atmosphere,
' = .% cos Vg, upon the cosine of the zenith angle z of the
solar disk’s centre. The two cases without (curve 1) and with
(curve 2) Rayleigh scattering have been plotted. The latter curve
shows that the flux F'| is in general lower than the simple ge-
ometric value '} owing to attenuation of sunlight, which be-
comes stronger and stronger as the atmospheric path of the rays
gets longer. On the other hand, for very large solar zenith an-
gles (i.e., with the Sun close to the local horizon), refraction
yields a significant increase of F'| with respect to £}, due to
the well-known phenomenon of the earlier sunrise (and later
sunset) caused by the deflection of solar rays. These effects will
be further discussed in Sect. 3.

2.3. Albedo radiative flux at the satellite — diffusive Earth’s
surface

Having solved the problem of the irradiation of an Earth’s sur-
face element, we now turn to the analogous problem concerning
the irradiation of the satellite from the visible and illuminated
Earth’s cap. The underlying approach is exactly the same as
above: we select all the light rays at the satellite position which
are emitted by the Earth’s illuminated cap and then we com-
pute, again through Eq. (2), the radiative vector flux, which is
directly connected to the perturbing force [Eq. (1)]. In order to
perform these computations, we introduce a satellite—centered
coordinate frame (zg, ¥s1, 2s1) (the index ‘sl’ stands for ‘satellite
local’), along with the spherical angles (61, ¢51). The axes of this
frame are parallel to those of the satellite—oriented geocentric
frame (x5, ys, 25), and just the origin is moved to the satellite. We
cover the source (the Earth’s surface cap visible from the satel-
lite) by a suitable grid defined in the satellite—oriented frame
introduced earlier (see Fig. 4).

As noted earlier, the individual ray problem (i.e., finding the
geometry of a particular ray) is at the heart of our method. Using
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®sl

satellite

Earth

Fig. 4. Coordinates introduced in Sect. 2.3. The Earth’s cap visible from
the satellite is parametrized by the satellite—oriented angles (6, ).
The apparent zenith angle of the satellite in the surface element’s local
frame is z and the spherical angle of the emitter in the satellite—centered
frame is Oy

again the first integral of the variational equations coming from
the Fermat principle, we obtain the following set of equations

sin By = ks (9) sinz, (194)
T

0, = z + Re(z) — by , (19)

¢sl = (bs ) (190)

where z is the zenith distance of the selected ray in the lo-
cal frame of the Earth’s surface emitter. Equations (19) can be
used as follows: (i) the selected ray is specified by (65, ¢s1); (i1)
then one can solve for the corresponding zenith distance z by
means of Eq. (19a); (iii) finally the position of the Earth’s surface
emitter (65, ¢s) can be determined by means of Egs. (19b,c). Of
course, one has to check whether the point is illuminated by the
Sun. If atmospheric absorption is neglected, the radiative inten-
sity along the ray is given by Eq. (3), where the normal flux F';
refers to the illumination of the surface element characterized
by parameters (65, ¢s); if on the contrary Rayleigh scattering is
taken into account, the intensity becomes

F
I(6g, ) = a@—ﬂi F(T*5 2) exp(—7*) (20)

where f(7*; z) and 7* are given by Eqgs. (16) to (18).

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26A...290..324V&amp;db_key=AST

FTI992A&A. © Z290- 2374V

330

2.4. Albedo radiative flux at the satellite — specular Earth’s
surface

Our approach to the albedo effect problem can also be used with
the assumption that the sunlight is specularly reflected on the
surface of the Earth. Of course, this is a more acceptable assump-
tion for the seas than for the continents (Barlier et al. 1986). It
turns out that the specularly reflected radiation accounts only for
a minor fraction of the Earth’s energetic output. However this
minor component plays an important role in the perturbations of
the motion of LAGEOS (Vokrouhlicky et al. 1993b). We stress
that by “specular reflection” here we mean ideal reflection of
electromagnetic plane waves on the flat boundary between two
optical media (air/water in our case). The reflectivity (i.e., the
fraction of incoming energy carried away by reflected waves)
can be simply evaluated under the assumption of unpolarized
(“white”) illumination by

1sin’(z — z,) [
Te(2) = = 1
) 2 sin®(z + 2,) "

cos?(z + z) ]

cos2(z — 2zy) @D

(Jackson 1962), where the refraction angle z, is defined by
osin z = sin z,, with g = 0.7446 for an air/water boundary.

As for the geometry of the ray, we only have to put together
the results of the two previous Sections. In other words, the
illumination of each Earth’s surface element is treated in the
same manner as in Sect. 2.1. In contrast with what occurs in the
case of diffuse reflection (Sect. 2.2), when every surface element
visible from the satellite can send light rays to it, here we must
consider only the points on the Earth’s surface which connect the
sun and the satellite by specular reflection. Thus, here we treat
the Earth’s surface as an ideal spherical mirror, with Fresnel—-
type optical behaviour, and consider the action on the satellite
of just the radiation reflected in this fashion. For this purpose,
we have to find out those rays, which form a solar image on
this “giant mirror”, as seen from the satellite. We shall discuss
how this can be done in the ¢ = O slice, after which the same
treatment can be applied to other slices provided the rescalings
discussed in Sect. 2.2 are performed. The central point consists
in putting the sum (w + 65) [from Egs. (5), (12) and (19)] equal
to €2, that is the geocentric angular distance between the Sun
and the satellite.

Suppose that we have chosen a specularly reflected light
ray (specified by some value of 6y) in the satellite—centered
local frame. To obtain the radiative intensity of this ray, we first
determine the position of the Earth’s surface element where the
reflection takes place in the satellite—oriented frame (i.e., the
corresponding value of ;) by using Eq. (19b), and the zenith
angle of the reflected ray z by Eq. (19a), that is
sin z = ns_l (g) sin by . (22)
The cosine of the deflection of the ray from the local normal
when it is emitted at the solar surface is then determined by
Eq. (7), where we use: (i) the same zenith angle z for the re-
flected ray as for the corresponding ray incident on the Earth’s
surface element, as determined from Eq. (22), consistently with
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the assumption of mirror reflection; (ii) w = Q — §; for the geo-
centric angular distance between the reflecting Earth’s surface
element and the Sun. Denoting by Tom(uss) (with pss = cos o”)
the radiative intensity of the ray when emitted at the solar sur-
face, derived from the solar limb darkening model, we conclude
that the radiative intensity of the specularly reflected ray is given
by

I = 98(2) Iem(liss) (23)
when the atmospheric scattering is neglected, or by
1= () [ 2) exp(=27") Lem(piss) 24)

when Rayleigh scattering is accounted for [with 7* given by
Eq. (15)]. Note the square of the altitude correction factor
f(7*; 2) in Eq. (24), due to the fact that the ray crosses twice
the Earth’s atmosphere.

As we did earlier, the equations expressing the geometry of
individual rays can be solved inversely to find out which satellite
local directions correspond to sunlight specularly reflected on
the Earth. After some rearrangements of Eqgs. (8) and (19a,b),
we obtain the following set of equations:

z+ Re(z) + w =  + arcsin [ns (g) sin z] , (25a)

z+Re(z) —w=n [arccos (a1 —nay (2)) — er_] , 25b)
which has to be solved for z and w. Here again n = %1 corre-
sponds to the lowermost and uppermost rays specifying on the
chosen ¢,—slice the limits of the solar disk image.

3. Albedo effect perturbations

Although here we restrict the discussion to the perturbations on
the satellite LAGEOS, very similar results would be found for
other satellites (in both low and high Earth orbits — in particular
we examined the case of MACEK accelerometric spacecraft,
see Vokrouhlicky 1994). In order to simplify the geometry and
to derive upper limits for the effects to be analyzed, we have
slightly modified the real LAGEOS’ orbit. We have put the Sun
on the Earth’s equatorial plane, in the same direction as the
instantaneous ascending node of the orbit. Moreover, we have
assumed a polar orbit, namely a 90° inclination instead of the
~ 110° inclination of the real orbit. This simplified geometry
has already been used in previous studies of the albedo effect on
LAGEOS (Rubincametal. 1987; Lucchesi & Farinella 1992), so
that it will be possible to compare our results with previous ones.
As for the coordinate grids needed for the numerical evaluation
of the flux integrals, we adopted: (i) a 51 x 51 grid for the flux of
sunlight through the Earth’s surface elements (Sect. 2.2); (ii) a
61 x 61 grid for the flux of sunlight diffused from the Earth (i.e.,
on the Earth’s cap visible from the satellite, see Sect. 2.3). The
corresponding grid spacings have been tested to be small enough
to guarantee the numerical accuracy of the results. We also chose
a fairly short step in LAGEOS’ orbital mean anomaly — about
5 s in time — in order not to miss subtle penumbra phenomena
(we recall that LAGEOS’ orbital period is 13,540 s).
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Fig. 5a and b. The radial [part a] component of the albedo perturbation
along LAGEOS’ modified orbit (as described in the text) vs. orbital
mean anomaly. Here the Earth is considered as an ideal Lambertian
diffusor with constant albedo .4 = 0.25. The dashed curve 1 corre-
sponds to the simple model neglecting all the atmospheric phenomena,
the solid curve 2 to the model accounting for atmospheric refraction
only (no scattering; note that both curves coincide at the scale of this
plot), the solid curve 3 to the model accounting also for Rayleigh scat-
tering with altitude-dependent absorption coefficient. Part b enlarges
the short transition phase when the satellite leaves the Earth’s shadow
(the dashed region corresponds to the penumbra phase). Here curves
1,2 and 3 are the same as in part a, but now the pair of curves 1 and 2
(as well as the pair 4 and 5), can be seen independently. Curve 4 cor-
responds to the atmosphere—free model, but rescaling the albedo value
to .4 = 0.193. Curve 5 corresponds to a combination of the simpler
and the more accurate approaches: the ray geometry is treated as in the
atmosphere—free case (straight lines), but simultaneously the Rayleigh
scattering factor (18) is used

The optical thickness of the atmosphere due to molecular
scattering at A &= 550 nm is known to be 7 =~ 0.096 (see Allen
1976). Applying Eq. (17) for the altitude correction factor and
putting z = 0 to get the optical thickness in the zenith direction,
we obtain Tyer, = 0.094, in good agreement with the above—
mentioned value. Near the local horizon (i.e., for z = 7), the
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optical thickness is considerably larger, since the rays perform
a longer path through the atmosphere, essentially in the lower
layers where the density is higher. From our formulae we obtain
Thoriz. & 3.3, or equivalently an attenuation of the intensity of
~ exp(—3.3) = 0.037. This is again in good agreement with the
extrapolation of data given by Siedentopf & Scheffler (1965).

The strong sensitivity of the attenuation with the zenith dis-
tance has interesting implications. On one hand, a strong at-
tenuation decreases the magnitude of the albedo force on the
satellite. On the other hand, both the Earth’s cap visible from
the satellite and the fraction of the Earth’s surface illuminated
by sunlight become larger as a result of atmospheric refraction,
which in turn tends to increase the magnitude of the albedo force.
The competition between the effects of absorption and refrac-
tion has the following consequences. First, when the satellite is
close to the edge of the Earth’s shadow, the larger illuminated
and visible region leads to a penumbra-type effect (Vokrouh-
licky et al. 1993c), characterized by an earlier rise of the albedo
force (see Fig. 5b). Second, when the satellite is well above
the illuminated part of the Earth’s surface, the albedo force de-
creases since Rayleigh scattering dominates (Fig. 5a). The same
mechanisms were also apparent in Fig. 3.

We also tested two approximate models useful in orbital
dynamics to save computing time without significant loss of
accuracy. First, we have just rescaled the value of the Earth’s
albedo coefficient defined in the atmosphere—free model, and
this leads already to a much better agreement between the results
of the model neglecting atmospheric effects and those of the
more complex model including both refraction and Rayleigh
scattering. In the case shown in Figs. 5 (curve 4), it was sufficient
for this purpose to choose .4 = 0.193 as the effective Earth’s
albedo instead of 0.25, the “true” value at the bottom of the
atmosphere; note that the ratio between the two albedo values
is close to the vertical sunlight attenuation in the atmosphere,
that is exp(—2 x 0.094). An even better agreement is obtained
by keeping the Earth’s albedo at 0.25 and combining the simple
geometrical approach with straight light rays (no refraction)
with an effective damping of the radiative intensity by the factor
given by Eq. (18). The results of this model are represented by
curves 5 in Figs. 5. Apart from the missing penumbra—type
effects (see Fig. 5b), the agreement with the reference solution
(curve 3) is remarkable.

The force components arising when specular reflection only
is considered are plotted in Figs. 6. Only little differences are ob-
served between the simple geometric model based on Barlier’s
et al. (1986) formulae, including the J(@) dilution factor, and
our more complex model accounting for the refractive effects
only, in spite of the very different mathematical techniques used
in the calculations. Actually, apart from the absorption-related
rescaling of the albedo coefficient, the atmosphere appears to
play just a minor role in the albedo effect, which is amplified
only near the shadow edges (see Fig. 6¢). The excellent agree-
ment between the results provided by the two approaches is
important, and confirms the validity of the rather crude model
introduced by Barlier et al. (1986), and based on the use of the
J(0) “dilution factor” (see Sect. 1).
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Figure 7 shows the apparent shape of the Sun seen from
the satellite on the convex Earth’s surface, and gives a clear
idea of why the simple geometric approach is so successful.
Although the Sun is an extended radiative source, its image is
very small, owing to the dilution of the reflected radiation (due
to the geometry of reflected rays from a spherical mirror). This
also shows why in Barlier’s et al. approach the use of J(0) is
essential.

Another important remark is that omission of the Fresnel
reflectivity coefficient [Eq. (21)] would lead to considerable er-
rors. The resulting perturbing force would not only be larger
in magnitude (by a factor of 10 or more), but would also be-
have in a qualitatively different way — e.g., there would be
only one maximum of the radial force component when the
satellite is just above the subsolar point. Therefore, although
the instantaneous effect of the specularly reflected radiation is
small (even when compared to other nongravitational effects;
e.g., for the real Earth it contributes only a minor fraction of
the total albedo force), oversimplified modelling of this effect
may lead to inaccuracies accumulating during the long—term
evolution of the orbit. We stress that a correct treatment of the
force due to reflected radiation is not yet commonplace in the
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Fig. 6a—c. Radial [part a] and transverse [part b] components of the
albedo acceleration along LAGEOS’ modified orbit (see text) vs. mean
anomaly (M). Specular Fresnel-type reflection of sunlight from the
whole Earth’s surface has been assumed. Dashed curves 3 and 4 cor-
respond to the simple geometrical approach of Barlier et al. (1986),
whereas solid curves 1 and 2 correspond to the more precise approach
developed in this paper. In case 1, only refractive atmospheric effects
have been taken into account, while in case 2 Rayleigh scattering with
an altitude—dependent absorption coefficient was also accounted for.
In case 3 and 4, we assumed no refraction (straight rays), but in case 4
the Rayleigh atmospheric attenuation was accounted for as with case 5
in Figs. 5. The earlier rise of the radial component caused by refraction
when the satellite is close to the shadow’s edge is displayed in part c.
Note, however, that this penumbra phase is quite short

dynamical models used in mission planning (see e.g. Antreasian
1992).

Another problem related to the specularly reflected radia-
tion, that we have not analysed in this paper, originates from the
fact that the real ocean surface is not a perfect spherical mirror,
but usually has complex wave patterns over a wide range of
wavelengths (Wyatt 1963). As a consequence, the real image of
the Sun as seen from the satellite on the ocean is much fuzzier
and larger than those displayed in Fig. 7 — as it can be guessed
by looking from a beach at the sunlight reflected from the water
before sunset. Qualitatively, the effect of ocean waves can be
simulated by assuming that specularly reflected light is spread
over a finite—sized cone surrounding the direction predicted by
geometric optics (Rubincam et al. 1987; Lucchesi & Farinella
1992). However, this rather complicated phenomenon (see dis-
cussion in Bass & Fuks 1979) appears to deserve further study,
and we plan to do it in a forthcoming paper.

4. Conclusions

In this paper we have presented a new method to model the
albedo effect, namely the perturbing force on Earth satellites
due to the sunlight reflected by the Earth. This method allows
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the specularly reflecting Earth
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Fig. 7a~d. Sequence of solar disk images seen from the LAGEOS satel-
lite on the specularly reflecting Earth. Case a corresponds to the config-
uration when the subsolar and subsatellite points on the Earth’s surface
coincide. In this case, the image is circular. Otherwise, the images are
“compressed”, although the area of all of them is roughly the same.
Note also that the images are significantly smaller than the real solar
disk, as a consequence of the spherical shape of the Earth’s surface

us to investigate in detail the role of the Earth’s atmosphere,
considered as an isotropic optical medium characterised by uni-
form refractive and absorptive properties. Our approach deals
in a consistent way with the atmospheric effects, both when the
illumination of the Earth’s surface is considered and when the
satellite’s irradiation by Earth-reflected sunlight is evaluated.
The results can be compared with the more commonly used,
simple treatment of the albedo effect neglecting the interaction
of light with the atmosphere. In order to better understand these
phenomena, we used simplified models of the Earth’s optical
properties and the satellite’s shape, but more realistic models
can be easily treated in a similar way.

The influence on the albedo effect of penumbra phenomena,
occurring when the satellite is close to the edges of the Earth’s
shadow, can be realistically modelled in our approach. Com-
pared to the case of the direct solar radiation pressure (Vokrouh-
licky et al. 1993c), the penumbra phenomena are found here
to be much less important, mainly because the solar illumi-
nation for large zenith angles results in a very small radiative
flux through the corresponding Earth’s surface elements [see
Eq. (3)], as a consequence of Rayleigh scattering. The influence
of sunlight attenuation due to this scattering is quite pronounced
(see Fig. 5a). However, we have shown that the details can be
neglected, provided a smaller effective value of the albedo co-
efficient of the planet is adopted.

We have also discussed the effects of the specularly reflected
sunlight. Here again, the atmospheric effects do not play an im-
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portant role. On the other hand, we establish on firm grounds the
validity of the approach of Barlier et al. (1986), who correctly
accounted for the dilution of the radiative field due to the curva-
ture of the Earth’s surface. The omission of the corresponding
coefficient would bring significant errors in the force model.

The main limitation of the physical model used in our ap-
proach involves the Rayleigh scattering, in both the diffuse and
the specular reflection cases. The scattering was not treated in
a fully consistent manner, as we took into account only the ra-
diation removed by single scattering on one hand, and did not
attempt to model the contribution of scattered light on the other
hand. A self—consistent study of the full scattering problem in
the context of radiation forces would deserve more attention.

Finally, the reader is reminded that the phenomena studied
in this paper should not be mistaken for the influence of the
cloud coverage on the Earth’s optical properties and the albedo
effect. One has to distinguish between the global (somewhat
averaged) character of the atmospheric optical properties, con-
sidered here, and the local (and rather erratical) character of the
cloud coverage. The influence of local cloud phenomena had
been addressed in two previous papers (Vokrouhlicky & Sehnal
1993; Vokrouhlicky et al. 1993a), and was found to be quite
important.
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