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Abstract. We have developed an approximate version of our
theory (Vokrouhlicky et al. 1993c) for the perturbing force due
to solar radiation pressure undergone by artificial Earth satel-
lites when they cross the penumbra zones. The relative discrep-
ancies in the instantaneous acceleration values with respect to
the complete theory are generally smaller than 1%, and no sys-
tematic pattern resulting into spurious long—term perturbations
arises. At the same time, the approximate approach leads to a
considerable gain in the computing time needed for evaluating
the perturbing force, typically an improvement by a factor 10 to
50. As a consequence, the theory is now suitable for implemen-
tation in the orbit analysis/determination codes used in space
geodesy. Moreover, it can be applied to study the long—term
perturbations associated with the penumbra effect on the orbital
semimajor axis of LAGEOS. We have thus assessed that the
additional long—term along—track perturbations resulting from
the penumbra transition, with respect to those predicted by a
simple step-like model, are of the order of several times 10~!3
m/s?, smaller than — but not negligible when compared to —
the other radiative forces which contribute to LAGEOS’ semi-
major axis residuals. The long—term perturbations are due to
the asymmetry between entrance into and exit from the Earth’s
shadow, resulting from different conditions of the atmosphere
at opposite sides of the Earth. It appears likely that this penum-
bra effect plays a role in determining the relative sizes of the
along—track acceleration spikes which have been detected when
LAGEOS crosses the Earth’s shadow.
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1. Introduction

Radiative perturbations, in the context of artificial satellite dy-
namics, can be divided into two basic categories:

(i) external effects, due to the fact that the satellite is “bathed”
into the radiative field of various external sources, such as the
Sun and the Earth — they include direct solar radiation pressure,
the force due to sunlight reflected or scattered from the Earth’s
surface/atmosphere, and that caused by infrared radiation emit-
ted by the Earth;

(ii)internal effects, arising when the satellite itself emits ra-
diation to some extent anisotropically, hence it undergoes a
recoil acceleration — this is the case for the thermal trust or
Yarkovsky-type force and the Poynting—Robertson effect.

In the last few decades, all of these effects have drawn the
attention of celestial mechanicians and space dynamicists, in
relation with the analysis of short— as well as long—term per-
turbations in satellite trajectories (for a review, see Milani et al.
1987). The theory of non—gravitational perturbing forces has
been particularly refined in the wake of the discovery of puz-
zling residual (i.e., unmodelled) accelerations in the orbit of
the laser—tracked satellite LAGEOS (Smith & Dunn 1980; Ru-
bincam 1982). The radiative forces listed above have played
a special role in the ongoing discussion — and the partial so-
lution achieved so far — of the problems related to identifying
the physical mechanisms responsible for the observed LAGEOS
residuals (Anselmo et al. 1983a; Rubincam 1987, 1988, 1990;
Barlier et al. 1986; Rubincam & Weiss 1986; Afonso et al. 1989).

In this paper, we will focus on some aspects of the perturbing
force due to direct solar radiation pressure. As explained in
Paper I (Vokrouhlicky et al. 1993c), the treatment of the external
radiative effects can be conveniently split into two steps:

(i) a characterization of the radiative field in which the satel-
lite is plunged, depending only on the properties of the radiation
source;
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(ii) a model for the interaction of the radiation flux with
the satellite’s surface, possibly including the self-shadowing
and multiple-reflection effects undergone by spacecraft with a
complex shape (Anselmo et al. 1983b; Klinkrad et al. 1990).

A general mathematical formalism suitable for this split-
ting of the problem has been described in Vokrouhlicky et al.
(1993a). Throughout this paper we will deal with the treatment
of direct solar radiation pressure restricting ourselves to step
(i) — i.e., we will assume that the satellite has the simplest
possible shape and surface properties: a nearly—spherical shape
and quasi—isotropical optical properties. This is actually a good
approximation for LAGEOS. Anyway, we stress that the two
steps quoted above are conceptually separated, so that all the
results presented in the following can be extended to the more
general case of complex—shaped and/or optically anisotropical
satellites.

Modelling the perturbative effect of direct solar radiation
pressure on the orbit of a spherical satellite is rather straight-
forward, but for the passages from full sunlight to the Earth’s
shadow and vice versa. These will be referred to below as the
penumbra transitions. These transitions take place only when
the satellite’s orbit crosses the Earth’s shadow, and even then
they last at most a few percent of the orbital period. However, in
special situations this tiny effect acting over short time intervals
can play a significant role in the observed dynamical behaviour
of satellites. Such is the case for the accelerometric experiments
devoted to direct measurements of the non—gravitational forces
acting on spacecraft (see e.g. Pefesty & Sehnal 1992). In this
case, the time dependence of the solar radiation pressure during
the penumbra transitions can be directly measured and com-
pared with model predictions. A more subtle effect may be due
to the fact that the along—track component of the radiative force
behaves asymmetrically during the entry and exit transitions,
hence it does not average out over one orbital revolution. In this
case the perturbing effect on the orbital semimajor axis accu-
mulates and long—term variations are generated. In Sect. 3, we
will give an example of this by analysing the case of LAGEOS’
acceleration residuals.

Let us recall some general properties of the penumbra effect.
Already in the 60’s it was recognized by Link (1962, 1969)
that the essential role in determining the time dependence of
the radiative force during the penumbra transitions is played
by atmospheric processes, whereas the gradual eclipsing of the
finite—size solar disk by the solid Earth is of minor importance.
The optical properties of the atmosphere affect the solar radi-
ation flux in two different ways: (i) the differential geometric
refraction of separate solar rays causes them to diverge, imply-
ing that the net solar flux is decreased throughout the penumbra
phase, which on the other hand has a longer duration (again due
to refraction); (ii) the interaction of the solar radiation with the
atmosphere decreases the radiative flux owing to absorption and
scattering processes.

With the exception of a full treatment of atmospheric scat-
tering, which would be extremely complex, we have shown in
Paper I that all the atmospheric effects can be described by a re-
alistic but still tractable theory. However, in Paper I we warned
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the readers that the large computing time requirements of the
calculations needed by this formulation of the theory might be a
serious obstacle to its wide application to concrete orbit analysis
problems. This was a significant drawback of the method, since
arealistic treatment of the penumbra effect would be quite useful
in the codes which are commonly used for reduction of tracking
data and orbit determination, for instance in the frame of space
geodesy experiments (e.g. Fliegel et al. 1992). This conclusion
is strengthened by the fact that in Paper I we confirmed Link’s
finding that the introduction of atmospheric refraction, absorp-
tion and scattering in the penumbra effect modifies in a very
significant way the conclusions derived from the simpler ap-
proach, assuming the gradual disappearance of the undistorted
solar disk behind the horizon.

Therefore, in this paper we present a simplified version of
our theory of the penumbra effect, which does not degrade sig-
nificantly the accuracy of the more complete formulation of it,
while it leads to considerable improvements from the point of
view of the computing efficiency. This simplified version is not
based on a rigorous mathematical search for approximations,
but is somewhat empirical and validated by numerical testing.
The results of a number of careful tests have shown that the per-
turbing accelerations predicted by the approximate approach
are within 1% of those computed by the complete theory (see
Sect. 3). At the same time, we have achieved computing time
savings by a factor typically ranging between 10 and 50. Thus,
we hope that this computer effective version of the theory has
become suitable for implementation in the procedures routinely
used for satellite orbit analysis and determination.

The remainder of this paper is organized as follows: in
Sect. 2 we introduce the approximate version of the penumbra
theory, and explain why it speeds up considerably the compu-
tations. In Sect. 3 we discuss the accuracy of the theory and
apply it to analyse possible long—term effects on the semima-
jor axis of LAGEOS. Some conclusions and open problems are
summarized in Sect. 4.

2. Approximate penumbra effect theory
2.1. General formulation of the theory

The mathematical technique used throughout this series of pa-
pers has been spelled out in detail in Sect. 2 of Paper I. Since
the use of this technique was not previously widespread in the
framework of satellite dynamics and geodesy, we suggest the
reader to give a look at Paper I in order to follow the arguments
of the present work. Here, we will just give a short outline of
those aspects of the theory which are not specifically connected
with the penumbra effect, but are necessary to introduce further
developments.

(1) Characterization of the radiation source. A realistic
model of the penumbra transitions requires that the Sun is con-
sidered as an extended source of radiation. A spherical solar
model is enough for our purposes, but we have to include some
treatment of the limb darkening effect. Throughout this paper
we will make use of integrated radiative quantities (intensity,
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flux), neglecting the frequency dependence of the integrands.
This is consistent with accounting for limb darkening through
the second Eddington approximation for a solar grey atmosphere
(Mihalas 1970), that yields

Io(w) = Fo Yo, 0

with

3r7 1 1 1 1+
Vo) = |33+ guulz + 30 ()]
Here I is the radiative intensity, u is the cosine of the angle
between the direction of emission and the normal to the so-
lar surface, and Fy, represents the astrophysical radiative flux
emerging through the solar atmosphere. The quantity Fy, is re-
lated to the solar constant &, through the relationships:

140
Fo=~22 |
© " 2 Z(h)

1
FE)=p1 | d'w — o)A — p'pr)

p1
2, ) Tol( — A2, Bl
Cw\p)=1=2pu +p7,

where p; denotes the radius of the solar photosphere in Astro-
nomical Units (see Paper I, Secs. 2 and 3).

(2) Reference frames. The orbital elements of the satellite are
referred to the commonly used inertial frame (X, Y, Z) whose
X-axis is oriented toward the vernal equinox at some epoch,
whereas the XY —plane coincides with the equatorial plane at
the same epoch and the Z—axis is close to the Earth’s rotation
vector.

To evaluate the radiative force, on the other hand, it is conve-
nient to use the so—called Sun—orientedreference frame (z, y, z),
whose axes are directed as follows: the z—axis is parallel to the
satellite’s geocentric radius vector, the zz—plane is the plane
defined by the geocentric positions of the Sun and the satellite,
and the z—axis is chosen such that (s - x) < 0, where s is the
unit vector in the direction of the Sun. We also use the angular
spherical coordinates (8, ¢) defined in the Sun—oriented frame
(6 being measured from the z—axis). This frame has the advan-
tage that the y—component of the force due to solar radiation
pressure always vanishes for symmetry reasons.

(3) Evaluation of the radiative force. Assuming a spherical
shape of the satellite (see Sect. 1) and quasi—isotropical optical
properties of its surface (Vokrouhlicky et al. 1993a), the general
expression for the satellite’s acceleration due to interaction with
the radiative field is

A
a=—&F, @
mce
where A is the satellite’s geometrical cross-section, c the veloc-
ity of light, m the satellite mass, & a dimensionless coefficient
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depending on the surface optical properties and F' the radiative
vector flux defined in Paper I (see also Mihalas 1970) as

F- / d(cos 6)dg (8, ¢) I[(6, $); 7] 3)

)

Here n(0, ¢) is the unit vector specifying a given direction (i.e.,
nT (8, $) = (sin f cos ¢, sin O sin ¢,cos @) and I is the radiative
intensity. The domain of integration of the right—hand side inte-
gral in Eq. (3) is determined by the local radiative field, namely
itsimply covers the whole range of (6, ¢) values for which I # 0
(by definition I = 0 out of the radiative field generated by the
Sun). The two arguments in I[u(f, #); 7] denote two differ-
ent physical effects: u(6, ¢) is the same quantity appearing in
Eq. (1), and its dependence on the chosen local direction (6, ¢) is
related to the refraction (i.e., bending) of the sunlight rays in the
Earth’s atmosphere; 7 denotes half the optical thickness of the
atmosphere along a given ray (6, ¢), characterizing atmospheric
processes such as absorption and simple scattering.

(4) Radiative force out of penumbra transitions. In this case
there is no intervention of the atmospheric effects, and after
simple algebra Eq. (3) leads to the following expressions for
the two nonzero components of the radiative flux in the Sun—
oriented frame:

Fy =2mFo Z (11~ *(coswp)) sin b
F, =21F Z (p1¢™"/*(cosw, py)) cos by @)

where
05 = arcsin{sin w2 (cos w, P},

R@ T
=g =% &)

w is the geocentric angular distance between the Sun and the
satellite, r is the instantaneous geocentric distance of the satel-
lite, R is the corresponding Earth—Sun distance, and Rg is the
solar radius.

(5) Atmospheric model. A model for the structure and the op-
tical properties of the Earth’s atmosphere is an essential com-
ponent of the penumbra theory. As we did in Paper I, we shall
basically adopt Garfinkel’s (1944, 1967) model to compute the
refractive effects and some simple formulae based on a formal
solution of the radiative transfer equation (Mihalas 1970) for the
scattering and absorption processes. The main difference with
respect to Garfinkel’s formulation is that we neglect the exis-
tence of an upper isothermal layer of the atmosphere, and take
into account only its lower polytropic layer. This choice simpli-
fies Garfinkel’s formulae, as boundary conditions between the
two layers are not needed, and does not degrade in a significant
way the accuracy of the results (the upper layer gives rise to a
refractive effect of the order of 5 arcseconds for a grazing ray;
see Garfinkel 1944).

Instead of repeating the fairly complicated formulae given
by Garfinkel, we just recall the basic properties of Garfinkel’s
model: (i) a spherically symmetric distribution for the atmo-
spheric density; (ii) the Gladstone—Dale law for the air refractive
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index (i.e., an essentially linear relationship between refractive
index and air density; see Garfinkel 1967); (iii) a perfect gas
atmosphere with polytropic equation of state characterized by
an index n. Under these assumptions, Garfinkel showed that the
dependence of the refractive index « on the altitude h can be
expressed as

h n
_ _ 2
n(h)—1+a(1 2y R$+h) , ©®)
2 9oRg
2= DT,

where « is a model constant (giving the refraction index at the
Earth’s surface), gy is the acceleration of gravity at the surface,
J& is the gas constant for air, Rg is the Earth’s radius, and Tj is
the surface temperature. The polytropic index n is derived from
the bottom conditions of the atmosphere, namely its temperature
gradient Tjj. The top boundary of the atmosphere is determined
by the condition x(ht) = 1 (necessary for continuity of the
refractive index); explicitly we have ht = Rg(2y* — 1)~!. For
more comments on these polytropic models of the atmosphere,
see also McCartney (1976).

In the following, some of the atmospheric parameters will
be considered as constant: the Earth’s radius, the gas constant,
and the acceleration of gravity. Other parameters, which provide
essentially the boundary conditions at the Earth’s surface, will
be assumed to be variable: (i) the surface temperature Tp; (ii)
the surface pressure py; (iii) the surface temperature gradient T}
(given in Kelvins per “gravitational meter”; see Garfinkel 1944,
1967); and (iv) the water vapor pressure in the air p’, which
gives raise to a “humidity correction” modifying the refractive
index at the surface, i.e., the parameter o in Eq. (6). Although,
rigorously speaking, the set of parameters (Zo, po, 15, p) should
be constant over the whole surface to ensure spherical symme-
try and staticity of the atmosphere, we shall assume that each
of them depends on the geographical latitude and longitude as
well as on time, corresponding to temperature and pressure dif-
ferences existing on the real Earth’s surface. The error arising
from this inconsistency can be safely assumed to be small.

The output of the atmospheric refraction model of interest
here is limited to a single function, namely the refraction an-
gle R, (h) of the solar ray grazing the atmospheric layer at an
altitude h.

2.2. Approximate theory for the penumbra transitions

In this section we introduce a new approximate approach to the
treatment of the penumbra transitions, aiming primarily at: (i)
retaining as much as possible of the accuracy of the complete
theory developed in Paper I; (ii) devising a formulation capable
of accelerating significantly the numerical computations.

It is worth noting that the most time—consuming element
of the complete theory is the two—dimensional integration re-
quired for the numerical evaluation of the radiative flux — see
Eq. (3). The essential idea of our approximation is to avoid this
double integration and replace it by an integration on a sin-
gle variable, taking advantage of a property of the integrand
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in Eq. (3): the fact that this function behaves in a similar way
on different ¢-slices, as defined in Paper I, i.e. on different
¢ = constant planes. Although this similarity does not apply
exactly, it holds approximately. Quantitatively, the similarity
property can be expressed for instance through the following
statement: if 6,(¢) and 0_(¢) are respectively the minimum
and maximum values of the § coordinate for the solar disk edge
in a given ¢-slice, and 6.(¢) is the value corresponding to the
ray emitted normally to the solar body in the same ¢—slice (note
that 6.(¢ = 0) defines the direction of the subsolar point), then
the function (6—(¢) — 6.())/(0:(#) — 0+(¢)) is not exactly con-
stant for different values of ¢, but is bounded within a limited
interval. As noted in Sect. 2.1, the resulting radiative flux has
no y—component, namely it lies in the ¢ = 0 slice.

These observations lead us to formulate the following ap-
proximation: the radiative flux to be inserted in Eq. (2) can be
expressed as

Fapp = FappTiapp - @)

Here Fyyp is the approximate magnitude of the flux, given by

Ab
Fapp = Foutm<exp(_27-)) ) ®)

where Fy,, is the magnitude of the radiative flux before the
beginning (or after the end) of the penumbra transition, specified
by a Sun-satellite geocentric angular separation wey, and Af
is the apparent vertical size of the flattened solar disk during
the penumbra transition. Eq. (8) amounts to say that the actual
radiative flux is directly proportional to the vertical angular size
of the flattened Sun. This is a reasonable assumption because,
when the absorption is neglected, the illumination of the satellite
is determined by the intensity of the light source and the solid
angle of the light beam, that is by the apparent area of the source.
As the refraction flattens the solar disk without changing its
width, the solid angle subtended by the Sun is a linear function
of A6. The validity of this assumption is supported by extensive
numerical checks, as summarized below.
From Egs. (4)-(5) we obtain

Fou = 21 F Z1p1¢ ™ (cos wou, p2)] = B, )

won = 5 = Au(¥rir, Ro, R) (10)

where

(@ v
A+(¥;7, Ro, R) _arcs,m{7 (m + '}i) T

V- CIl- =3}

T(h) = (R + h)k(h) . (12)

In Eq. (10) we used the notation ¥t = ¥(ht) = Rg + hr. Note
that Eq. (9) provides a rigorous expression for the magnitude
of the radiative flux, coinciding with the illumination of the
satellite in full sunlight. This expression can be approximated
with a sufficient accuracy by the solar constant.
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The second factor in Eq. (8), A8/(AB8)oy, accounts for the
decrease in the radiation flux due to the atmospheric refraction;
it is just the ratio between the vertical width of the solar disk in
the f—coordinate at a given instant, and the same quantity out
of the penumbra. Simple algebra leads to

(Aot = 2p1¢ ™1 (cOS Wour, p2) = 2p1. (13)

To a sufficient accuracy this is the same as the apparent solar
diameter, ~ 30 arcminutes.

Now, when the refraction of the solar rays is significant the
apparent shape of the Sun is no longer a plain disk and must be
determined with care. We will not repeat the whole derivation of
the solar disk’s vertical width A6, which is given in Paper I; we
only overview the formulae needed to determine this quantity.
For this purpose, the following system of equations

T(h) sin w(h)\/g(cos w(h), p2) — P2 £ py (pz — cos w(h))

r ¢(cos w(h), pa)
(14)

w(h)=w —2R.(h), Y(h)=(r+h)kh),

has to be solved iteratively for hy (the two signs correspond
to the uppermost and lowermost rays defining the solar disk).
Then, by means of the relationship

Y(h)=rsind , (15)

one obtains the corresponding values of the 6 angle. Combining
Egs. (14) and (15) we finally obtain

¥(h)¥(h-)

—E_—— +

r

V- 2y - (2

for the vertical width of the solar disk.

The last factor in Eq. (8) originates from physical processes
in the atmosphere, connected with the light—air interaction. It is
defined as

cos Af = {

(16)

6_
(exp(—271)) = df exp[—27(0)] ,
0,

an

i.e., it represents the averaged damping of the radiation flux
coming from the vertical solar slice ¢ = 0. To better explain
this, we recall that the formal solution of the radiative transfer
equation can be written as

11w, $); 71 = IO (8, $)l exp(—27) , 18)

where IO(u(8, ¢)) is the radiative intensity when the atmo-
spheric attenuation (but not the ray bending in the atmosphere)
is neglected, and 7 is half of the optical thickness of the atmo-
sphere, given by the integral

T=/ﬁsn@,

19)
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which is extended over half the optical path of the rays in the
atmosphere. If one assumes a constant absorption coefficient
x(h) = x* and neglects the bending of rays in the atmosphere,
Eq. (19) gives

7 = x*\/(hr — h)(hr + h + 2Rg). (20)

For Rayleigh scattering referred at the 550 nm wavelength, we
have x* = 1.162 x 107> m~! (McCartney 1976). Note that we
are implicitly including in the theory only single—scattering pro-
cesses, as a full treatment of the scattering problem would lead
to much more complicated results (see Chandrasekhar 1960;
van de Hulst 1980).

However, as shown in Paper I, assuming a constant ab-
sorption coefficient would corrupt the theory. Instead, we have
adopted a suitable correction factor accounting for the variabil-
ity of the absorption coefficient with altitude. Specifically, we
assume a linear relationship between x(h) and the atmospheric
density p(h), which is correct for the Rayleigh scattering (Mc-
Cartney 1976). Taking into account the polytropic structure of
the atmosphere and the definition (19), we obtain for the half-
optical thickness

1 n
=r* [ de|1 -2 (1 —o(r*6)72) |, 21
r=r [t 127 (1- 06,977 @
with
*x2
o) = (€ — D= "y,

— (14—
R%ex*z R@

The attenuation factor to be inserted in Eqgs. (17)—(18) is then
given by
exp (—27(0)) = exp [—27 (R (0))] far [T5 (R (O))] ,

where the correction factor accounting for the altitude depen-
dence of the absorption coefficient is

(22)

Fae(™) =exp{2'r* [1 - /01 de1 -
272 (1 - a(r*,g)-lﬂ)]"]} .

Summarizing the first part of our approximation formula (8),
providing the magnitude of the radiative flux, we shall translate
it into words, in order to clarify the physical meaning of the
different terms:

(23)

characteristic flux value

7’ ~

magnitude of _ [ reference value of y
the radiative flux / = \ the radiative flux

accounts for refractive effects

of the solar disk
accounts for physical effects

,

averaged absorption
over vertical solar slice

( compression factor )
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. . . ; . : . o Im(h)
sin O, = ,
r

150

T (s)

Fig. 1. The transverse acceleration component az (units 107° m/s?)
due to solar radiation pressure on the LAGEOS satellite, vs. time mea-
sured (in seconds) since the beginning of a penumbra entry transition.
The figure compares the results based on the complete theory (dashed
curve) to those based on the approximate approach described in the text
(solid curve). The label 1 refers to calculations taking into account only
the effects of atmospheric refraction, while curves labelled 2 include
atmospheric Rayleigh scattering with altitude dependence of the ex-
tinction coefficient x. Results from the rough approximation assuming
a step-like transition are also shown. The following standard values
for the parameters describing the atmospheric conditions were used:
To = 273.15 K, po = 760 mm Hg, Ty = —0.005694 K/m’, p’ = 0 mm
Hg (see Garfinkel 1967)

Let us now turn to the problem of the orientation of the ra-
diative flux vector, specified in Eq. (7) by the unit vector 7.
The only rigorous information we have on this issue is the solar
disk symmetry under the transformation ¢ — —¢, resulting in
a zero y—component of the flux. Out of the penumbra phases,
the direction of the radiative flux coincides with the direction
of the solar ray emitted by the disk’s center. We assume that the
same property holds during the penumbra transitions as well,
and then use the subsolar direction for the orientation of the ra-
diative flux vector. Although this is not supported by any theory,
numerical evidence to be presented in the following indicates
that this choice is a good compromise. Anyway, it is clear that
the true direction cannot differ from the assumed one by more
that one tenth of the apparent solar diameter, that is some 3 ar-
cminutes, producing a maximum error of the order of 10~ in
the projections of the force required to derive its components
with respect to the orbit.

Thus, the unit direction vector nayp in Eq. (7) takes the fol-
lowing form: n;fpp = (sin fy, 0, cos By,), where 6, corresponds
to the solar ray emitted normally to the solar body. Using the
formulae given in Paper I, we obtain the set of equations

rh =sin@(h)¢ ™! [cos@(h), pa] ,

r
w(h)=w — 2R, (h), Y(h)=(@+h)kh).

24

As we already did with Eq. (14), the numerical solution h of
Eq. (24) can be combined with the simple relationship

to provide the value of 6y,.

This completes the description of the approximate approach
introduced in this paper. Mathematically, it just consists in sub-
stituting the complex integral (3) with Eq. (7).

Fig. 1 compares in a specific case (transverse acceleration
component on the LAGEOS satellite during a penumbra entry
transition) the results of the complete and approximate versions
of our theory. We have used two very different atmospheric
models: case 1 includes only refraction effects with no absorp-
tion and scattering, case 2 includes Rayleigh scattering together
with the altitude decrease of the absorption coefficient, as dis-
cussed above. In both cases, the two versions of the theory yield
remarkably close results, especially when compared with the
rough step—like transition model commonly used in orbit anal-
ysis work.

We stress, however, that our approximate scheme, although
based on plausible and intuitive arguments, cannot be rigor-
ously justified. We have not specified any “small parameter”
in the theory which may control the deviations of the approxi-
mate approach from the complete solution. In this situation, it is
important to test our approximation in a quantitative way, pro-
viding a reliable statistical characterization of the discrepancies
between the results of the two versions of the theory. For this
purpose, we have defined the dimensionless quantity

o

(@ @)

where
((6a)?) = / [ba(M)*dM , (a)= / a(M)dM , (26)
17 P

&7 represents the interval in mean anomaly M affected by the
penumbra effects, a is the magnitude of the perturbing acceler-
ation due to the radiative force and éa is the vector difference
between the more accurate value of the acceleration computed
using the complete penumbra theory and the approximate value
given by Eq. (7). The integration limits defined by the penumbra
interval & can be computed analytically from the correspond-
ing range in the w geocentric angular distance between the Sun
and the satellite, as explained in Paper I (Sect. 4.1), and the nu-
merical calculation of integrals (26) is carried out by using a
small enough step in M to avoid significant errors.

Figure 2 shows the distribution of the quantity é for differ-
ent atmospheric conditions, again for the orbit of LAGEOS. For
both atmospheric models already used to derive Fig. 1, we have
performed 200 runs with random choices of the atmospheric pa-
rameters (Tp, po, T3, p'). No value of § exceeded 1%, confirming
the reliability of the approximate theory. The distribution of é
is Gaussian-like, with average values of about 0.5% and 0.65%
for the two atmospheric models. These average values represent
in a way the “systematic error” introduced by the approximate
theory; this is somewhat larger when the atmospheric absorp-
tion is included, but the difference is of marginal significance.
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Fig. 2. Distribution of the ¢ quantity defined in the text to specify the
relative discrepancy between the complete and the approximate ver-
sions of the theory. The solid curve refers to the no—absorption atmo-
spheric model, the dashed one to the case when altitude—dependent
Rayleigh extinction is included. The distributions have been derived
from 200 runs each, carried out with random values of the atmospheric
parameters, chosen in the following intervals: Tp € (—20,20)°C,
po € (730,790) mm Hg, Ty € (—6.494,-4.894) x 107° °K/m’,
p’ € (0,30) mm Hg

We have carried out similar computations for other satellites,
ranging from low-altitude to geostationary orbits. In all cases
the results are nearly the same as those shown in Fig. 2, showing
in a convincing way that our approximation is uniformly accu-
rate, independently of both the atmospheric conditions and the
chosen orbit.

3. Penumbra effect and long-term LAGEOS’ semimajor
axis residuals

We shall now take advantage of the approximate approach pre-
sented in Sect. 2 to address a particular problem: the possible
role of the penumbra effect in contributing to LAGEOS’ orbital
residuals. As we will show later, without our simplification of
the theory, this problem would hardly be tractable.

The puzzle of LAGEOS’ semimajor axis residuals arose
soon after the earliest analyses of the laser tracking data specifi-
cally aimed at long—arc orbit determination (e.g. Smith & Dunn
1980). Today the problem can be considered as solved only in
part. The observed secular semimajor axis decay appears to be
due to a mixture of thermal thrust and neutral/charged—particle
drag (Rubincam 1990), although the relative importance of the
two mechanisms is somewhat uncertain. However, the debate is
still open on the related issue of the long—periodic semimajor
axis residuals and the “perturbation spikes” occurring in co-
incidence with the periods when the orbit crosses the Earth’s
shadow (see plots e.g. in Rubincam 1990; Scharroo et al. 1991).
This correlation with the Earth eclipses is clearly an important
clue to the physical cause of the perturbations — the most plau-
sible candidates being of course the radiative effects. Therefore,
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a variety of internal and external radiative effects — using the
terminology introduced in Sect. 1 — have been investigated in
the last decade by several groups (Anselmo et al. 1983b; Barlier
et al. 1986; Rubincam 1987; Afonso et al. 1989; Scharroo et al.
1991; Vokrouhlicky et al. 1993b). It is now clear that several
mechanisms contribute together to the observed long—periodic
semimajor axis residuals. However, the quantitative models de-
veloped so far have achieved only a rather poor fit to the obser-
vations, and that at the cost of adopting unplausible or untestable
assumptions, such as the large temperature gradient and the re-
flectivity asymmetry across the satellite invoked by Scharroo
et al. (1991). This is the reason why we have decided to assess
the possible contribution of the penumbra effect to the residuals.
In order to do so, some preliminary comments are necessary.

Throughout this section, we will deal with the difference
between the simple step-like model of the way eclipses inter-
rupt the action of solar radiation pressure, and our more realistic
theory of the penumbra transitions described in Sect. 2. Since
the former is widely used in LAGEOS orbit analysis, whereas
the real world includes the penumbra phenomena in their full
complexity, we are going to call “penumbra effect” the addi-
tional (and unmodelled) perturbations arising from the more
refined theory. However, we will not carry out a truly realistic
study of this effect, which depends upon a number of parame-
ters describing the (variable) state of the atmosphere, for which
we have no direct observational knowledge. Our aim will just
be that of answering the following semi—quantitative questions:
is the contribution of the penumbra effect to LAGEOS’ long—
periodic semimajor axis residuals negligible? and if not, what
are its typical order of magnitude and time dependence?

The typical magnitude of the direct radiation pressure ac-
celeration on LAGEOS is 3 x 107° m/ s* (we recall that the
unmodelled residuals correspond to accelerations of the order
of 10~'2 m/s?). The penumbra transitions extend over a typi-
cal duration of =~ 100 sec, or about 102 of the orbital period.
Hence the imbalance of the radiation accelerations over one or-
bit cannot exceed about 10~!! m /s>, Actually, this upper limit s
quite pessimistic: only the asymmetry between the entry (from
sunlight to shadow) and the exit (from shadow to sunlight) tran-
sitions matters here, and the true average acceleration is likely
to be more than one order of magnitude smaller than the up-
per limit given above. This will be confirmed by the numerical
results described in the following. As we shall see, the corre-
sponding accuracy requirements are not difficult to meet. How-
ever, one should be careful not to introduce systematic effects
along the orbit that do not cancel out between the entry and the
exit transitions, and could give raise to an artificial asymmetry.

First, let us analyse the pattern of the additional penum-
bra perturbations along a single revolution of the satellite. In
Fig. 3 we have chosen 19 orbital revolutions close to the end
of a shadow—crossing interval, which typically lasts ~ 100
days for LAGEOS (whose orbital elements have been taken
from Barlier et al. 1986). The curves labelled 1 correspond to
the case when the orbit would still be predicted to penetrate
the (assumedly cylindrical) Earth’s shadow by the geometrical
step—like model. These curves have two discontinuities with
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Fig. 3a and b. Difference between the values of the radial (6as, 3a)
and transverse (Sar, 3b) acceleration components due to solar radia-
tion pressure acting during the penumbra transitions, computed with the
approximate theory described in Sect. 2 and with the simple step-like
model. The horizontal axis gives the mean anomaly along LAGEOS’
orbit. The last 19 revolutions before the orbit ceases to cross the Earth’s
shadow are represented. At the beginning (curves labelled 1) the ac-
celeration differences are discontinuous, as they change in sign at the
points were the step—like transitions into and out of the shadow are
assumed to occur. Later on (curves labelled 2) the curves become con-
tinuous, as a decrease of the solar flux is caused by penumbra even
though the step-like geometrical model would predict that the satellite
is always in full sunlight

the perturbation changing sign, at the points where the step—
like transitions from light to darkness and vice versa would be
assumed to occur. Since in this case both the radial and the
transverse additional acceleration components change sign dur-
ing a single transition, their averaged values can be expected to
be much smaller than the magnitude of the radiation pressure
perturbation — roughly 3 x 107° m/ s?, as mentioned earlier.
This situation is typical for most of the duration of a shadow—
crossing interval, with the penumbra signals associated with
the shadow entry/exit separated by longer orbital arcs, which

D. Vokrouhlicky et al.: Solar radiation pressure perturbations. I

LAGEOS spends in the “geometrical shadow”. The asymme-
try between the additional perturbations undergone when the
satellite is “geometrically” in sunlight and in shadow also vary,
depending on the orientation of the orbit with respect to the
shadow, but there is no qualitatively different feature.

An interesting situation occurs at the very edges (near the
beginning or the end) of the shadow crossing periods, when the
simple geometrical model would predict the orbit to be fully out
of shadow, whilst according to the more realistic theory atmo-
spheric processes cause some decrease of the solar flux —i.e., a
penumbra effect — where the orbit grazes the shadow. Were the
Sun to be observed from the standpoint of the satellite, it would
be seen to enter nearly tangentially into the atmosphere (where
atmospheric effects occur, such as deformation of the solar disk,
refractive flux attenuation and absorption), without being totally
eclipsed by the solid Earth. This peculiar geometrical config-
uration of the orbit lasts only several revolutions (typically 5,
see Fig. 3) and therefore its long—term consequences are lim-
ited, but as we shall see it may give raise to significant pertur-
bation spikes. This quasi—eclipse situation applies to the curves
labelled 2 in Fig. 3. They are continuous, since no step-like tran-
sition occurs in the simple geometrical model. In this case, the
additional radial component does not change sign and therefore
its average value may become fairly large, whereas the averaged
value of the transverse component remains smaller, because it
still changes sign at the point where the solar centre gets closest
to the Earth’s surface.

Actually, it is easy to prove that any model based on a per-
fectly symmetrical shadow — e.g., that assuming a simple cylin-
drical shadow or a more complex one taking into account the
atmosphere and the penumbra, but assuming the same atmo-
spheric conditions over the whole Earth’s surface — predicts
that the one-revolution averaged transverse component of the
additional penumbra perturbation is always zero for a circu-
lar orbit, and is demultiplied by the eccentricity for an ellipti-
cal orbit. This is due to the fact that for a circular orbit and a
symmetrical shadow the additional transverse perturbation aris-
ing near the shadow entry is exactly cancelled out by that near
the shadow exit. Since LAGEOS’ orbital eccentricity is very
small (e = 0.004), we need a global anisotropy of the atmo-
spheric conditions (and hence of the optical properties of the
atmosphere) to build up significant long—term effects on the
semimajor axis. Such global (latitude—dependent) variations in
the atmospheric conditions are plausible, for instance because
meteorological seasons imply systematic differences in temper-
ature, pressure, water vapor content and cloud coverage in the
Northern vs. Southern hemispheres.

We note here a striking similarity between the penumbra and
the albedo effect: as first pointed out by Anselmo et al. (1983a),
the latter has also the property that its orbit—averaged transverse
perturbation component would vanish for an isotropic Earth,
hence the associated long—term semimajor axis variations de-
pend just on subtle asymmetric features in the way the Earth
scatters and reflects sunlight. Like in the case of the albedo
effect, detailed meteorological data on these features are not
available to us. Hence, we shall base our assessment of the
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Table 1. Model for the season— and latitude—~dependent variations of
the atmospheric parameters

Earth surface conditions... implying in summer (A = 7/2):

To = Too + ATosinpysin Ay higher temperature

Po = poo+ Aposing, sinAg  higher pressure
Ty = Tgo — ATy sin gy sin Mg

P = Ap'(1 —sing, sin \g)

larger (negative) temperature gradient

lower humidity

X = x* x 10~ sin @, sindo lower absorption coefficient

penumbra effect on a plausible phenomenological model of the
variations (across the Earth and in time) of the atmospheric prop-
erties, without attempting any quantitative fit to the observed
residuals.

Any plausible model for the atmospheric parameters (T, po,
T3, p') must include their variations with geographical latitude
(vg)) and season (specified by the solar ecliptic longitude A
measured the from vernal equinox, i.e. with Ag = 0 correspond-
ing to the spring equinox). Our choice for the dependence of the
four parameters listed above on these two arguments is summa-
rized in Tab. 1, where the mathematical formulae given in the
left column are followed by qualitative explanations in the right
column.

In general, one could expand the atmospheric parameters in
aFourier series of the two angular variables ¢, and Ag. We have
kept only those few terms which (i) do not involve completely
unknown parameters, and (ii) are physically plausible (note that
the assumedly polytropic character of the atmosphere involves
some gauges in the variations of temperature and pressure, rul-
ing out the existence of some Fourier terms). Obviously, we
are oversimplifying the behaviour of the real atmosphere, but
our model is refined enough for our current testing purposes.
We adopt the following numerical values for the free parame-
ters in Tab. 1: Tyy = 0°C, ATy = 20°C, pg = 760 mm Hg,
Apo = 30 mm Hg, Tg, = —0.005694 K/m’, ATj = 0.0008
K/m’, Ap’ = 30 mm Hg.

Figs. 4a,b show the orbit—averaged radial and transverse ac-
celeration components due to the penumbra effect. The latter
component does not vanish only as a result of the asymmetry
in the atmospheric parameters, as explained earlier, whereas
the former one shows sharp extrema (spanning only a few days)
near the edges of the shadow—crossing periods, due to the quasi—
eclipse effect. The datarefer to the real LAGEOS orbit starting at
the satellite’s launch in May 1976, and the first shadow—crossing
interval occurred in the period from November 1976 to Febru-
ary 1977, as indicated by the dashed strip in Fig. 4b. This corre-
sponds to one of the highest peaks in the observed residuals (see
plots in Rubincam 1987; Scharroo et al. 1991). It is intriguing
to note that this peak occurred in the winter season, when our
model predicts maximum asymmetry between the Southern and
Northern Earth hemispheres, and thus penumbra perturbations
of maximum amplitude are generated. In general, the largest ex-
trema of the curve giving the LAGEOS semimajor axis residuals
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Fig.4a and b. Orbit-averaged penumbra perturbations as a function
of time for LAGEOS (starting at launch in May, 1976). The radial and
transverse acceleration components are shown in parts a and —bf b,
respectively

vs. time tend to occur roughly in the winter and summer seasons,
when the asymmetry of the two Earth hemispheres is most pro-
nounced. The succession of shadow—crossing intervals shows
clearly the modulation of the penumbra effect perturbations by
seasonal effects. When the shadow—crossing intervals occur out
of the pure winter/summer periods, the < a7 > amplitudes are
smaller and changes of sign become possible.

It must be emphasized that the derivation of the approxi-
mate approach to the penumbra effect described in this paper is
a compelling prerequisite to apply the theory to LAGEOS. In-
deed, using the complete theory would have led to unacceptable
CPU time requirements. The reason is the following: since the
long—term semimajor axis effect is mainly due to tiny asymme-
tries of the penumbra phenomena at the shadow entries/exits,
its computation involves subtracting from each other two large
numbers, a task which is numerically hard to perform with high
accuracy. Specifically, the magnitude of the instantaneous dif-
ference 6a canreach about2x 10~° m/ s (see Figs. 3), while the

resulting averaged signal is of the order of 5 x 10~'3 m/s* (see
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Fig. 4). In order to achieve at least a 5% precision of the results,
we had to take 0.1 sec integration timesteps in the penumbra
phases, that is ~ 103 of the orbital period!

Let us discuss now the precision of the results presented in
Fig. 4b, namely those concerning the along—track component
of the penumbra effect. Taking into account the instantaneous
difference a exceeding 10~° m/ s* and the 0.5% confidence
level of the approximate theory (see Figs. 1 and 2), one might
question the meaning of the resulting 5 x 10~ m /s” residuals.
However, it can be convincingly shown that these tiny residuals
are indeed meaningful. Firstly, note that the average in Eq. (26)
is performed over the penumbra interval only. As these intervals
typically cover just some 2% of the whole orbital period, a typ-
ical value of 0.01% has to be expected for the one-revolution
averaged acceleration difference between the complete and the
approximate penumbra theories. Secondly, the 6—test expressed
by Eq. (25) includes error contributions from all the three com-
ponents, while here we are dealing with only one of them (the
transverse component), whose magnitude is typically less than
half of that of the radial component near the shadow entries/exits
for LAGEOS’ orbit. Moreover, the averaged value < a > in
Eq. (26) is roughly half of the maximum magnitude of the ra-
diation pressure acceleration (3 x 10™° m/ sz). As aresult, one
may estimate that the accuracy of the one-revolution averaged
values of the along—track component computed by the approx-
imate theory is of the order of 0.001%. Comparing this to the
amplitude of the residuals (some 0.02% of the maximum mag-
nitude of the perturbation), we can conclude that their relative
error due to the use of the approximate theory does not exceed
5%. As discussed earlier, a similar error probably arises from the
numerical averaging procedure. To check the validity of these
estimates, we have computed averaged values of the penumbra
along-track effect for several (randomly chosen) revolutions of
LAGEOS employing the full (exact) theory given in PaperI, and
compared the results with those obtained from the approximate
theory. In no case we have found discrepancies greater than 5%,
in agreement with the previous discussion.

Finally, it is interesting to consider the relation between the
penumbra perturbations, as treated in Sect. 3, and the effect of
solar eclipses studied by Rubincam & Weiss (1985). Gener-
ally speaking, the concept is the same — a simple treatment
of the solar radiation pressure gives accurate results almost al-
ways along the satellite orbit, with the exception of short time
intervals, when more complicated phenomena occur. Rubin-
cam and Weiss showed that in spite of their short duration,
solar occultations can give raise to detectable changes in the
long—term behaviour of the orbit. Of course, penumbra effects
induced by passages through the Earth’s shadow occur much
more frequently than solar eclipses (although they are shorter:
some 200 sec compared to 20 minutes). However, the influence
of the two effects is different for a more subtle reason: for the
penumbra effect, the entry/exit compensation causes the net,
one-revolution averaged perturbation to be much smaller than
the size of the solar radiation forces, whereas this is obviously
not the case for eclipses. On the other hand, the penumbra effect
can accumulate for the whole duration of a shadow—crossing in-
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terval (typically 100 days for LAGEQOS). As a result, the total
semimajor axis effect over one of these intervals turns out to
be comparable to that of the most prominent solar eclipses —
Aa ~ 1.7 cm (Rubincam & Weiss 1985).

4. Conclusions

The main results obtained in this paper can be summarized as
follows.

(1) We have developed a working algorithm to model with great
precision the changing solar radiation force exerted on a
satellite during the passages from the full sunlight to the
shadow cast by the Earth and vice versa. This algorithm
removes the main obstacle (large CPU time requirements)
to the application of the full-fledged theory presented in
Paper I to satellite geodesy.

(2) The penumbra effect algorithm applied to LAGEOS shows
conclusively that previously unmodelled long—term pertur-
bations brought about by the solar radiation force have mag-
nitudes reaching some 20% of the observed post-fit residu-
als. Although this effect cannot explain fully the extrema of
the along—track unmodelled residuals of LAGEOS’ orbit, it
can in some instances amplify the effects due to other ra-
diative mechanisms, such as the thermal thrust and albedo
effects.

Some questions have not been fully answered or even addressed

in this paper:

(1) In modelling the propagation of light rays in the Earth’s
atmosphere we have only included the simple single—
scattering Rayleigh extinction, removing some energy from
the solar light beam; any effect of multiple—scattering has
been neglected.

(2) Similar penumbra phenomena occur in connection with the
radiation pressure due to sunlight reflected from the Earth’s
surface (the albedo effect). This problem has to be dealt
with numerically because of complex optical behaviour of
the Earth’s surface. We are going to investigate it in the next
paper of this series.
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