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Abstract. We have studied the perturbative effect of the force
due to direct solar radiation pressure on the dynamics of artifi-
cial satellites in a more comprehensive way than has been done
so far. We have included a general model for the atmospheric
refraction and extinction and have computed the illumination of
a satellite for any geometric arrangement between it, the Earth
and the Sun. This allowed us to investigate in detail the tran-
sition between the full sunlight and the shadow. We have con-
sidered separately the influence of the atmospheric refraction
(treated according to geometrical optics) and the various phys-
ical processes in the atmosphere (absorption and scattering), to
conclude that in general the flux attenuation during penumbra
is most easily interpreted as due to a compression of the solar
disk when viewed from the satellite through the Earth’s atmo-
sphere. The eclipsing of the finite—size solar disk by the solid
Earth plays a minor role, whereas the refraction in the Earth
atmosphere’s produces an extended tail in the radiation force.
However, the magnitude and duration of this tail depends upon
the atmospheric conditions over a limited region of the Earth’s
surface. Several consequences of the theory have been exem-
plified by computing the perturbing force during penumbra on
LAGEOS and other satellites.

Key words: celestial mechanics — artificial satellites, space
probes — atmospheric effects

1. Introduction and overview

There are two dominant non—gravitational perturbations act-
ing on the orbit of artificial Earth satellites: the atmospheric
drag and the direct solar radiation pressure (Milani et al. 1987).
Their relative magnitude depends primarily upon the altitude of
the satellite. Below 800 km the drag is larger than the radia-
tion force, and viceversa. Thus for most satellites used in space
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geodesy, which have high orbits tracked with centimetric accu-
racy, modelling the radiation force is of the utmost importance.

The perturbative effects of solar radiation pressure on the
orbits of artificial satellites attracted the attention of dynamicists
at the very beginning of the space age, both in the West (e.g.
Parkinson et al. 1960; Musen 1960; Musen et al. 1960; Shapiro
& Jones 1960) and in the Soviet Union (e.g. Polyakhova 1963).
Some of these early studies — as well as several later ones
— did not take into consideration the possible occurrence of
spacecraft eclipses during passages through the Earth’s shadow,
when of course the radiation pressure temporarily vanishes, and
were rather aimed at investigating the perturbations affecting the
eclipse—free orbital arcs.

However, the potential importance of eclipses was recog-
nized soon, and it was pointed out that a quartic equation needs
to be solved to determine the intersections of the trajectory of a
satellite with the Earth’s (assumedly cylindrical) shadow (Kozai
1961; Wyatt 1961). Kozai also concluded that as a result of direct
solar radiation pressure, long—term perturbations in the semi-
major axis average out over one orbital period, except when the
satellite undergoes eclipses (in which case, long—term perturba-
tions of the order of the orbital eccentricity arise). Although this
property was not explicitly stated by Kozai it is clearly included
in his derivation. This result drew considerable attention, be-
cause unmodelled changes in the semimajor axis corrupted the
determinations of atmospheric density based on the analysis of
drag—induced effects (Wyatt 1961; Zadunaisky etal. 1961). Sub-
sequent studies by Slowey (1974) and Aksnes (1976) followed
basically Kozai’s approach, integrating the Gauss or Lagrange
perturbation equations with a discontinuous step-like model for
the penumbra transition. All of these investigations dealt with
the perturbations undergone by a spherically symmetrical satel-
lite, so that the force could be assumed to be constant (apart from
the eclipses) and directed away from the Sun; generalizations
to spheroidal (Moore 1979; Zerbini 1980; Brookes & Ryland
1982a,b) and more complex shapes (Anselmo et al. 1983) were
developed later.
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A step forward was made by Ferraz—Mello (1964, 1972),
who introduced the continuous shadow function, taking the val-
ues 1 out of the geometric Earth’s shadow and 0 in the shadow,
with the transition represented through a truncated expansion
in the form of a Tchebychev or Fourier series. This approach
was followed by several other investigators (e.g. Ldla & Sehnal
1969; Léla 1970; and in the Russian literature Vashkovyak 1976;
Aksenov 1977). However, the efficiency of this trick proved to
be limited for most practical applications, as acknowledged by
the above—mentioned authors. This is due to the fact that the
‘smooth’ shadow function was just an artificial mathematical
representation of the real transition from sunlight to darkness,
whose behaviour is determined by physical processes, i.e. the at-
tenuation of the solar flux through the atmosphere and its partial
interception by the solid Earth.

Indeed, only a few investigations were devoted to a detailed
treatment of the penumbra transition dealing with its physical
causes. The most remarkable work on this subject was carried
out by Link in 1962. Although the formalism we are going to
use is different, the basic physical ingredients of our theory are
the same as analyzed by Link. He correctly pointed out that at-
mospheric processes (refraction, absorption, scattering) play a
key role in shaping the real penumbra transition, and also explic-
itly stated several fundamental properties of ‘atmospheric op-
tics’ related to the penumbra effect (see Sect. 4). More recently
Kabel4¢ (1988) has analyzed the same problem using a sim-
plified model. We will demonstrate that although his approach
accounts for the essential physical processes, he missed an im-
portant effect, i.e. the vertical compression of the solar disk as
viewed from the satellite through the Earth’s atmosphere. This
phenomenon occurs during the phase preceding the ‘true’ ge-
ometrical penumbra, characterized by the partial eclipse of the
solar disk by the solid Earth.

In this paper we present a complete theory of the direct solar
radiation pressure, including a detailed physical model of the
transition between full sunlight and full shadow. Although in
our examples we will restrict ourselves to the case of a spheri-
cally symmetric satellite, the formulation of the theory is general
enough to be easily generalized to a satellite of arbitrary shape
and arbitrary distribution of surface optical properties. Also, we
will generally speak of the penumbra effect, but our approach
takes into account not only the eclipsing of the solar disk by
the solid Earth, but also the influence of the Earth’s atmosphere.
Actually, our formulae apply to every phase of the satellite rev-
olution, including as well the ‘normal’ situation when the solar
disk is fully viewed through the empty space.

Let us note that so far the mathematical technique we are
going to use has not been commonly applied in the theory of
non—gravitational perturbations of satellite orbits (e.g. Milani
et al. 1987). Nevertheless, it is widely used in the theory of the
radiative transfer (e.g. Mihalas 1970). As the treatment of the
penumbra phenomena given here requires a good understand-
ing of this mathematical approach, we deem it appropriate to
include a brief explanation of it, which is given in Sect. 2 (to-
gether with some examples). In Sect. 3 we deal with the solar
radiation pressure perturbations out of the eclipse or penumbra
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phases, i.e. when the satellite is in full sunlight. Although in this
case the main results are well known, we have decided to include
this discussion for the following reasons: (i) our theory will thus
cover the whole satellite’s orbit for any geometrical configura-
tion with respect to the Earth and the Sun; (ii) this simpler case
is useful to better understand the working of our mathemati-
cal technique in the more complex treatment of the penumbra
effect; (iii) Eqs. (19)—(20) in Sect. 3 represent a precise solution
for the radiation pressure perturbations, including ‘corrections’
which were not applied in earlier treatments. Sect. 4 will be
devoted to model the geometrical and physical effects of the
atmosphere, in order to calculate the perturbing force acting all
over the penumbra transition. In Sect. 5 we will apply our gen-
eral theory to specific satellites, with a particular emphasis on
the passive laser—tracked satellite LAGEOS.

The latter choice was motivated by the need to model all the
weak non-gravitational effects which may contribute to the ob-
served LAGEOS orbit residuals (see Smith & Dunn 1980; and
Scharroo et al. 1991, for arecent study), and thus degrade the or-
bital prediction and determination carried out in the framework
of geophysical and geodynamical studies. For the same reasons,
Vokrouhlicky et al. (1993a,b) have recently developed detailed
models of the perturbations caused by radiation pressure associ-
ated to Earth-reflected sunlight — the so—called albedo effect.
In analogy with Vokrouhlicky et al. (1993a), in this paper we
will present the general theory and derive the components of
the perturbing force versus time over a single revolution of the
satellite. In a forthcoming paper (Vokrouhlicky et al. 1993c), we
we will discuss the ‘additional’ long—term perturbations which
arise in the LAGEOS case from a detailed physical treatment of
the penumbra transition, when compared to the predictions of
simpler geometrical models.

2. The mathematical approach

We start by introducing a few concepts and notations which
are not commonplace in satellite geodesy, although their use is
widespread in radiative transfer theory. The essential quantities
to describe the macroscopic properties of a continuous radiation
field are: (i) the radiative intensity I, (ii) the photon rays. The
intensity I(n) ata point O, defined in such a way that the amount
of energy dF crossing per unit time the area dA (having normal
IN) and coming from the direction n (within a solid angle df2)
is given by

dE =I(n)(n - N)dAdQ . 1)

Hereinafter (with the exception of Sect. 4.2.2) we will skip the
frequency dependence of I. As we will usually parametrize the
local direction 1 by two spherical angles (6, ¢) attached to a
local frame centered at a point O, we will also use the nota-
tion I(f, ¢). Of course , this description pertains only to bodies
whose characteristic size exceeds the wavelength of the radi-
ation. It is worth noting that astrophysicists have adopted the
term intensity or specific intensity for I(n), instead of the better
words brightness or radiance (usually with the symbol L), with
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the risk of provoking some confusion with the intensity I clas-
sically defined in photometry as the power radiated in a given
direction by a whole radiation source. Nevertheless, in this pa-
per we stick to the terminology most common in astrophysics
and space science, and denote the brightness by I(n).

By specifying at a point O a direction n, one identifies an
optical ray. Thus, I can be seen as attached to rays, and following
one ray in space we ‘transport’ the radiative intensity along the
ray itself. Two fundamental questions arise: (i) which is the rule
specifying the geometry of rays?; and (ii) how to transport I
along any specified ray? We summarize the answers. Within
geometrical optics (which we will use throughout this paper),
the ray guiding rule is provided by Fermat’s principle: given the
refractive index () of the medium where the light propagates,
the rays are such as to extremize the integral f k[r(s)] ds, where
s is an arbitrary affine parameter given along the ray. Treating
this problem with the techniques of functional analysis, one ends
up with Euler’s variational differential equations for the ray.
Garfinkel’s theory of the atmospheric refraction, which we will
summarize and use in Sect. 4, essentially solves these equations
[see Garfinkel 1967, Egs. (2)-(3)].

As for the transport of the radiative intensity along a speci-
fied ray, one has to solve the radiative transfer equation (see e.g.
Mihalas 1970). We will not discuss this equation here; suffice it
to say that it provides the rule specifying how the radiative inten-
sity changes from point to point along the ray. This is important
in our case, because we know the radiative intensity only on the
source surface [the solar disk; see Eq. (12)]. A priori, we do not
know how the radiative field ‘spread into space’, only solving
the radiative transfer equation we get to know it. The equation
has the simple (but not trivial) solution I = Ij = constant along
the rays which do not interact with the medium they cross. Also,
it is worth pointing out that the exponentially damped solution
I = Iyexp(—7) [where T is the optical thickness; see Egs. (31)
and (37)] is the formal solution of the radiative transfer equa-
tion. We will use this solution to transport the radiative intensity
in the scattering and absorbing atmosphere (see Sect. 4.2).

Now, let us describe the general algorithm to be used for
computing the radiative energy flows and also the radiative
force, that is the specific purpose of our work. At every point in
the space we can specify a local orthonormal frame. As men-
tioned above, spherical coordinates (, ¢) in such a frame can
be used to characterize separate rays. We define the tensorial
moments of the radiative intensity My, q,...q, as (see Mihalas
1970) '

Ma.ag.‘.ak = /(0 " d(COS 6)d¢ No Ny + - - Ny, 1(9, d)) s (2)

where «; are indexes spanning the values (1, 2, 3) referring to
the axes of the reference frame, and n, (6, ¢) are the compo-
nents of the unit vector in the direction (6, ¢) [i.e., we have
nT (6, ¢) = (sinf cos ¢, sin § sin ¢, cos #)]. Some of these ten-
sorial moments, those of low orders k, are of special interest.
Putting k£ = 1 in Eq. (2), we obtain a vectorial quantity. For
convenience (and to remain consistent Mihalas 1970), we shall
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use the notation F}, (or simply F’) instead of M. Equation (2)
has then the following form

F = d(cos 0)d¢ n(8, ¢) (6, ¢) . (3)

©0,¢)

where the integration is extended to every direction 12. Because
of the connection with the scalar flux [see Eq. (5) below] and
for lack of a more insightful term, we will call the first—order
moment F' vectorial flux. Physically F' is proportional to the
radiative linear momentum leaving an infinitesimal sphere cen-
tered at O. We recall that when the z—coordinate is chosen along
the normal to a surface element, Eq. (3) can be rewritten in the
more usual form

F, = / d(cos 8)dg cos8I(6,d) . “4)
0,9)

More in general, the net scalar flux crossing a unit surface with
normal N can be expressed as

F,=F N= d(cos@)dg [n(0,¢)- N110,¢), (5)
6,9)

Note that the vector flux (3) is more intrinsic to the radiative field
than the scalar flux (5), because it is defined without reference
to a specific direction of the outward normal of the elementary
area. An important question follows: is ' somehow connected
with the force f exerted by the radiative field on the chosen
surface element? The answer is negative. In general, there is no
direct relation between the flux vector and radiative force vector.
However, the two vectors are proportional to each other in a par-
ticular case, that of a spherical satellite having quasi—isotropic
optical properties — see Eq. (11) below, and also Milani et al.
1987, and Vokrouhlicky et al. 1993a.

In the general case, the radiative force is related to a higher—
order moment in the hierarchy (2), namely that with k& = 2. This
is a tensorial (‘two-indexed’) quantity, which may be called the
impulse tensor of the radiative field

M = /0 , d(cos )do ni(8, p)n;(8, $) 1(6, ¢) . 6)
0,9)

This quantity is related to radiation pressure, since the force
exerted on a unit area with surface normal IN can be expressed
as

1 .
fi= EMij N, 7

where c is the speed of light. Equivalently we have in vectorial
form

1
f= —/M d(cosO)dg [n(0,9)- NIn@,¢)1(0,¢).  (8)
©,¢)

C

Thus the component of the force along the direction specified
by IN becomes

1
fu=-— d(cos 9)do [n(9,9)- N> 1(60, ), )

€ Jo,0
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more usually employed to express the radiation pressure as the
second moment in cos  (taking again the z—axis along the nor-
mal V).

The total radiative force acting on a satellite is given by

Fur = /y as f,

where .7 represents the satellite’s surface, to be parametrized by
system of two surface coordinates u and v, i.e., dS = dS(u, v).
The resulting double integration required by Egs. (8) and (10)
may become a difficult task for spacecraft of complex shape, due
to mutual shadowing of different parts of the surface. However,
in the particular case of a spherical satellite of radius R, and
mass m, having uniform enough surface optical properties and
placed in a radiative field homogeneous over its size, Eq. (10)
can be integrated analytically (Vokrouhlicky et al. 1993a), yield-
ing for the perturbing acceleration a the final result

_ T R?

= —2%F.
me

(10)

a

amn

Here @ is a dimensionless coefficient of order unity, depending
on the shape and the optical properties of the satellite’s surface.
Therefore, in this case the problem of calculating the radiative
force is reduced to the evaluation of the radiative flux, as all
the other quantities appearing in Eq. (11) are usually known
from the satellite design and pre—launch tests. We stress that
the acceleration is related to the vector flux in such a simple
way only because of the spherical symmetry. Otherwise, the
integration over the body surface does not yield a proportionality
between the acceleration vector and the vector flux. Although
in the applications to be discussed in Sect. 5 we will restrict
ourselves to the case of spherically symmetrical satellites [hence
we will use Eq. (11)], the formulation of our theory is more
general, and it can be applied to spacecraft of arbitrary shape
and optical properties. In that case, one has just to use more
complicated formulae to calculate the radiative force, provided
the radiative intensity I(n) at the satellite’s location is known
(Vokrouhlicky et al. 1993a).

From the previous discussion, it follows that the boundary
conditions to calculate the radiative intensity field in the whole
space have to be given at the radiative sources — in our case,
the solar photosphere. We shall model the Sun as an extended
source of radiation, whose brightness I, (n) at the solar surface
depends only on the angle of emission with respect to the surface
normal (whose cosine will be called p). This property is at the
origin of the limb darkening effect of the solar disk. We have

lo(p) = Fo Yo () , 12)

where Fp, is the astrophysical flux emerging from the Solar
photosphere, with the same dimensions as the intensity (J m ™2
s71), and the function W (1) accounts for limb darkening. For
our needs, a good approximation is provided by Eddington’s
solution for the radiative transfer in a grey atmosphere, leading
to the following formula (Mihalas 1970):

(13)

3r7 1 1 1 1+
Vo =315+ qut (3 +m (0]
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L (n)

Satellite

Fig. 1. Definition of the Sun—satellite geometry in the case full sunlight

Alternative, more complex formulae for W (1) (such as dis-

cussed in Mihalas 1970) could also be used instead of (13) for a

more accurate treatment. In any case, our theory will be essen-

tially devoted to the evaluation of the intensity at the satellite’s
location, knowing the function I (i) at the surface of the Sun
and the laws of light propagation.

The last topic to be specified is the choice of the reference
frame at the satellite’s position. Of course this choice is arbitrary,
so it can be done in such a way to make easier the subsequent
computations. We have chosen a Sun—oriented local orthogonal
frame (x,y, z), whose axes are directed as follows: the z—axis is
parallel to the satellite’s geocentric radius vector, whereas the z—
axis lies in the plane defined by the geocentric direction vectors
of the satellite and the Sun, in such a way that its projection on the
solar direction is antiparallel to it. The advantage of this choice
is that the y—component of the radiative flux vector (hence of
the perturbative force on a spherically symmetric satellite) does
always vanish. Thus, we just need to calculate the other two
components (Fy and F3).

Let us now summarize the successive steps of our general
algorithm for obtaining the radiative force:

(1) Atevery point of space we introduce a local reference frame
(in our case the Sun—oriented frame defined above), in which
we compute the components of the quantities we are inter-
ested in (vector flux, satellite radiative acceleration).

(2) At every point of space the radiative field must be specified
by the radiative intensity (6, ¢) for any (local) direction
(8, ¢). Since a priori we know only the boundary conditions
for I at the sources (in our case, at the solar photosphere),
we solve for the optical rays from the source by applying
Fermat’s principle, and given these rays we solve the radia-
tive transfer equation along them either in the empty space
(in which case the radiative intensity is constant) or in a
medium interacting with the radiation (the Earth’s atmo-
sphere, where Rayleigh scattering is assumed to occur).

(3) Then we have just to compute various moments of the ra-
diative intensity with respect to the components of the local
unit vector, according to Eq. (2). To obtain the radiative force
acting on a unit area, the impulse tensor of the radiative field
is generally needed, according to Eq. (6), and hence the to-
tal force acting on a satellite is obtained through the surface
integral (10).

(4) In the particular case of a spherically symmetrical satellite,
the calculation is more straightforward, since one does not
need to compute all the 6 components of the impulse tensor
M (the second-order moment of I), but only the 3 compo-
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nents of the vector flux F' (the first~order moment of I),

since we can skip the integral (10) and use directly Eq. (11).

To illustrate the general procedure outlined above, we con-
sider the simple case when I (1) = I (implying that the Sun
radiates like a Lambert source) and the (spherical) satellite is in
full sunlight and absorbs all the incident light. If R, is the radius
of the Sun and Ry the distance of the satellite from it, the radia-
tive acceleration can be easily derived from the conservation of
the solar energy output as

TR? Ro\2
= 2 14
a . (m Io)( Rs) ) (14)

where 7 Iy is the radiant power of the Sun per unit surface.
Alternatively, we can apply Eq. (11), whence we obtain for the
non—zero component of the acceleration:

2
_ TR

- /I(n)cosBdQ,

15)

since it is easy to show that g = 1 for a fully absorbing sphere.
Here the intensity I(n) at the satellite is given by I(n) = I, for
B € [0, Buax] (With sin Bnax = R/ Rs; see Fig. 1),and I(n) =0
elsewhere, because in this simple case the light rays are straight
lines and the radiative intensity has the constant value [y when
transported along them. Thus the integral (15) reduces to

21 R21, /1
aq=——
me a

mR2Iy  Ro

2 cos B d(cos 3) = (F)Z.(m)

EIORN V7]
Rg)/

This coincides with Eq. (14), which was derived by a very dif-
ferent physical argument (energy conservation).

3. Radiation pressure perturbations in full sunlight

In this section we briefly derive the main equations related to
the direct solar radiation pressure when the satellite is in full
sunlight. In this case, we assume that the light rays are well
represented by straight lines (which do extremize the Fermat
integral for a medium with constant refractive index) and that
the radiative intensity is conserved along the rays (correspond-
ing to the solution of the radiative transfer equation for a pon—
absorbing medium). The only change with respect to the com-
putation given at the end of Sect. 2 is that we are now going
to use the more realistic Eqs. (12) and (13) for the solar limb
darkening, instead of Lambert’s law. We now describe the satel-
lite’s position through its geocentric position r and its geocentric
angular distance from the Sun’s centre w.

The components of the vector flux can be computed by ex-
ploiting the advantages of the chosen local Sun—oriented refer-
ence frame, where the spherical coordinates (6, ¢) can be de-
fined. The two non—vanishing components are

F =/ d(cos B)d¢ sind cos ¢ I(8, ) ,
6,9)

F, =/ d(cos 0)d¢p cosO I1(0, ) . 17
0,9)
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Actually, in this particular case an even better choice of the
local reference frame is available: if we take the z—axis along
the heliocentric position vector of the satellite, the orientation of
the other two axes being arbitrary, due to symmetry reasons the
radiative intensity does not depend upon the ¢ angle (defined
in the new frame), and as consequence the only non-vanishing
component of the vector flux is
F,=2nF, / d(cos ) cos ¥ [u(d)], (18)

©)

where we have used Eq. (12), the 6 angle is also defined in
the new frame, and the limits of integration are the same as
in Eq. (16). To proceed further, we would need to write down
explicitly the function ¥ [1(0)]. In fact, it is better to change
variables in such a way to switch the integration from ‘over
the local radiative field’ to ‘over the solar surface’. This will
also allow us to compare our result with previously obtained
formulae. The solar surface elements can be parametrized by
the angle « (see Fig. 2). We do not write down here the simple
relations used to transform 6 into «, as they can be found in
the appendix of Vokrouhlicky & Sehnal (1993a). These authors
define the function

1
ﬂ(p1)=p%/ dppa(pra. — p1)(1 — papr)

P1

¢ X (ttar PV [0 — p1)C 2 (pas P01, (19)

Cfias p1) = 1= 2p1 10 + p7

where p; = (Rg/R) (R being Sun—Earth distance) and po =
cos a, the flux component (18) can be rewritten in the Sun—
oriented reference frame as

B =25Fo 7 | ¢ (cosw, )] sin b,

F,=2rFo 7 [plg_l/z (cosw,pz)] cos b ,

where

(20)

05 = arcsin{sin wC 2 (cosw, )}

with p; = (r / R) . Note that Egs. (20) fully account for variations
of the satellite—emitter distance, caused by the finite size of the
Sun (through the factor p;) and the satellite’s geocentric motion
(through p;). A commonly used approximation in computing
the solar radiation pressure is based on setting p; = p, = 0
in Egs. (19)—(20), except for the p? factor standing before the
integral in Eq. (19).

The radiative flux components can then be transformed in
a straightforward way from the Sun—oriented local frame to a
global, quasi—inertial geocentric frame (with the X-axis ori-
ented towards the vernal equinox and the Z—axis parallel to the
Earth’s polar axis) and subsequently to the Gauss orbit—related
frame (yielding Gauss’ components S, 7" and W of the pertur-
bative acceleration, see e.g. Brouwer & Clemence, 1961).

In the more general situations considered in the following
we will transport the radiative intensity from the Sun to the
satellite, taking into account the refraction and absorbtion in the
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Earth’s atmosphere. Because of the curvature of the rays in the
atmosphere, we will need to find the points and the directions of
emission of the light rays on the photosphere which eventually
reach the satellite surface.

4. Penumbra phase perturbations

In this section we deal with the application of our general the-

ory to compute the perturbing acceleration on a satellite mov-

ing gradually into the Earth’s shadow, namely during the phase
when at least part of the solar rays cross the atmosphere before
reaching the satellite.

In order to calculate the effects of refraction, we assume that
the Earth’s atmosphere is as a spherical polytropic troposphere,
according to Garfinkel’s (1944, 1967) model. We neglect the
contribution of the upper (roughly isothermal) atmospheric lay-
ers, as they contribute to the atmospheric refraction only by a few
milliarcseconds (Garfinkel 1944). With this truncated model,
the accuracy of the refraction theory is of about 5 milliarcsec-
onds. We will not repeat here the intricate formulae given by
Garfinkel, but just summarize the essential assumptions of his
theory, as they equally apply to our current computations:

(1) The atmospheric density profile is spherically symmetric
with respect to the centre of the Earth, and the planet is
assumed to be spherical as well;

(2) the atmosphere behaves as an ideal gas, with a polytropic
adiabatic function characterized by an index n;

(3) the refractive index of the air, x, follows the Gladstone—
Dale law.

Under these assumptions, Garfinkel showed that the decrease

with altitude (h) of the refractive index can be expressed as

h n
— . 2
f@(h)—1+a<l 2y R®+h> , @1
where
= goRg
(n+DRTy

Here « is a model parameter giving the refractive index at the
surface (h = 0), go is Earth’s surface gravity acceleration, .72 is
the air gas constant (= 287 Jkg~!K~!), R, is the Earth’s radius,
Tj is the temperature at the bottom of the atmosphere and n is
the polytropic index, derived from the atmosphere bottom con-
ditions (the temperature gradient 7j}). Note that 72T} /g0 ~ 8
km is the scale height of an isothermal atmosphere. In the poly-
tropic model, the top of the atmosphere is specified by k(ht) = 1,
yielding an altitude ht = Rg(2y> — 1)™! = (n+ 1).22Tp/go of
the order of 50 km (see McCartney 1976).

The essential input parameters required by Garfinkel’s at-
mospheric refraction model are the temperature Ty, the temper-
ature gradient T and the pressure py at the Earth’s surface, and
in addition a humidity factor, i.e. the water vapor pressure p’ in
the air. From this information, we aim at calculating the magni-
tude of the refraction angle Re(h) for an atmosphere—crossing
ray reaching the minimum (grazing) altitude h. At the grazing

D. Vokrouhlicky et al.: Solar radiation pressure perturbations for Earth satellites. I

TG=Rg + h

Fig. 2. Illustration of the bending of a light ray in the Earth’s atmosphere
and the associated geometrical parameters used in the text

point, the apparent zenith angle of the light source is by defini-
tion 90°.

In our approach, the Earth’s atmosphere represents a medium
whose influence on the radiative flux reaching the satellite (and
hence on its perturbing acceleration) is twofold: (i) the differ-
ential refractive bending of solar rays results in a deformation
of the solar image as seen from the satellite (this is a geomet-
rical, lens—type phenomenon, to be treated in subsection 4.1);
and (ii) absorption and scattering processes attenuate the radia-
tive intensity of each solar ray crossing the atmosphere (we will
model these physical processes in subsection 4.2). As the differ-
ent solar rays forming the radiative field in the satellite’s local
frame are characterized by different paths in the atmosphere, it
is necessary to follow each ray separately, and only at the end to
build up the satellite—seen solar image. Thus, when evaluating
the radiative flux acting on the satellite, we have to go back to its
general expression. Calling I[u(6, ¢); 7] the intensity of a solar
ray specified by a direction (6, ¢) in the local satellite frame,
our starting formula (3) reads

F- / d(cos 6)d (0, &) ITu(6, 6); 71 22)
6,9)

where n(6, ¢) is a unit vector specifying the direction (i.e.,

nT(@,¢) = (sinfcos $,sinfsin ¢, cosd) and the two argu-

ments in the intensity I[u(6, ¢); 7] stay for the two different
effects mentioned above:

(1) (8, ¢) denotes the cosine of the angle between the starting
ray and the normal to the solar surface, and it depends upon
the bending of light rays in the atmosphere, hence corre-
sponds to a purely geometrical effect;

(2) 7 denotes half of the optical thickness of the atmosphere
along the chosen ray (6, ¢), hence it is determined by phys-
ical processes.

Note that we do not know the value of intensity I[u(6, ¢); 7] a

priori, but we have to solve for it. This requires to trace the cho-

senray (6, ¢) back to the solar surface emitter, whose emissivity

is characterized by the limb—darkening law [such as Egs. (12)-

13)1.

An essential feature of our approach is the possibility of sep-
arating the two types of effects contributing to the intensity in
Eq. (22). In other words, we will always speak about a definite
path of the chosen ray, specified by geometrical optics, and then
estimate the physical effects of the atmosphere [item (2) above]
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on this fixed ray. Thus, we do not include a full treatment of the
light scattering processes in the atmosphere, but account for the
atmospheric sunlight attenuation only through the optical thick-
ness 7 associated with each ray. We will describe some suitable
approximations for estimating the T—damping of the radiative
intensity in subsection 4.2. On the other hand, in subsection 4.1
we are going to treat the geometrical effects [item (1) above] in
full detail.

4.1. Geometrical effects

We consider now the refractive bending of a ray connecting a
point of the photosphere and the satellite and passing through
the atmosphere of the Earth. As a first step, let us restrict the
investigation torays lying in the plane containing the Sun and the
satellite. Later on, we will show how the results can be applied
to light rays not lying in this plane.

The main parameters we are going to use are illustrated in
Fig. 2 and have the following meaning: the basic lengths are
the geocentric distance of the Sun R, the geocentric distance
of the satellite r, the Earth’s radius Rg, the solar radius R,
the altitude A of the atmospheric layer grazed by the ray under
consideration, and the altitude H of the vertex V'; the basic an-
gles are the spherical angle 6, characterizing the ray in satellite’s
local frame, the Sun—satellite angular distance w, the heliocen-
tric position « of the source of radiation £ on the photosphere,
where the ray starts at an angle 3 from the normal, the angle o
between the directions of Sun’s and the Earth’s centers viewed
from F, and the atmospheric refraction angle Re(h) of the ray
reaching the grazing point G at the altitude h. We also recall the
definitions

_ R@ r

= =—. 23

P1 R ’ P2 R ( )
It is well known that for the propagation of light in a spherically
symmetrical atmosphere a first integral derived can be derived

from the Snell law [see Garfinkel 1967, Eq. (2)]:
Krsin = constant ,

where & is the refractive index, r the distance from the Earth’s
centre and 1) the angle between the ray and the radius vector.
From the sine theorem in a triangle we obtain for the factor ¥
defined as

Y(h) = (Rg + H)cosRe(h) = (Rg + h)x(h) . 24)
By a repeated application of trigonometric relationships in the
triangles shown in Fig. 2 we arrive at

p1sino =sin(o + ) , (25a)
p2sinf sino =y sinasin(o +n23) , (25b)
B=m(a—mné), (25¢)

where

&) =m+2Re[A(@)] —w -0,
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Satellite

Fig. 3. The heliocentric vectors INg and Ns and the emitter’s helio-
centric position IV, as defined in the text

and the altitude h of the grazing point as a function of @ is the
solution of the equation

U[h(@)] =rsinf . (26)

One can verify that in case of an atmosphere with a polytropi-
cally decreasing refraction index, as given by Eq. (21), Eq. (26)
has a single solution, at least in the range of distance of interest
in space geodesy.]L This conclusion may become wrong when
we move farther from the Earth, say at lunar distance for exam-
ple. Of course, the previous equations apply also to the simpler
case of rays avoiding the Earth’s atmosphere. In this case k =
constant yields immediately Re(h) = 0. This holds for all the
equations to be obtained below.

The two quantities 1; and 7, are just required to adjust the
signs, as we have taken positive values for all the angles appear-
ing in Egs. (25); they are derived as follows. Let N g be the unit
vector along the Sun—Earth direction and INg a unit vector tan-
gent to a ray reaching the satellite and emitted radially (5 = 0)
from the photosphere. Finally we define the unit vector N for
an arbitrary ray as shown in Fig. 3. Then we have

m=1m=1) if Ng lies between Ng and IV
m=1Lm=-1) if N lies between Ng and Ng, (27)
m=-1,m=1) if N lies between Ng and IV .

Starting from Egs. (25)—(26), the basic problem is now that
of finding the angle of emission from the photosphere of a graz-
ing ray reaching the satellite at an angle 6 with the radius vector.
From Eq. (26) we can compute A from r and 8 and then solve
Egs. (25) for «r, 8 and o. Unexpectedly, this can be worked out
analytically and leads to

a®) =n {g(a) +arcsin [ (py sin 6 — sin £(6))] } . (28a)
_ sin a(f)

0'(9) = arctan{ m} y (28b)

B(8) = nimp arcsin{ p; ' (p2 sin 6 — sin £(0)) } . (28¢)

In order to follow in time the transition from full sunlight
to shadow we need also to solve Egs. (25)—(26) for w. Four

1 Note, however, that this property is not trivial. Desert mi-
rages provide a simple example of a special situation when this
property is not satisfied (see e.g. Sampson 1993 for an intriguing
‘solar mirage’ phenomenon).
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instants can be identified as defining the boundaries between
different phases. The atmosphere starts playing a role when
for the first time a ray emerging from the lowest part of the
photosphere grazes the outermost layer of the atmosphere. At
this point we have 3 = 3, m = —m = —1 and h = hr. An
observer looking out of a window in the satellite would say that
the solar disk just touches the atmosphere. We will call wa;
the geocentric angular distance between the satellite and the
Sun at this moment. Solving Egs. (25)—(26) we obtain for this
parameter

WAl = % —A(¥7;7, R, R) 29

where WUt = ¥(ht) and

L[ N\
AL (U;r, Re, R) =arcsm{—; (pl + E)$

V-G e )

In a similar way, at the instant when the whole solar disk can
be said to have penetrated the atmosphere, with the last solar
ray grazing its outer boundary (in this case the same parameter
values as above have to taken, but n; = 1), the value of w is
found to be

wa2 = 3% —A_(¥r;r, Re, R) .

(30)

It is worth remarking that the angular width of the atmospheric
slab (having an approximate thickness of 50 km), when seen
from a satellite such as LAGEOS, orbiting at an altitude of
5500 km, is about 16 arcmin, that is roughly half the apparent
size of the undistorted solar disk. Thus one might erroneously
conclude that the whole Solar disk cannot be seen through the
atmosphere before eclipsing by the solid Earth starts. This would
be true in absence of differential refraction of solar rays, which
causes a strong distortion of the solar disk image, flattening it to
such an extent that it can easily accommodate in the 16 arcmin
width of the atmosphere. This has important consequences on
the magnitude of the radiative force during the phase when only
the atmosphere intercepts the sunlight directed to the satellite.
The apparent disappearance of the Sun behind the solid

Earth (which would mark the entry into penumbra for an at-
mosphereless planet) starts when the first solar ray grazes the
Earth’s surface, namely when 8 = 3,7 = —m; = —land h = 0.
The corresponding value of w is
wp = 7+ 2Re(0) — A(Yo: 7, Ro, ) 31
where ¥y = ¥(0). Finally, the entry into complete shadow cor-
responds to the total occultation of the Sun by the solid Earth,
and occurs when the value of w is

37

ws = T +2Re(0) — A_(Voir, R, R). (32)

Itis remarkable that the angular distance covered by the satellite
during this latter phase (defined as phase III below), that is

D. Vokrouhlicky et al.: Solar radiation pressure perturbations for Earth satellites. I

ws — wp, is independent of the magnitude of the refraction angle

2Re(0), implying that the duration of time interval required for

the solid Earth to eclipse the whole solar image is not affected
by the atmospheric effects.

In summary, for a satellite like LAGEOS (or lower) we can
recognize the following phases as it moves toward the Earth’s
shadow:

(1) w < way: phase 0 — the satellite is in full sunlight and
the solar disk is neither deformed by the Earth atmosphere
nor eclipsed by the solid Earth (this phase was dealt with in
Sect. 3);

(2) wa1r < w < wpy: phase I — part of the Solar disk is viewed
through the atmosphere;

(3) waz < w < wp: phase I — the whole Solar disk is viewed
through the atmosphere;

(4) wp < w < ws: phase III — part of the Solar disk is eclipsed
by the solid Earth (we will call this the ‘true penumbra’
phase);

(5) ws < w: phase IV — the whole Solar disk is eclipsed by the
Earth, and the satellite is in complete shadow.

These phases are illustrated in Fig. 4, which shows pictures
of the solar disk, as it would be seen seen from LAGEOS during
the penumbra transition (this Figure should be compared with
Fig. 9in Link 1962). It is apparent that the flattening of the solar
disk is already significant during phase I, when the Sun plunges
into the atmosphere. We will show in Sect. 5 that phases I and
II determine the overall shape of the penumbra signal, while the
contribution of phase III is limited to a ‘tail effect’. We will also
discuss the sensitivity of this perturbation tail to the absorption
processes in the lower atmosphere.

Another possibility in dealing with Egs. (25)—(26) is that of
solving them for the maximum and minimum values of the angle
@ in the local Sun-oriented frame, which correspond to the edges
of the solar image in the ‘vertical’ direction. One again uses the
conditions 3 = 7 (as the searched rays graze the solar disk),
m = = 1 (with the plus and minus signs for the minimum and
maximum values of 8, respectively) and 7, = 1. Note, however,
that now we miss the condition on the grazing height h, so that
we have to solve for h. Manipulating Egs. (25)—(26), we get

U(h
) _ ¢ (cosw(h), p2) [sin w(h)\/( (cosw(h), p2) — pi+

-
np1 (Pz — cos w(h)ﬂ ;
w(h) = w — 2Re(h) .

(33)

This equation can be solved numerically for h by an iterative
technique. By means of Eq. (26), the maximal and minimal
values of the 6 angle for the Solar disk are found to be
Ot = arcsin(ipi) ,

r
where the (£1) labels refers to the solutions for h of Eq. (33)

with 71 = 1. Thus, we obtain for the ‘vertical’ angular width
of the solar disk

- G- G}

(35)

(34)

Ab = arccos{
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Penumbra phases

30°

f)

Fig. 4a-f. Different phases of the penumbra transition, as discussed in
the text, correspond to varying shapes of the solar disk as seen from
the LAGEOS satellite, owing to atmospheric refraction: a beginning of
phase I, with partial penetration of the solar disk into the atmosphere;
b phase I; ¢, d, e phase II, with the whole solar disk seen through
the atmosphere; f true penumbra phase 111, with part of the solar disk
eclipsed by the Earth’s solid body. The solid and dashed lines repre-
sent the Earth’s horizon and the top of the atmosphere, respectively.
The degree of vertical compression of the solar disk can be estimated
comparing the solar images to the bars on the left, corresponding to 30
arcmin

Of course, these formulae apply during phases I and I, i.e., when
w < wp [note that in phase I Re = 0in Eq. (33)]. As for phase I11
(true penumbra phase), the minimum 6 angle of the visible solar
disk corresponds to the Earth’s horizon, so that 4, = 0 formally
holds in this case. The importance of the ‘vertical compression’
of the Solar disk even before reaching phase III, as predicted by
Eq. (35), will be discussed in Sect. 5. Concerning Eq. (35), it
can also be noted that, due to the monotonous decrease of the
refractive index with height in Garfinkel’s model atmosphere, no
‘pathological’ reversal of the solar image seen from the satellite
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is possible; as a consequence, Af is always positive, though it
can reach fairly small values (see e.g. Fig. 6 below).

Having described in detail the geometry of rays lying in the
Sun-satellite plane, we now turn to the problem of extending this
solution to rays crossing this plane. It turns out that it is possible
to keep the structure of the previously described solution and
that just a rescaling of the solar radius, the Earth—Sun distance
and the Sun-satellite angular distance is necessary.

Let us select a solar ray characterized by local spheri-
cal angles 6, ¢ in the Sun—oriented satellite frame, and call
‘¢p—slice’ the plane defined by the geocentric satellite posi-
tion vector and the vector tangent to the chosen ray. When-
ever ¢ # 0, the ¢-slice differs from the Sun-satellite plane.
We now consider the small circle defined by the intersection
of the ¢—slice with the solar sphere. By simple geometrical
arguments it can be shown that the radius of this circle is
Ro(d) = R@(l - 91_2 sin? (;Ssin2 w) 1/2 (this can be taken as
the ‘¢—slice solar radius’), whereas the geocentric distance of
the centre of this circle is R(¢) = R(1 — sin ¢sin’w) "/ (this
can be taken as the ‘¢-slice solar distance’). In the same man-
ner, one shows that the angular distance of the Earth centered
satellite radius vector and the centre of the small circle is given
by cosw(¢) = cosw(1 — p; 2 sin’ ¢ sin’ w)“l/z. Also, we can
introduce

Ro(9) T

R 7 R(¢)’

in analogy to p; and p,. Note that the ‘¢p—width’ of the so-
lar disk follows simply from the previous formulae: ¢max =
arcsin (p; sin™' w).

The ray geometry problem has clearly the same structure
in ‘¢-slice’ as in the Sun—satellite plane, provided the substi-
tutions p; — p1(¢) and p; — py(¢p) are made. Thus, the
fundamental equations read

pi(@)sino (8, ¢) = sin[o(0, ¢) + o0, )] , (36a)
p2(¢) sin 0 sin 0(07 ¢) =" sin a(97 (:b) sin [0'(0, (:b) + 772/6(97 (]5)] )

p1(¢) =

p2(P) =

(36b)
B0, 9) = m a8, ¢) — @, 9)] (36¢)
where
£, ¢) =+ 2Re[M(0, ¢)] — w(e) — O
and h(d, ¢) is determined implicitly by
WIA(E, §)] = pa(@) sin ) . (37)

Therefore, all the solutions obtained when dealing with Egs.
(25)—(26) keep the same structure, provided the ‘¢—slice quan-
tities” are used. As for the deviation 1(6, ¢) of the ray’s direction
from the normal to the solar surface at the emitter point, simple
geometry leads to

10, ¢) = [1 — p > sin® gsin®w]"/* cos (6, ) ,

which clearly generalizes the solution obtained for the rays lying
in the Sun-satellite plane ¢ = 0 [Eq. (28c)].

(38)
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The formulae given in this Section represent a full treatment
of the geometry of all solar rays crossing the atmosphere, in the
frame of the atmospheric model described earlier. Our procedure
to obtain the radiative flux [Eq. (22)] then consists in a detailed
numerical integration, considering a large number of solar rays
separately from each other.

4.2. Physical processes

We will now discuss the attenuation of the radiative intensity
of a specified solar ray due to the physical processes in the at-
mosphere. We are not going to provide a full treatment of the
atmospheric scattering of sunlight, as this represents a sepa-
rate, very complicated problem without any simple analytical
solution (see e.g. Chandrasekhar 1960, Van de Hulst 1980, or
in a spherical atmosphere Sobolev 1975). As our goal is that
of modelling radiation pressure perturbations of satellite orbits,
we adopted a simplified, but still plausible approximation of the
problem. Even with this simplification, one needs to address
two issues related to the behaviour of the atmospheric absorp-
tion coefficient, namely: (i) its altitude decrease, and (ii) its
frequency dependence. First, we will describe a simplified so-
lution neglecting both effects; subsequently, we will introduce
suitable correction factors to account for either of them.

In our simplest treatment of the atmospheric absorption
problem we neglect any frequency dependence of the extinc-
tion processes. Under this assumption, one obtains

Iu,¢);71 =191, ¢)lexp(—27) , (39

where I@[ (6, ¢)] is the radiative intensity before atmospheric
attenuation (i.e., emitted by the corresponding solar surface el-
ement). The exponential damping comes from the formal solu-
tion of the equations of radiative transfer theory (Chandrasekhar
1960). We now need to determine the half—optical thickness 7
in the atmosphere, which is given by

T=/dsx(s),

where the integral is extended over half the atmospheric path of
the rays (here s denotes an arbitrary affine parameter along the
solar ray in the atmosphere). A simple solution of Eq. (40) is
obtained by assuming a constant absorption coefficient x(h) =
x* and neglecting the bending of rays in the atmosphere:

(40)

™ =x"\/(hr — h)(hr + h+2Rg) . (41)
Were the atmosphere modelled as a sequence of layers with
constant absorption coefficients, a sum of several terms such as
(41) could be used. As for the value of x*, we have assumed
that it is determined by Rayleigh scattering at the ‘reference
wavelength’ A; = 550 nm. This value is tabulated for normal
atmospheric conditions and reads x* = 1.162 x 1075 m~! (Mc-
Cartney 1976). In some models, we will also consider a stronger
absorption in the bottom layer of the troposphere, simulating the
effects of cloud coverage (see later).
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Let us note that we have neglected several other mecha-
nisms causing atmospheric absorption (water vapour, ozone,
atmospheric dust grains etc.) in the current study. One can esti-
mate the relative importance of these phenomena with respect
to Rayleigh scattering using the table given in Sect. 55 of Allen
(1976) (see also Table 2 in Kabela¢ 1988). Actually, the results
depend strongly on the instantaneous atmospheric conditions.

4.2.1. Correction for the altitude decrease of the absorption
coefficient

Here, we derive a correction factor to the previous simple treat-
ment of absorption, which accounts for the altitude decrease of
the absorption coefficient x in calculating the integral (40). We
assume a pure Rayleigh scattering in the atmosphere, so that
x(s) = x* (%), where p(s) denotes the atmospheric density
corresponding to a geometrical length s of the ray (measured
from the perpendicular to the radius vector) and py is the air den-
sity at the Earth’s surface. Making the assumption of a polytropic
atmosphere and neglecting the bending of rays, one obtains for
the half—optical thickness [see Garfinkel 1967, Eq. (8)]:

2

1 *
_x _ 2 - 2 T
=7 /0 d§{1 2y {1 (€ I)Réx*2+

(1+ﬁ>2)“”z]n},

Ra (42)
If we consider the half-optical thickness given by Eq. (41) (and
the corresponding exponential attenuation) as a ‘reference so-
lution’ for the atmospheric absorption problem, the correction
associated with a variable absorption coefficient can thus be
expressed as a factor

fa(T*) =exp2 (7% —7) =
1
exp{ZT* [1- / de[1 — 272 (1—
0
*2

2—1—T—+1+£T—2—1/2"]}. 43
(€ =D+ 7o) )"] @3)
In Fig. 5a, we have plotted the the factor f,;(7*) versus the
reference optical thickness 7* for normal atmospheric condi-
tions (hy = 48.34 km, 2v* = 132.96). From this figure, we can
draw some interesting conclusions: (i) no significant correction
needs to be made for small optical thickness, as here the ray pen-
etrates just a small part of the atmosphere; (ii) the correction is
sizeable for intermediate optical thickness, as the ray penetrates
deeper in the atmosphere, but still grazes it at high altitudes,
where the absorption coefficient is polytropically damped with
respect to its value at the Earth’s surface — in this case the sim-
ple solution (41) overestimates the atmospheric absorption; (iii)
smaller corrections are needed for high optical thickness, as the
corresponding ray grazes the Earth’s surface and the role of the
optically thin layers of the upper atmosphere is lower. In Sect. 5,
we will discuss the way this correction affects the magnitude
of the radiation pressure acceleration of LAGEOS during the
penumbra passage.
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Fig. 5a and b. Correction factors accounting for realistic features of
the atmospheric extinction: a fy, due to the altitude decrease of the
absorption coefficient, vs. the reference optical thickness 7 given by
Eq. (41); b freq, due to frequency—selective absorption in a ‘Rayleigh
atmosphere’, vs. 7* (see text).

4.2.2. Correction for frequency—selective absorption

Let us now discuss the possible importance of frequency—
dependent scattering/absorption processes in the atmosphere,
leading to the well known solar disk reddening effect near the
horizon. In order to treat this effect, one has to consider the
frequency distribution of the radiative intensity. We have as-
sumed that the solar spectrum matches perfectly a black—body
distribution with the effective temperature 7' = 4560 K (this
corresponds to the bottom chromosphere temperature; see €.g.
Allen 1976), i.e.:

2h 3
I9=B,T) =5 — (44)
c exp(k—”) -1
where h is the Planck constant, ¢ is the velocity of light, k
is the Boltzmann constant and v is the frequency (throughout
this subsection the subscript v indicates that the corresponding
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quantity depends upon frequency, a common notation in radia-
tive transfer theory). The formal solution of the radiative transfer
equations still assures that

L [p8,¢);71= I [ (8, p)lexp(—27,) 45)
where
T, = /ds X (8) . (46)

In what follows, we assume a Rayleigh scattering in the at-
mosphere, i.e. x, = Xov* (McCartney 1976). To obtain the
frequency—integrated intensity in the satellite’s local frame, we
define an absorption—averaged optical thickness for a given ray
as

e nf B D0l 2]y
fo dvB,(T)

Referring the absorption model to the previous simple approach
based on a frequency—independent absorption coefficient, we
obtain for each given ray a solar-reddening correction factor
in the form

Frea(T*, VY =exp2(T* — 7) =

47

15 exp(27*) /1 d¢
4 * 1

8t BT 0 exp [(_z_ﬂl;*_lns) /4}
where the numerical constant § has the approximate value
9.233 x 10~* and the argument v* indicates the assumed
Rayleigh—type dependence of the absorption coefficient upon
frequency [in general, one might assume another form of 7, in
Eq. (46)]. In the numerical calculations referring to this case,
we will apply this correction factor to each solar ray constitut-
ing the radiative field in the satellite’s local frame. It has to be
remarked that the numerical evaluation of the integral (48) is
rather delicate, as the integrand diverges when £ — 0; it can be
proven, though, that the value of the integral converges. Several
numerical methods treating successfully this type of integrals
are available (e.g. Pérez-Jord4 et al. 1992).

Figure 5b displays the freq(7*) versus 7* relationship. One
can note a monotonic increase of this factor with the optical
thickness 7*. Values greater than 1 mean that there is such an
amount of energy in the short—frequency part of spectrum, that
the constant absorption factor adjusted to A = 550 nm overesti-
mates the attenuation in the simple model. Of course, the present
results are also approximate, since the short-wavelength radi-
ation is more efficiently absorbed in the atmosphere by other
processes than Rayleigh scattering (Liou 1980). We will dis-
cuss the influence of the correction given by Eq. (48) on the
radiation pressure penumbra perturbations in Sect. 5.

Let us point out that the joint effect of the two corrections
treated in Sects. 4.2.1 and 4.2.2 is not equivalent to a simple

product of the corresponding correction factors f,; and fredi.

1 This fact already follows from the observation that often
Ja(T*) frea(T*) > exp7*, as it can be seen from Figs. 5a-b.
Such a property would not be consistent with the attenuation of
the radiative intensity due to extinction.
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One could derive the joint effect of an altitude—dependent ab-
sorption coefficient and of a frequency—selective absorption by
calculating

1
Fot(T*, ") = frea [T*, vt — —In (fa(m* )| . (49)

However, an analysis of this rather complicated correction factor
is beyond the scopes of this paper.

Finally, note that our general formulation of the penumbra
effect is not intrinsically linked to the treatment given in subsec-
tion 4.2 of the physical processes causing attenuation of light in
the atmosphere. Instead of the simple assumptions leading to of
our formulae (40), (43) and (48), we might have selected other
relationships describing the altitude decrease and/or frequency
dependence of the absorption coefficient, or even more sophis-
ticated models for the optical thickness in the atmosphere, ac-
counting for ray—bending phenomena (such as in Link & NeuZil
1969 and Murray 1983).

5. Examples of the penumbra effect

As the main contribution of this paper is a detailed theory of
the radiation pressure perturbations occurring when a satellite
crosses the Earth’s penumbra, we will focus our examples on
this orbital phase. In particular, we intend to investigate the sen-
sitivity of the way the perturbative acceleration decreases after
entrance into the penumbra (or, equivalently, increases when
exiting from the Earth’s shadow) to changes of several physical
parameters appearing in different parts of the theory (refraction
theory, absorption model, etc.). We will be mainly concerned
with LAGEQOS, as for the orbital determination of this passive,
nearly spherical, laser—tracked satellite an accurate treatment of
the radiation pressure perturbations is essential (Milani et al.
1987; see also Sect. 1). We will discuss in a forthcoming paper
(Vokrouhlicky et al. 1993c) the possible long—term effects of the
penumbra perturbations on LAGEOS’ orbit. In this section, we
will also give some examples for satellites orbiting at different
altitudes than LAGEOS.

As regards the numerical treatment of the problem, we have
adopted a short enough time step over LAGEOS’ orbital motion
(1 second, corresponding to 13,540 steps per revolution) that no
important detail of the penumbra passage is lost because of a
poor time resolution: actually, with this step the whole penumbra
transition spans a few hundred steps. A dense enough integration
grid is also necessary when the radiative flux integral (22) is
calculated. We used 51 integration steps in both variables 6 and
¢. Note that the knowledge of the solar disk ‘vertical edges’ in
terms of the local angle § [provided by Eq. (34)] is important
here, because in this way one can cover the whole solar image
by an optimized grid: this significantly increases the accuracy of
the result, or equivalently, keeping a given accuracy level, saves
computing time. We have verified that using less than ~ 50 grid
centers when evaluating the integral (22) degrades the accuracy
of the final results.

D. Vokrouhlicky et al.: Solar radiation pressure perturbations for Earth satellites. I

T (.107° m/s%)
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Fig. 6. The transverse acceleration component 7" due to solar radiation
pressure on LAGEOS vs. time (in seconds) during the penumbra transi-
tion, modelled in different ways. The dashed curve represents the ‘step
approximation’, the solid is derived from the present theory under the
assumptions of no absorption and normal atmospheric conditions (see
text). The interpretation of the various phases is discussed in the text

For our examples we have chosen the elements of LAGEOS’
orbit corresponding to the epoch May 15, 1976, namely just af-
ter the launch of the satellite (see Table 1 in Barlier et al. 1986);
the orientation of this orbit is such that it actually crosses the
Earth’s shadow and thus the satellite can undergo eclipses. For
LAGEOS’ area—to—mass ratio [appearing in Eq. (10)] we have
adopted the same 7 x 1073 cm? g~ ! value used in Barlier et al.
(1986), whereas for the &g coefficient we have adopted the
value 1.13, in agreement with Rubincam & Weiss (1986). We
are going to follow one revolution of the satellite, and focus on
the behaviour of the T (transverse, in the orbital plane) compo-
nent of the perturbing acceleration during the transition interval
corresponding to the Earth shadow entry. The T component is
important because it may give raise to semimajor axis changes
leading to accumulating along—track orbital residuals; however,
since in general the penumbra transition interval is much shorter
than the orbital period, the orientation of the radiation force with
respect to the satellite’s motion changes very little during this
interval, and thus the other two components would just be scaled
by a nearly constant factor with respect to 7.

Let us start by considering an absorption—free atmosphere,
and adopting normal atmospheric conditions (see Garfinkel
1967): po = 760 mm Hg, Ty = 273.15K, Tjj = —0.005694 K/m’
(here m’ represents the geopotential meter defined in Garfinkel
1967). In Fig. 6 we have plotted the decrease of T" following LA-
GEOS’ penumbra entry. The abscissa represents time in seconds
measured since the beginning of the penumbra, i.e. the entry
in phase I according to the terminology introduced in Sect. 3.
For the sake of comparison, we have also plotted the curve
corresponding to a ‘step approximation’, neglecting at all the
penumbra effect (the step transition is assumed to occur when
the line from the Sun’s centre to the satellite becomes tangent to
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the solid Earth’s surface, assumed to be spherical); such an ap-
proximation is routinely used in the current orbit determination
algorithms. We can easily recognize the different phases of the
shadow penetration process, as listed in Sect. 3 and illustrated
in Fig. 4. During phase I (with part of the solar disk plunged into
the atmosphere) we observe a substantial decrease of 7', which
is just due to the compression of the atmospherically deformed
part of the solar disk (see also Fig. 7). This compression effect
continues also in phase II (when the whole solar disk is viewed
from the satellite through the atmosphere), but the slope of the
curve becomes smaller — here starts the penumbra tail. The true
penumbra phase III (when the Earth begins to eclipse the solar
disk) is characterized by a the slope getting greater again. This
discontinuity in the derivative of the curve is due to the fact that
the Earth’s horizon represents now a fixed limit for the part of the
solar disk visible from the satellite, while in the previous phases
both limits of the solar disk (i.e., the corresponding 6 angles in
the local Sun—oriented reference frame) changed smoothly. All
the examples we have analyzed support the conclusion, consis-
tent with the interpretation of Fig. 6 given above, that the true
penumbra phase (III) plays a minor role in determining the over-
all shape of the 7" decrease curve. Much more important is the
influence of the atmospheric effects - refraction and absorption.

The durations of the various phases are: phase I: 34 s:
phase II: 63 s; phase III: 34 s. Of course, these values depend
on the assumed geometry of the passage, i.e., on the inclination
of the apparent trajectory of the Sun with respect to the normal
to the local horizon. This angle in our case is about 43°, owing
to the fact that the orbit crosses the Earth’s shadow in a fairly
oblique way; when it approaches zero, the eclipse duration is
maximum but the penumbra duration is minimum — some 84 s
for LAGEOS. However, we have checked that apart from the du-
ration factor, the qualitative features of the perturbation curves
described above do not change with the orientation of the or-
bit and the Sun. It is worth noting that, first, the total duration
of 131 s found with our theory is much longer than one would
expect from a simple geometrical estimate. Secondly, and some-
what surprisingly (see the comment we made in Sect. 4.1), the
interval when the whole disk is still visible, while penetrating
through the atmosphere, corresponds to the longest part of the
transition. The compression of the solar disk changes slowly,
and this results into the formation of a characteristic tail. As we
discussed in Sect. 3.1, the duration of the true penumbra phase
is not increased by the refraction effects, and its value can be
simply estimated by considering how long it takes to the Earth
to eclipse the undistorted solar disk (see later).

We stress that the divergence of the solar rays penetrating
the atmosphere is the dominant cause of the great atmospheric
decrease of the radiation pressure in phase II (Fig. 6). From this
point of view, as remarked by Link (1962), the Earth’s atmo-
sphere acts in the opposite way with respect to a converging lens
(cf. in Fig. 4 of Link 1962). Another way to show the impor-
tance of the solar disk compression is by plotting the f—extent
of the solar disk in the local Sun—oriented frame, as given by
Eq. (35). Figure 7 shows such a plot, where the different phases
are identified as in the previous discussion about Fig. 6. Note

30
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N
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Fig.7. The solar disk’s ‘G—thickness’ vs. time during the penumbra
passage

that the minimum vertical thickness of the LAGEOS-seen so-
lar disk, penetrating through the dense bottom layers of the
atmosphere, is only 2.4 arcmin, more than one order of magni-
tude less than the ‘undistorted’ value (about 31 arcmin). Such
an extreme compression is not at odds with the fact that the
corresponding minimum vertical extent of the solar disk seen
by an observer on the Earth’s surface is about 24 arcmin (see
e.g. McCartney 1976). Actually, there is an essential difference
between the two cases. When the observer is on the Earth’s sur-
face, the two extreme solar rays limiting the vertical extent of the
solar disk penetrate into the densest layers of the atmosphere.
However, when the ‘sunset’ is seen from LAGEQS, one of the
two limiting rays grazes the Earth’s surface, whereas the other
one crosses only fairly high layers of the atmosphere (reaching
the minimum altitude of about 8.6 km for normal atmospheric
conditions). Thus the latter ray is much less refracted, and as a
result the oblateness of the LAGEOS-seen solar disk is ampli-
fied. This effect was also already discussed by Link (1962) (but
essentially already in Link 1933).

In Fig. 8, still neglecting the atmospheric absorption pro-
cesses, we compare the penumbra decrease of the 7' compo-
nent for different assumptions about the state of the atmosphere.
Curve 3 corresponds to conditions leading to a weaker atmo-
spheric refraction, while the opposite holds for curve 1. The
two curves cross each other because in phase I and at the be-
ginning of phase II a higher radiation pressure arises when a
weaker refraction results into a lower deformation of the solar
disk; on the other hand, the ‘tail’ becomes longer under higher
refraction conditions, due to a stronger ray bending. Thus the
magnitude and the duration of the tail perturbation can change
significantly as a response to variable atmospheric conditions;
the difference between curves 1 and 3, when averaged over one
full revolution, corresponds to an extra < T' > acceleration of a
few times 10713 m/s?, just a factor 10 less than the unmodeled
perturbations in LAGEOS’ orbit.
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Fig. 8. The same as Fig. 6 but with different atmospheric conditions
affecting refraction (no absorption is assumed to occur here): curve 1:
po = 730 mm Hg, Tp = 253.15 K, Ty = —0.004894 K/m’; curve 2:
po = 760 mm Hg, Ty = 273.15K, Ty = —0.005694 K/m’ (normal con-
ditions); curve 3: pp = 790 mm Hg, Ty = 293.15 K, Ty = —0.006494
K/m’. We have used a humidity factor pj = 0 mm Hg in all cases

120

t(s)

Fig. 9. The same as Fig. 6, but comparing the curve derived from our
theory (curve 3) with those derived from simpler penumbra models:
curve 1, the ‘step approximation’, and curve 2, with the solar flux
attenuated in proportion to the visible portion of the solar disk eclipsed
by an atmosphereless Earth (see text)

In order to compare the results of our theory, fully account-
ing for atmospheric refraction, with those of a simpler model
neglecting refraction, one can consider the attenuation of the
Solar flux from a hypothetical atmosphereless Earth, due to the
gradual geometrical eclipsing of the finite—size solar disk by the
horizon. The attenuation factor reads in this case

1 1.
P == [g — —sin (2Q)] , (50)
s 2
where p is the angle with vertex in the solar centre between
the intersection of the solar disk edge with the horizon and the

D. Vokrouhlicky et al.: Solar radiation pressure perturbations for Earth satellites. I
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Fig. 10. Effects of introducing the correction accounting for the altitude
decrease of the absorption coefficient. Curves 1, 2 and 3 correspond
to the models without atmospheric absorption, with the fu correction
factor introduced in Sect. 4.2.1, and with a constant absorption coeffi-
cient x* corresponding to Rayleigh scattering at 550 nm, respectively.
Normal atmospheric conditions have been assumed

top of the visible part of the disk. The results of this model for
T are plotted in Fig. 9, together with the refractive penumbra
decrease previously plotted in Fig. 6. As we already noted, the
‘atmosphereless’ penumbra decrease has a duration of 34 s, in
exact agreement with the duration of the true penumbra phase
in the more complicated, refractive model; however, the ‘atmo-
sphereless’ model just results into a simple and structureless
shape of the curve. The differences between the two curves can
be physically interpreted in terms of the complex influence of
atmospheric refraction, as explained earlier.

Let us now discuss the effects of the physical processes re-
lated to absorption on the penumbra perturbation curve. Fig-
ure 10 shows the importance of the correction factor which
models the altitude decrease of the absorption coefficient, as dis-
cussed in Sect. 4.2.1: here the ‘corrected’ results (solid curve 2)
are compared with the results obtained by neglecting absorp-
tion at all (curve 1) and with those coming from the simpler
absorption model where the absorption coefficient is assumed
to be constant throughout the atmosphere (curve 3). We observe
that the latter model overestimates in a significant way the de-
crease of the perturbing force during phases I and II. Actually,
apart from a nearly—constant time shift, curve 3 matches closely
the ‘atmosphereless’ case of Fig. 9, and the constant-absorption
case can be thought of as corresponding to an ‘expanded’ Earth,
whose effective radius is somewhat increased by the existence
of the atmospheric shell. As for the ‘corrected” model yielding
curve 2, in phase I its results are rather similar to those obtained
without absorption, as the solar rays graze only the high

atmospheric layers having a low absorption coefficient. On
the contrary, starting from the second part of phase II, when the
solar disk is seen through the more absorptive bottom layers of
the atmosphere, the corrected results become significantly lower
than those of the absorption—free model, and actually are inter-
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Fig.11. Effects of introducing the correction accounting for the
frequency—selective absorption in the atmosphere. Curves 1 and 3 are
the same as in Fig. 10. Curve 2 corresponds to the model using the
correction factor frq derived in Sect. 4.2.2. Normal atmospheric con-
ditions have been assumed
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Fig. 12. Sensitivity of the penumbra decrease of 7" to the atmospheric
conditions in the bottom 10-km thick layer. Curve 1 is the same as
the no—absorption case of Fig. 6, whereas curves 2 and 3 have been
derived assuming that the bottom layer has an absorption coefficient of
107 m~!and 1072 m ™!, respectively. Curve 4 results corresponds to
a random choice of the absorption coefficient in the range between 0
and 10™° m™!, simulating a complex cloud coverage structure

mediate between those of the absorption—free and the constant—
absorption models. This is consistent with the behaviour of the
altitude correction factor, as discussed in Sect. 4.2.1.

Strong Rayleigh extinction for the Earth—grazing rays (i.e.,
those with zenith angles approaching 90°) is a well known and
important effect in astronomy. Measurements are available (see
e.g. Siedentopf & Scheffler 1965) up to zenith distances of about
87°. Extrapolating these data to the horizon we obtain a de-
crease of about 4 mag in the visual band. Taking into account
that solar rays reaching the satellite cover in the atmosphere
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twice the distance as those seen by an Earth—surface observer,
we estimate in about 8 mag the extinction decrease of intensity
along an Earth—grazing ray. This corresponds to an attenua-
tion factor of about 1600, in good agreement with the results
of our computations, based on Egs. (41) and (43). This factor
is large enough to damp down the penumbra tail observed in
Figs. 6 and 8.

In Fig. 11, we plotted again curves 1 and 3 from Fig. 10,
and added the solid curve 2, which now represents the results
obtained by taking into account a frequency—selective absorp-
tion through the factor fie4 introduced in Sect. 4.2.2. Due to the
overestimate of absorption at short wavelengths, mentioned in
Sect. 4.2.2, the ‘corrected’ curve lies in between the two extreme
models in which either no absorption or a frequency—indepen-
dent absorption coefficient is assumed.

Figure 12 shows the possible effect of the presence of an
optically dense bottom layer (due e.g. to cloud coverage): here
curve 1 shows again the no—absorption results, while curves 2
and 3 correspond to a bottom atmospheric layer 10-km thick,
having a constant absorption coefficient of 107® m~! and
1073 m™!, respectively. Curve 4 shows the results of select-
ing at random for each (discrete) ray constituting the radiative
flux and passing through the bottom 10-km of the atmosphere
a value of the absorption coefficient in the range between 0 and
1073 m~!, in order to simulate a non-uniform cloud coverage.
Note that as expected the penumbra tail is always depressed
by absorption in the low atmosphere. In general, these results
show that whereas atmospheric refraction generates a signifi-
cant penumbra tail, the absorption processes tend to decrease
its importance. Thus again we conclude that in reality the for-
mation and extent of the tail depends sensitively on the atmo-
spheric conditions prevailing over a very limited portion of the
Earth’s surface, about half a degree wide when seen from the
satellite (some 100 km in size for LAGEOS). This may cause
significant long—term residuals if the orbit is determined and/or
predicted with dynamical models neglecting the complexities
of the penumbra transition.

Finally, we will discuss the cases of satellites having or-
bits much higher or lower than that of LAGEOS. We sticked
to the assumption of spherically symmetric satellites, though of
course this does not apply to most real spacecraft, because in
this paper we aim at illustrating the basic physics of the problem
more than at producing realistic models for specific satellites.
Figure 13 shows the T" decrease curves during a penumbra tran-
sition for a hypothetical geostationary satellite, having a 42, 200
km orbital radius, such as the satellites tracked for geophysical
purposes during the COGEOS campaign (Catalano et al. 1983;
Nobili 1987). We have assumed typical values of the A/m and
%k parameters (5 x 1072 cm? g~! and 1.5, respectively). Of
course, other values of these parameters would just lead to
rescale the vertical axis of the plot — whose horizontal axis
still gives the time in seconds since the onset of the penumbra
phenomena. The Sun has been assumed to lie on the Earth’s
equatorial plane, corresponding to an equinox date; note that
for an equatorial satellite eclipses occur only when the solar
latitude is less than about 9°, and that our choice implies that
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Fig. 13. T decrease curves during a penumbra transition for a hypothet-
ical spherical geostationary satellite. The horizontal axis still gives the
time in seconds starting from the beginning of the penumbra transition.
Solid curves 1 and 3 have been obtained with the refraction—only and
constant-absorption models, respectively; solid curve 2 corresponds
to the altitude correction case; dashed curves 4 and 5 correspond to
the simple ‘atmosphereless Earth’ and ‘step approximation’ models,
respectively

350 450

we are considering the shortest possible penumbra duration.
The different curves correspond to the different models of the
penumbra transition described earlier. Dashed curves 4 and 5
correspond to the simple ‘atmosphereless Earth’ and ‘step ap-
proximation’ models, respectively; solid curves 1 and 3 have
been obtained with the models including refraction but no ab-
sorption and the constant absorption coefficient consistent with
Rayleigh scattering, respectively; solid curve 2 corresponds to
the more realistic altitude correction case. It is interesting to
note that the no—absorption case (1) yields a very long tail, with
the total penumbra transition spanning 428 s, but the value of
T decreasing below 10% of the out-of-eclipse value in only
about 120 s; in this case, at the end of phase II the vertical thick-
ness of the solar ‘disk’ is only 0.75 arcmin! In case (2) the tail
is reduced by absorption, but still lasts for some 100 s more
than in the no—atmosphere case (4). The latter, however, is now
a much better approximation than for LAGEOS: the reason of
this is that the atmospheric layer, seen from the geostationary
orbit, appears much thinner. Again, case (4) fairly resembles the
constant—absorption case (3), apart from a short time lag.

Figure 14 has been derived for a satellite having the or-
bit planned for the MACEK microaccelerometric experiment
(Pefesty & Sehnal 1992),1.e. alow orbit with perigee and apogee
heights of 300 and 1300 km, respectively. The values of A/m
and &g are now 4 x 1072 cm? g~! and 1.2, respectively (note,
however, that these values have a preliminary character, since the
final configuration of the satellite has not been decided yet). The
penumbra transition is assumed to occur near the apogee with
the Sun’s apparent trajectory normal to the local horizon, and
again T is plotted vs. time starting from the entry into penumbra.

D. Vokrouhlicky et al.: Solar radiation pressure perturbations for Earth satellites. I
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Fig. 14. The same as for Fig. 13, but for the (low) orbit planned for the
MACEK accelerometric satellite

The five curves refer to the same models as for the geostation-
ary satellite case. We can note that refraction effects are still
important, but now the tail for curve 1 is much less extended
than for higher orbits, and there is a more marked discontinu-
ity at the end of phase II, owing to a smaller compression of
the solar disk (minimum f-thickness of 5.7 arcmin). The sim-
ple models yielding curves 3 and 4 still resemble each other,
but are not good approximations of the more realistic case with
altitude—dependent absorption coefficient (curve 2). The whole
penumbra transition is of course shorter (46 s neglecting ab-
sorption and with normal atmospheric conditions), due to the
higher orbital speed.

6. Conclusions

The main results obtained in this paper can be summarized as

follows.

(1) We have presented a complete theory of the direct solar
radiation pressure perturbations acting on artificial satellite
orbits. The theory accounts for the occurrence of eclipses by
the Earth, and in particular takes in detailed account the main
physical processes which are at work during the passages
through the Earth’s penumbra. These complex processes
have often subtle consequences, and the corresponding re-
sults display several non—intuitive features. The refraction
phenomena — which have a crucial influence on the shape
of the penumbra transition curve of the perturbing force —
have been fully included in the theory, which is based on the
assumption of a polytropic spherical atmosphere (Garfinkel
1967). On the other hand, several simplifying approxima-
tions have been made to take into account the atmospheric
absorption and scattering processes.

(2) Possibly the least obvious effect of atmospheric refraction is
the presence a fairly long-lived ‘perturbation tail’, occurring
when the satellite would already be in the full shadow for an
atmosphereless Earth. However, the magnitude and length
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of this perturbation tail depend sensitively both on the orbit
and on the physical conditions and the absorption proper-
ties of the atmosphere — hence e.g. on cloud coverage —
over limited regions of the Earth’s surface. For LAGEOS,

this may cause significant long—term orbital residuals with

respect to the predictions of simpler models for the penum-
bra radiation pressure perturbations. Concerning this, it is
worth quoting here a remark by King—Hele in discussion
following Baker (1970): ‘... The problem is the determina-
tion of the Earth shadow. If there happen to be clouds 10 km
high at the point where the Sun’s rays graze the horizon, the
shadow height will be increased by over 10 km and, if the
satellite is moving almost parallel to the shadow cone the po-
sition of the eclipse point can be altered by 100 km or more.’
We will discuss in detail the possible consequences of such
mechanisms related to peculiar orbit/shadow geometries in
a forthcoming study (Vokrouhlicky et al. 1993c).

(3) We aimed at producing a theory as realistic as possible,
without caring much for its computational efficiency. As a
consequence, the current numerical implementation of the
theory is not suitable to analyze orbital arcs longer than a
few revolutions, due to the great CPU time demands associ-
ated with the short time step and the complex calculation to
be carried out during the penumbra transitions. On the other
hand, approximate formulations are under study which will
hopefully allow us to apply the penumbra theory to specific
open problems in satellite dynamics, such as the interpre-
tation of LAGEOS’ observed residuals (Vokrouhlicky et al.
1993c) and the analysis of non—gravitational perturbations
undergone by satellites equipped with accurate accelerome-
ters (e.g., the CACTUS mission carried out in the 80s and the
planned MACEK mission). This is a delicate task, because
the physical mechanisms at work during the penumbra tran-
sition are complex and their outcome may depend on the
specific atmospheric conditions.

(4) For the sake of simplicity, we have applied our theory to a
spherical LAGEOS-like satellite. However, the main body
of the theory, including the treatment of the penumbra phase
processes, is independent of the spherical symmetry as-
sumption. Once the radiative field at the satellite’s position
is known, one can always use formulae generalizing (11)
and (22) to compute the radiative force in the case of a
general satellite shape (see Vokrouhlicky & Sehnal 1993b;
Vokrouhlicky et al. 1993a).
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