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ABSTRACT

The Yarkovsky–O’Keefe–Radzievski–Paddack (YORP) effect is a thermal radiation torque that causes small objects
to speed up or slow down their rotation and modify their spin vector orientation. This effect has important
implications for spin dynamics of diameter D � 50 km asteroids. In our previous work we developed an analytic
theory for the component of the YORP torque that affects the spin rate. Here we extend these calculations to
determine the effect of the YORP torque on obliquity. Our theory is limited to objects with near-spherical shapes.
Two limiting cases are studied: (1) immediate emission of the thermal energy that occurs for surface thermal
conductivity K = 0; (2) the effects of K �= 0 in the limit of small temporal variations of the surface temperature.
We use the linearized heat transport equation to model (2). The results include explicit scaling of the YORP
torque on obliquity with physical and dynamical parameters such as the thermal conductivity and spin rate.
The dependence of torques on the obliquity is given as series of the Legendre polynomials. Comparisons show
excellent agreement of the analytic results with the numerically calculated YORP torques for objects such as
asteroids 1998 KY26 and (66391) 1999 KW4. We suggest that an important fraction of main belt asteroids may
have specific obliquity values (generalized Slivan states) arising from the roots of the Legendre polynomials.
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1. INTRODUCTION

The thermal Yarkovsky–O’Keefe–Radzievski–Paddack
(YORP) torque on an object is

τ = −2

3

εt σ

vc

∫
S

dS(r × n)T 4
s , (1)

where εt is the object’s material emissivity in thermal wave-
lengths (assumed here to be constant over the surface), vc =
2.997, 92458 × 108 m s−1 is the speed of light, σ = 5.6704 ×
10−8 W m−2 K−4 is the Stefan–Boltzmann constant, and Ts
is the surface temperature. Vector n is a unit vector pointing
from the surface element dS in the normal direction. Vector
r connects an arbitrary point in the object, to be conveniently
chosen to coincide with its center of mass (COM), to the surface
element dS.

The two important components of the YORP torque are
τs = τz, where τz is the z component of vector τ in the body
frame, and

τε = 1

sin ε
[(τ · s) cos ε − τ · o], (2)

where s = (0, 0, 1)T is a unit spin vector assumed here to be
aligned with the z axis in the body frame, o is a unit vector normal
to the orbital plane and the index T denotes the transposed matrix
(Rubincam 2000; Vokrouhlický & Čapek 2002). Assuming the
principal axis rotation, these two torque components control
the behavior of the rotation speed, ω > 0, and obliquity, ε,
according to dω/dt = τ̄s/C, dε/dt = τ̄ε/Cω (C denotes the
principal moment of inertia; Rubincam 2000).

We limit the analysis in this paper to the Keplerian orbital
motion of a small body around the Sun and its rotation around the
axis of maximum inertia. To calculate the mean YORP torque,
which controls the long-term behavior of the spin vector, we

average τ over the spin and orbit periods of the small object.
The mean YORP torques, τ̄s and τ̄ε , are defined as

τ̄s = 1

(2π )2

∫ 2π

0

∫ 2π

0
τs dφ0 dλ, (3)

τ̄ε = 1

(2π )2

∫ 2π

0

∫ 2π

0
τε dφ0 dλ, (4)

where φ0 is the body’s rotation angle and λ is the mean orbital
longitude of the small body presumed here to be orbiting around
the Sun in a fixed circular orbit.3

Nesvorný & Vokrouhlický (2007; hereafter NV07) developed
an analytic theory for τ̄s .4 Here we focus on calculating τ̄ε . As
in NV07, we assume that the studied object has a near-spherical
shape. This approximation allows us to conduct all calculations
analytically.

Our approach to calculating YORP torques differs in several
aspects from that recently developed by Scheeres (2007; here-
after S07). In S07, the surface of the small body was defined
by small triangular facets. This representation can account for

3 The results can be generalized to an eccentric orbit using the method
described in Section 6 of Nesvorný & Vokrouhlický (2007).
4 Slawek Breiter alerted us to an error in Equation (B35) in NV07. This error
stems from incorrect coefficients in Equations (B32) and (B33). The correct
expressions for Equations (B32), (B33), and (B35) in NV07 are

∆(n)
k,0(α2) = (n − k)!

n!
P k

n (cos α2),

∆(n)
0,j (α2) = (−1)j

n!

(n + j )!
P j

n (cos α2),

and

J
(0)
n,j = K

(0)
n,0D

(n)
0,j

(π

2
,
π

2
,
π

2

)
= (−1)j

√
(n − j )!

(n + j )!
K

(0)
n,0P

j
n (0).

The error does not effect the rest of Appendix B3 in NV07.
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more general surface shapes than those considered here (see
Section 2.2). In S07, each triangular facet was treated indepen-
dently and the total radiation torque was obtained as the sum
over all, typically ∼103 to ∼106 surface facets. This is conve-
nient for a precise calculation of torques in a computer code. In
NV07 and the present paper, we aimed at developing a theory in
which the YORP torques are more tightly linked to the overall
shape. This was achieved by representing the surface as series in
spherical harmonics and giving analytic solutions to integrals in
Equations (1), (3), and (4). The resulting expressions for the
YORP torques are given as series in shape coefficients with ex-
plicit dependence of each appearing term on ε. This provides an
important framework for our understanding of the YORP effect.
Our method, however, cannot be used to precisely determine
the YORP torques for elongated and/or highly-irregular bodies.
Therefore, S07 and our methods are complementary.

In Section 2, we introduce several reference frames that are
useful in developing the theory and use spherical harmonics
to define the surface shape. In Section 3, we deal with the
case where it is assumed that the surface thermal conductivity
K = 0. The surface temperature in Equation (1) is then set by
the instantaneous balance of absorbed and emitted energy fluxes
which helps us to simplify calculations. General properties of
τ̄ε for K = 0 are discussed in Section 4. In Section 5, we
extend the results to the case with K �= 0. We do so by using
a linearized heat transport equation which allows us to describe
the heat conducted within the object’s interior and its delayed
re-emission in thermal wavelengths. We derive an approximate
expression for τ̄ε as a function of K . In Section 6, we apply the
theory to the asteroids 1998 KY26 and (66391) 1999 KW4.

2. PRELIMINARIES

2.1. Reference Frames

To determine τ̄ε we use several reference frames all with the
origin at the center of mass of the small object (NV07). The
body frame, Oxyz, has the z axis fixed along the spin axis of
the body (assumed here to be aligned with the axis of maximum
inertia) and the x axis along its axis of minimum inertia. The
colatitude and longitude in the body frame are denoted by θ and
φ. The rotating orbital frame, Ox ′y ′z′, has the z′ axis pointing
toward the normal of the orbital plane and the x ′ axis toward
the Sun. The transformation of a vector from the rotating orbital
frame to the body frame is given by

V = R3(α3)R1(α2)R3(α1)V ′ (5)

with Euler angles α1 = −λ, α2 = ε, and α3 = φ0, where
φ0 = ωt denotes the phase angle of the body’s rotation with
respect to the inertial frame and ω is the angular frequency
of rotation, ε is the obliquity, and λ is the mean longitude of
the Sun. The symbols R1 and R3 in Equation (5) are the usual
rotation matrices that represent the rotation of the reference
system around the (generic) x and z axes, respectively. The
colatitude and longitude in the rotating orbital frame are denoted
by θ ′ and φ′.

Our third reference system is the frame with the z axis
pointing toward the Sun and the x axis pointing toward the
normal of the orbital frame. We call this reference system the
solar frame. This frame rotates in an inertial system with angular
speed given by the orbital motion of the small body around
the Sun. The solar and rotating orbit frames are related via a
sequence of three rotations by π/2 around the z, x, and z axes.

The transformation of vector V from the solar frame to the
rotating orbital frame is therefore

V ′ = R3(α3)R1(α2)R3(α1)V ′′, (6)

with Euler angles α1 = α2 = α3 = π/2.

2.2. Surface Shape

As in NV07, we use spherical harmonics Y k
n to define the

surface shape. This surface representation is appropriate for all
shapes except those for which radial ray (θ, φ) can intersect the
surface in more than one point. In general, the radial distance of
the surface element dS from an arbitrary point inside the body
can be given by

r(θ, φ) =
∑
n�0

n∑
k=−n

an,kY
k
n (θ, φ), (7)

where
Y k

n (θ, φ) = κn,kP
k
n (cos θ ) eιkφ (8)

and

κn,k =
√

2n + 1

4π

(n − k)!

(n + k)!
. (9)

Here, P k
n are the associated Legendre functions of order n and

degree k, ι = √−1 and an,−k = (−1)ka∗
n,k , where the asterisk

denotes the complex conjugate.
In the following, we will denote r0 = a0,0/

√
4π and assume

that all coefficients An,k = an,k/r0 with n � 0 are small.
Specifically, we will assume that ε = max(An,k)n�1 � 1,
where ε is a small parameter of the problem. This means that
we limit the variety of shapes to those that can be obtained
by small deformations of a sphere. Let r = r0(1 + εR)
where εR = ∑

n�1

∑
k An,kY

k
n (θ, φ) describes the deviation

of the shape from a simple sphere. The derivatives of R with
respect to angular variables will be denoted Rφ = ∂R/∂φ and
Rθ = ∂R/∂θ .

3. THEORY FOR K = 0

For K = 0 the surface temperature of an illuminated surface
element can be calculated by equaling the absorbed and emitted
energy fluxes: εtσT 4

s = (1 − A)Φ(n · n0), where A is the
albedo (assumed here to be constant over the surface) and Φ
is the solar flux at the orbital location of the object. Specifically,
Φ = Φ1AUh−2, where Φ1AU = 1378 W m−2 is the solar flux at
distance 1 AU from the Sun and h is the heliocentric distance
of the object in AU. Vector n0 is the unit vector pointing from
surface element dS toward the Sun. The thermal YORP torque
(Equation (1)) on an object with K = 0 is then

τ = −2

3

(1 − A)

vc

Φ
∫

S

dS(r × n)(n · n0), (10)

where the above integral is taken over the illuminated part of
the surface.

The expression for torque τε in Equation (2) has two parts. The
first part (τ · s) cos ε = τs cos ε, where τs has been calculated in
NV07. The second part, τ · o, can be most easily evaluated in
the rotating orbital frame where τ · o = τ ′

z, with τ ′
z being the z

component of the torque in the rotating orbital frame. We have

τ ′
z � −α

∫
Ω′

dΩ′

sin θ ′ (r ′ × N ′)zI1(θ ′, φ′), (11)
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where α = 2Φ(1−A)/(3vc), dΩ′ = sin θ ′dθ ′dφ′, N ′ = t ′
θ × t ′

φ ,
and t ′

θ = ∂ r ′/∂θ ′, and t ′
φ = ∂ r ′/∂φ′ are tangential vectors. The

integration over solid angle Ω′ now goes over 4π . The index z
denotes the z component of the vectorial product in the rotating
orbital frame.

The function I1 in (11) is the first-order correction in ε of the
insolation function of an ideal sphere. We neglect the insolation
term of order zero in ε (I0; corresponding to the insolation of an
ideal sphere) because it does not contribute to the YORP torque
(NV07).5 We also neglect insolation terms O(ε2) because their
contribution to τ̄ε is small for small shape deformations.

The term I1 in Equation (11) can be written in spherical
coordinates in the rotating orbital frame. From NV07 we have

I1 =
∑
n�0

n∑
k=−n

J
(1)
n,kY

k
n (θ ′, φ′), (12)

where

J
(1)
n,k =

n∑
l=−n

K
(1)
n,lD

(n)
l,k

(π

2
,
π

2
,
π

2

)
(13)

and

K
(1)
n,l = 1

r0

∑
m�max(1,|l|)

L(l)
n,ma

(S)
m,l . (14)

Above, D
(n)
l,k are the Wigner matrices, L(l)

n,m are real coefficients

and a
(S)
m,l are the shape coefficients in the solar frame. See NV07

for the definition of these parameters. Specifically, the shape
coefficients in the solar frame, a

(S)
m,l , are related to the original

shape coefficients in the body frame, an,k (Equation (7)), via

a
(S)
m,l =

m∑
p=−m

D
(m)
p,l

(
−π

2
,−π

2
,−π

2

)

×
m∑

q=−m

am,qD
(m)
q,p(−φ0,−ε, λ), (15)

where we used the transformation rules for spherical harmonics
to transform (7) from the body frame to the solar frame (e.g.,
Giacaglia 1980; Šidlichovský 1983). Similarly, the shape in the
rotating orbital frame is defined by

r ′(θ ′, φ′) = r0(1 + εR′) =
∑
n�0

n∑
k=−n

a
(O)
n,kY

k
n (θ ′, φ′), (16)

where the coefficients a
(O)
n,k can be determined from the original

ones, an,k (Equation (7)), using

a
(O)
n,k =

n∑
j=−n

an,jD
(n)
j,k(−φ0,−ε, λ). (17)

Retaining only the lowest-order terms in ε we obtain

(r ′ × N ′)z ≈ −εr3
0 R′

φ′ sin θ ′, (18)

5 A formal analytical proof of this statement can be obtained up to O(ε2) in
τ̄ε . See NV07, Sections 4.1 and 4.2, for a similar proof for τ̄s . We checked
numerically that it holds to any order in ε. Here we concentrate on the main
contribution of insolation to τ̄ε , which is provided by I1.

where

εr0R
′
φ′ = εr0

∂R′

∂φ′ =
∑
n�1

n∑
k=−n

ιka
(O)
n,kY

k
n (θ ′, φ′). (19)

We substitute (12), (18), and (19) into Equation (11) and use the
orthogonality properties of spherical harmonics to calculate the
integral in Equation (11) over Ω′. The resulting expression is

τ ′
z = − αr2

0

∑
n�1

n∑
k=−n

ιka
(O)∗
n,k J

(1)
n,k

= 2αr2
0

∑
n�1

n∑
k=1

k
(
a

(O)∗
n,k J

(1)
n,k

)
, (20)

where 
(·) denotes the imaginary part. We used J
(1)
n,−k =

(−1)kJ (1)∗
n,k above which holds because I1 in Equation (12) must

be real.
In the next step, we substitute Equations (13) and (14) into

Equation (20) to obtain

τ ′
z = 2αr0

∑
n�1

n∑
k=−n

n∑
l=−n

∑
m�max(1,|l|)

kD
(n)
l,k

(π

2
,
π

2
,
π

2

)

× L(l)
n,m
(

a
(O)∗
n,k a

(S)
m,l

)
. (21)

This last expression needs to be averaged over λ and φ0 as in
Equation (4). The part of Equation (21) that depends on λ and
φ0 is a

(O)∗
n,k a

(S)
m,l , where these shape coefficients in the rotating

orbital and solar frames were determined in Equations (15) and
(17). The Wigner matrices in Equations (15) and (17) can be
written as

D
(n)
j,k(−φ0,−ε, λ) = d

(n)
j,k∆(n)

j,k(−ε) eι[k(λ+π/2)−j (φ0+π/2)], (22)

where

d
(n)
j,k = (n − k)!

(n − j )!

κn,j

κn,k

(23)

and ∆(n)
j,k(−ε) are real functions of obliquity defined in

NV07. Moreover, the coefficients D
(m)
p,l (−π/2,−π/2,−π/2) in

Equation (15) are also real.
Let 〈·〉 denote the average over λ and φ0. Assuming that no

spin–orbit resonances exist, we find that〈
a

(O)∗
n,k a

(S)
m,l

〉 = D
(m)
k,l

(
−π

2
,−π

2
,−π

2

)

×
min(n,m)∑

j=− min(n,m)

d
(n)
j,kd

(m)
j,k ∆(n)

j,k(ε)∆(m)
j,k (ε)a∗

n,j am,j .

(24)

The mean z-component of the torque in the rotating orbital
frame is, therefore,

τ̄ ′
z = 2αr0

∑
n�1

∑
m�1

min(n,m)∑
k=− min(n,m)

kS
(n,m)
k (ε)
(a∗

n,kam,k), (25)

where

S
(n,m)
k (ε) =

min(n,m)∑
j=− min(n,m)

∆(n)
k,j (ε)∆(m)

k,j (ε)R(n,m)
k,j (26)
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where the real coefficients R
(n,m)
k,j can be determined from the

above expressions. Furthermore, the sums in Equation (25) can
be reduced to sums with k � 1 and m > n. We find that

τ̄ ′
z = αr0

∑
n�1

(+2)∑
m�n+2

n∑
k=1

V
(n,m)
k (ε)
(a∗

n,kam,k), (27)

where the sum over m goes in increments of two due to parity
properties of L(l)

n,m in Equation (14). The new functions V
(n,m)
k

are

1

2k
V

(n,m)
k (ε) = S

(n,m)
k (ε)−S

(n,m)
−k (ε)−S

(m,n)
k (ε)+S

(m,n)
−k (ε). (28)

Equation (27) has the same functional form as Equation (44)
in NV07 for τ̄s . These two equations have to be combined
according to Equation (2) to yield the final expression for τ̄ε :

τ̄ε = αr0

∑
n�1

(+2)∑
m�n+2

n∑
k=1

W
(n,m)
k (ε)
(a∗

n,kam,k), (29)

where the functions W
(n,m)
k (ε) can be expressed as polynomials

of cos ε and sin ε. Specifically, we find that

W
(n,m)
k (ε) = sin ε

(n+m)/2∑
l=1

Cl(cos ε)2l−1, (30)

where we do not explicitly denote the dependence of coefficients
Cl on n, m, and k. We used the Wolfram Mathematica program
to tabulate coefficients Cl . Their numerical values for m � 7
are given in Table 1.6

The series in Equation (30) does not have good convergence
properties for large n and/or m. An alternative representation of
W

(n,m)
k (ε) with better convergence properties can be obtained.

This representation uses series in the Legendre polynomials.
Specifically, we find that

W
(n,m)
k (ε) = sin ε

(n+m)/2∑
l=1

AlP2l−1(cos ε). (31)

The leading term in this series is ∝sin εPm−n−1(cos ε).
For completeness we also give the corresponding expression

for τ̄s . From Equation (44) in NV07 we have that

τ̄s = αr0

∑
n�1

(+2)∑
m�n+2

n∑
k=1

T
(n,m)
k (ε)
(a∗

n,kam,k). (32)

The new representation of T
(n,m)
k (ε) in series of Legendre

polynomials is

T
(n,m)
k (ε) =

(n+m)/2∑
l=l0

BlP2l(cos ε), (33)

where l0 = y ≡ (m−n)/2 is the YORP order defined in NV07.
The coefficients Bl tend to zero with increasing l. Therefore, the
leading term in this series is ∝Pm−n(cos ε).

6 A more complete version of this table can be found at
http://www.boulder.swri.edu/∼davidn/yorp_teps.txt.

Table 1
The Numerical Values of Coefficients Cl , as Defined by Equation (30), for

m � 7

n m k C1 C2 C3 C4 C5 C6

1 3 1 0.767 0.548
1 5 1 −0.361 −0.266 1.996
1 7 1 0.249 0.185 − 5.746 6.862
2 4 1 0.973 0.691 1.099
2 4 2 1.798 1.288 −0.777
2 6 1 −0.330 −0.242 −1.410 5.075
2 6 2 −0.795 −0.587 6.951 −4.012
3 5 1 1.335 0.950 −0.475 2.626
3 5 2 2.319 1.650 3.132 −2.511
3 5 3 3.004 2.155 −2.849 0.942
3 7 1 −0.484 −0.356 4.180 −11.868 13.729
3 7 2 −0.775 −0.569 −4.413 23.476 −14.179
3 7 3 −1.270 −0.938 15.938 −18.262 6.140
4 6 1 1.606 1.140 2.381 −5.819 6.980
4 6 2 3.067 2.183 −1.957 11.717 −7.804
4 6 3 3.924 2.796 6.289 −10.906 4.171
4 6 4 4.342 3.120 −6.702 4.494 −1.077
5 7 1 1.932 1.373 −1.378 14.773 −28.309 19.898
5 7 2 3.650 2.595 6.193 −24.467 46.703 −24.563
5 7 3 5.100 3.634 −4.889 32.942 −43.061 15.954
5 7 4 5.728 4.088 10.795 −29.734 23.075 −6.047
5 7 5 5.787 4.163 −12.812 13.038 −6.277 1.195

(This table is available in its entirety in machine-readable and Virtual
Observatory (VO) forms in the online journal. A portion is shown here
for guidance regarding its form and content.)

Table 2
The Functional Dependence of τ̄ε and τ̄s on Obliquity ε for Different YORP

Orders, y, and the Roots of P2y (cos ε) for ε < 90◦.

y τ̄ε/ sin ε τ̄s Roots of P2y (cos ε)

1 P1(cos ε) P2(cos ε) 54.7◦
2 P3(cos ε) P4(cos ε) 30.5◦, 70.1◦
3 P5(cos ε) P6(cos ε) 21.2◦, 48.6◦, 76.2◦
4 P7(cos ε) P8(cos ε) 16.2◦, 37.2◦, 58.3◦, 79.4◦
5 P9(cos ε) P10(cos ε) 13.1◦, 30.1◦, 47.2◦, 64.3◦, 81.4◦

Note. These roots control the obliquity values of generalized
Slivan states.

4. GENERAL PROPERTIES OF τ̄ε FOR K = 0

W
(n,m)
k (ε) = 0 for ε = 0◦, 90◦, and 180◦ producing

roots of τ̄ε at the respective values of obliquity. Moreover,
τ̄ε(ε) = −τ̄ε(π − ε) because of the functional form of W

(n,m)
k (ε)

in Equation (30). Adopting the classification scheme of NV07,
τ̄ε > 0 for 0◦ < ε < 90◦ and τ̄ε < 0 for 90◦ < ε < 180◦
for Class-1 shape terms with m = n + 2 (Figure 1(a)). Class-2
shape terms with m = n+2 show opposite signs in the respective
intervals (Figure 1(b)). According to Equation (30), the Class-1
behavior of shape deformations with m = n+ 2 (YORP order 1;
NV07) occurs when 
(a∗

n,kam,k) > 0 and the Class-1 behavior
occurs when 
(a∗

n,kam,k) < 0.
To describe the behavior of YORP torques produced by

deformation terms with m > n + 2, NV07 defined the YORP
order of a deformation as y = (m − n)/2. Figure 2 illustrates
the behavior of the Class-1 dependence of τ̄ε on obliquity for
y = 2 (panel (a)) and y = 3 (panel (b)). Table 2 summarizes
the functional dependence of τ̄ε and τ̄s on obliquity according
to Equations (31) and (33).

http://www.boulder.swri.edu/~davidn/yorp_teps.txt
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Figure 1. The two classes of YORP torques: (a) example of Class 1; (b) example
of Class 2. The torque component τ̄ε is denoted by the thick line. The component
τ̄s , denoted by the thin line, was taken from NV07. These examples correspond
to a spheroidal body with radius r0 = 100 m orbiting around the Sun at distance
2.5 AU. The symbol C on the ordinate denotes the principal moment of inertia
of the object which we calculated assuming constant density ρ = 2.5 g cm−2.
We opted for a simple choice of shape coefficients. In both (a) and (b), we set all
an,k = 0 except for a2,0 = −10 m to deform the sphere into a slightly oblate,
axially symmetric object, and a3,2 �= 0 and a5,2 �= 0. In (a), we used a3,2 =
10 m and a5,2 = 10ι m, therefore generating a shape that leads to the Class-1
torques. In (b), we used a3,2 = 10 m and a5,2 = −10ι m, producing the Class-2
torques.

The main characteristic of Class-1 τ̄ε(ε) is that τ̄ε > 0 is
positive in an interval 0 < ε < ε0, where the value of ε0
diminishes with increasing y (cf. Figures 1, 2(a) and (b)). Also,
Class 1 has τ̄ε < 0 in an interval near ε = π . The Class-2
torques show opposite signs of τ̄ε in the respective intervals. The
asymptotic states of ε produced by y = 1 deformation terms are
ε = 90◦ in Class 1, and ε = 0◦ and 180◦ in Class 2. Interestingly,
all these asymptotic states correspond to τ̄s < 0. Therefore, the
theoretically expected end-state of the YORP-induced evolution
is a very slow object’s rotation (Vokrouhlický & Čapek 2002;
Čapek & Vokrouhlický 2004).7 The non-principal axis rotation
can be triggered in such a situation (Vokrouhlický et al. 2007).

The new form of the dependence of torques on ε in
Equations (31) and (33) gives a clear meaning to YORP order y.
Specifically, torques τ̄ε and τ̄s for order y are ∝ sin εP2y−1(cos ε)
and ∝ P2y(cos ε), respectively. As discussed in NV07, the roots
of τ̄s(ε) for y = 1 produce the so-called Slivan states, which
arise as evolutionary end states of the asteroid spin vectors
(Slivan 2002; Vokrouhlický et al. 2003). They correspond to the
equilibrium points of spin-governing equations where the gravi-
tational and YORP torques balance each other. Here we find that

7 For K �= 0 and/or objects for which different deformation terms set the
behavior of τ̄ε and τ̄s , the end-state corresponding to the object’s rotational
spin-up may arise.

Figure 2. The illustration of Class-1 torques for YORP orders y = 2 (panel
(a)) and y = 3 (panel (b)). The physical parameters and axes are the same as in
Figure 1. The torque component τ̄ε is denoted by the thick line. The component
τ̄s , denoted by the thin line, was taken from NV07. In (a), we used a3,2 =
10 m and a7,2 = 10ι m. In (b), we used a3,2 = 10 m and a9,2 = 10ι m. All other
shape coefficients were set to zero except a2,0 = −10 m to deform the radius
r0 = 100 m sphere into a slightly oblate object.

the obliquity value of the Slivan state is given by P2(cos ε) = 0
with solution ε ≈ 54.7◦.

Generalized Slivan states can occur for asteroid shapes
controlled by terms with y � 2. In these states, the obliquity
will tend to values given by the solutions of P2y(cos ε) = 0. The
roots of P2y(cos ε) for y � 5 are listed in Table 2. We suggest
that an important fraction of main belt asteroids may have spin
states that are near (and oscillate around) these obliquity values.

For K = 0, a rough classification of asteroids can be achieved
according to their YORP order and Class. For example, three of
the four objects studied in Čapek & Vokrouhlický (2004) appear
to have YORP order 1, namely 1998 KY26 (Class 1), 433 Eros
(Class 1), and 243 Ida (Class 2). The fourth object studied in
Čapek and Vokrouhlický, 6489 Golevka, has τ̄ε of YORP order
2 and Class 2, and τ̄s that appears to have contributions from
YORP orders 1 and 2. Similarly, asteroids studied in S07 show
characteristics of different YORP orders and classes (e.g., 4179
Toutatis appears to have YORP order 3 and Class 2 for K = 0).

5. EXTENSION TO K �= 0

5.1. Heat Transport Model

To determine τ̄ε for K �= 0 we must first compute the surface
temperature which appears in Equation (1). To simplify the
procedure, we will assume that certain conditions are met such
that the main effects of K �= 0 on torques arise from the
heat transport along the surface normal into the body’s interior
and will neglect the heat exchange between neighbor surface
elements. The heat conduction for different surface elements
dS can then be treated independently. The differential equation
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that describes the heat diffusion inside the object along normal
n to surface element dS is

ρcP

∂T

∂t
= K

∂2T

∂ζ 2
, (34)

where ρ is the density, cP is the specific heat capacity, and ζ � 0
measures the depth along n. We assume (and show later in this
section) that the insolation of the surface element dS can be
expanded in Fourier series in φ0 = ωt . Let

F (t) = (1 − A)Φ
∑

k

Fk exp(ιkφ0), (35)

with F−k = F ∗
k , be the absorbed energy flux by dS. The

coefficients Fk are periodic functions of λ because the insolation
of dS periodically changes during the object’s orbital motion
around the Sun. We solve the heat conduction Equation (34)
for λ = const. This means that we neglect thermal effects in
Equation (34) produced by annually varying insolation because
these effects should be small compared to the (diurnal) ones
produced due to the object’s rotation.

The boundary conditions for T (t, ζ ) are set by the following
equations:

εtσT 4(t, 0) + K

(
∂T

∂ζ

)
ζ=0

= F (t), (36)

T (t,−∞) = const. (37)

These boundary conditions assure that (i) F (t) is appropri-
ately distributed between the flux radiated from dS in ther-
mal wavelengths (the first term on the left-hand side of
Equation (36)) and the heat conducted into the interior of the
object (the second term in Equation (36)), and (ii) the temper-
ature is constant at large depth. In addition, given the form of
F (t) in Equation (35), we assume that T is periodic in time.

We assume in the following that T = T0 + ∆T with constant
T0 = [((1−A)ΦF0)/εtσ ]1/4 and ∆T � T0 defining the periodic
temperature changes that arise from varying insolation during
the object’s rotation. Equations (34) and (36) can then be
linearized to yield

∂∆T

∂t
= χ

∂2∆T

∂ζ 2
, (38)

4εtσT 3
0 ∆Ts + K

(
∂T

∂ζ

)
ζ=0

= (1 − A)Φ
∑
k �=0

Fk exp(ιkφ0),

(39)

where we denoted ∆Ts = ∆T (t, 0) and χ = K/ρcP . The solu-
tion of Equations (38) and (39) can be obtained by separating
the functional dependence on spatial and time variables, and by
treating individual Fourier terms in φ0 independently. Specifi-
cally, we write

∆T (t, ζ ) =
∑

k

ak(ζ ) exp(ıkφ0), (40)

and determine the amplitudes ak(ζ ) from the decoupled linear
equations resulting from Equation (38). This leads to (see, e.g.,
Bertotti et al. 2003)

ak(ζ ) = bk exp

(
(1 + ı)

√
|k|ω
2χ

ζ

)
, (41)

where the coefficients bk can be obtained from Equation (39).
The surface temperature is then

∆Ts(t) = (1 − A)Φ
4εtσT 3

0

∑
k �=0

FkΨk eι(kφ0−∆φk ) (42)

and

∆φk = sgn(k) arctan
Θk

1 + Θk

, (43)

Ψk = (
1 + 2Θk + 2Θ2

k

)− 1
2 , (44)

Θk = ρcP

4εtσT 3
0

√
|k|χω

2
. (45)

The thermal parameter Θ1 is the ratio of the thermal relaxation
time, required for the accumulation of the absorbed energy and
its re-emission, to the rotation period (Farinella et al. 1998). The
parameter ∆φk is the phase lag produced by delayed emission
of photons. Note that ∆φk is larger for larger k (i.e., for larger
frequencies) but |∆φk| < 45◦ for any k in the linearized theory,
as can be seen from Equation (43). With formal definition
∆φ0 = 0 and Ψ0 = 1 we end up obtaining

T 4
s � T 4

0 + 4T 3
0 ∆Ts

= (1 − A)Φ
εtσ

∑
k

FkΨk eι(kφ0−∆φk ), (46)

where the sum over k now also includes terms with k = 0. The
term T 4

s should be inserted into Equation (1).
The remaining piece of calculation, anticipated by

Equation (35), is to show that the insolation of the surface
element dS can be expanded in Fourier series in φ0. Using
expressions derived in Appendix B3 of NV07, we find that the
absorbed flux can be written as

F (t) � (1 − A)Φ(I0 + I1)

= (1 − A)Φ
∑
n�0

n∑
k=−n

Y k
n (θ, φ)

∑
q

f
(n)
k,q eι(k−q)φ0 ,

(47)

where I0 and I1 are the insolation terms of order zero and one in
the small deformation parameter ε, respectively. We neglected
terms O(ε2) in the above equation. The explicit expression
for f

(n)
k,q = f

(n)
k,q (λ; ε) are given in Appendix B3 in NV07.

Equation (47) is the required Fourier expansion.

5.2. Torques for K �= 0

Let us now return to the case considered in Section 3,
where we assumed that K = 0. This will be helpful to
appreciate the effect of K on different torque components. With
Equation (47) and K = 0, the expression for the torque
(Equation (1)) averaged over φ0 retains only the terms with
q = k. Therefore, we find for K = 0 that

〈τ 〉φ0 = −α
∑
n�0

n∑
k=−n

f
(n)
k,k

∫
S

dS(r × n)Y k
n (θ, φ). (48)

In NV07, we additionally averaged 〈τ 〉φ0 over λ and found an
explicit expression for τ̄s (= τ̄z) in the K = 0 case.
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Now we compare Equation (48) with the torque produced
with K �= 0. Combining Equations (46) and (47) the tempera-
ture term in Equation (1) becomes

T 4
s = (1 − A)Φ

εtσ

∑
n�0

n∑
k=−n

Y k
n (θ, φ)

×
∑

q

f
(n)
k,q Ψk−q eι[(k−q)φ0−∆φk−q ]. (49)

We insert this expression into Equation (1) and find that

τ = − α
∑
n�0

n∑
k=−n

∑
q

f
(n)
k,q

×
∫

S

dS(r × n)Y k
n (θ, φ)Ψk−q eι[(k−q)φ0−∆φk−q ]. (50)

When averaged over φ0, the above expression retains only the
terms with q = k and we recover the original functional form
of the torque in the case with K = 0 (Equation (48)). This
shows that τ̄s is insensitive to the object’s thermal conductivity
properties, as was previously demonstrated numerically in
Čapek & Vokrouhlický (2004) and using a different, but general
approach in S07.

This result can be also explained by the following intuitive
argument. Consider the thermal emission from the surface
element dS which is heated by sunlight. With K = 0, the peak
of thermal emission occurs when the Sun is seen highest above
the horizon of dS (i.e., at local noon). With K �= 0, the peak
emission will be delayed by ∆t . This time lag will lead to the
situation where the temperature of dS peaks sometime in the
afternoon. The thermal photon emission from dS will therefore
be also delayed. Note, however, that the direction of photon
emission from dS with respect to the body frame is fixed and
independent of ∆t . Moreover, the total energy emitted from dS
over one rotation period is equal to the total absorbed energy by
dS and is therefore also independent of K . This shows that τs ,
when averaged over the rotation period, is independent of K , as
we rigorously demonstrated above (unless important shadowing
effects occur).

We now examine the effects of K on τε . Equation (2) can be
written as

τε = − 1

sin ε
(τxox + τyoy), (51)

where τx, τy and ox, oy are the components of the torque
and orbit vectors in the body frame, respectively. We find
that (ox, oy) = sin ε(sin φ0, cos φ0). Using complex notation
τw = τx + ιτy , the obliquity component of the YORP torque
becomes

τε = −
(τw eιφ0 ). (52)

Before dealing with K �= 0 we first consider the case with
K = 0 because the procedure used here differs from that
used in Section 3. Specifically, we perform calculations in the
body frame here, while we used the rotating orbital frame in
Section 3. With K = 0, the averaging over φ0 results in

〈τw eιφ0〉φ0 = −α
∑
n�0

n∑
k=−n

f
(n)
k,k+1

∫
S

dS(r ×n)wY k
n (θ, φ), (53)

where

(r × n)w = r3
0 eιφ(Rφ cos θ − ιRθ sin φ). (54)

In Section 3, we additionally averaged the torque over λ and
found a closed expression for τ̄ε (Equation (29)).

Returning now to the K �= 0 case, we find from
Equation (50) that

τw eιφ0 = − α
∑
n�0

n∑
k=−n

∑
q

f
(n)
k,q

×
∫

S

dS(r × n)wY k
n (θ, φ)Ψk−q eι[(k−q+1)φ0−∆φk−q ].

(55)

Averaging this over φ0, we find that the expression retains only
the terms with q = k + 1:

〈τw eιφ0〉φ0 = −α
∑
n�0

n∑
k=−n

f
(n)
k,k+1

∫
S

dS(r × n)wY k
n (θ, φ) Ψ eι∆φ,

(56)
where we denoted Ψ = Ψ1 = Ψ−1 and ∆φ = ∆φ1 = −∆φ−1.

We assume in the following that T0 = Teff = const., where
Teff is an effective temperature of a spherical body. Specifically,
we set Teff = [((1 − A)Φ)/εtσ ]1/4 (see, e.g., Vokrouhlický
1998). The term Ψ exp(ι∆φ) can then be moved out of the
integral. We end up with

〈τw eιφ0〉φ0 � −αΨ eι∆φ
∑
n�0

n∑
k=−n

f
(n)
k,k+1

∫
S

dS(r × n)wY k
n (θ, φ).

(57)
Comparing this to Equation (53), we see that the resulting
expression for K �= 0 is the same as the original expression for
τε with K = 0 except for the multiplication factor Ψ exp(ι∆φ)
that reduces the torque’s strength because Ψ < 1. Unlike
τ̄s , the torque τ̄ε therefore depends on thermal conductivity
which explains the finding of Čapek & Vokrouhlický (2004).
Equation (29), modified to include cases with K �= 0, reads

τ̄ε = αr0Ψ
∑
n�1

(+2)∑
m�n+2

n∑
k=1

W
(n,m)
k (ε)

× [
(a∗
n,kam,k) cos ∆φ + �(a∗

n,kam,k) sin ∆φ], (58)

where Wk , ∆φ = ∆φ1, and Ψ = Ψ1 were defined by
Equations (30), (43), and (44), respectively. Note that the magni-
tude of the term Ψ drops with increasing K , therefore producing
smaller τ̄ε for larger thermal conductivities. Equation (58) is re-
lated to Equation (148) in S07. In fact, it can be inferred from
the analysis in S07 that the contribution of �(a∗

n,kam,k) can have
a very significant effect for K �= 0. We will illustrate this in
more detail in Section 6.

Equation (58) shows how τ̄ε scales with various physical and
dynamical parameters such as the surface thermal conductivity
K and spin rate ω. For example, Ψ ∝ 1 − Θ1 and ∆φ ≈ 0
for Θ1 � 1, where Θ1 ∝ √

Kω is defined in Equation (45).
Therefore, we find for small Θ1 that τ̄ε should nearly linearly
diminish with increasing

√
Kω. For Θ1 � 1, on the other hand,

Ψ ∝ 1/
√

Kω and ∆φ ≈ π/4. This shows that 
(a∗
n,kam,k) and

�(a∗
n,kam,k) will have the same weight in τ̄ε for large values

of Kω.

6. APPLICATION TO ASTEROIDS

The analytic theory of the YORP effect that we developed in
Sections 3 and 5 can be applied to natural and artificial objects
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Figure 3. Thermal torques τ̄ε and τ̄s for 1998 KY26 that we determined from
our analytic model (solid lines) and the exact numerical solution (dashed lines;
from Čapek & Vokrouhlický 2004). Both methods used K = 0. The torque
τ̄ε is the sinusoidal-shaped curve characteristic for the YORP order 1/Class 1
deformation (compare to Figure 1(a)). The symbol C on the ordinate denotes the
principal moment of inertia of 1998 KY26 that we calculated assuming constant
density, ρ = 2.8 g cm−3. We used a = 1.23 AU for the semimajor axis of 1998
KY26.

with near-spherical shapes. As an example, we discuss here
results for asteroids 1998 KY26 and (66391) 1999 KW4.

6.1. 1998 KY26

We used the shape model of 1998 KY26 currently available
on the PDS node (Ostro et al. 1999). This shape model consists
of 2048 vertices that define 4092 flat surface triangles. We
slightly shifted and rotated the original reference frame so that
the origin almost exactly coincides with the center of mass
(assuming constant density) and the z axis is nearly identical
to the axis of maximum inertia of 1998 KY26. Next, we used
an interpolation routine to obtain r(θ, φ) for any θ and φ and
determined coefficients an,k via numerical quadratures as in
NV07.

The thermal YORP torque, τ̄ε , on 1998 KY26 was calculated
via three different methods: (1) a numerical method that uses the
original polyhedral model and accounts for mutual shadowing of
surface elements (Čapek & Vokrouhlický 2004); (2) a numerical
method that uses the representation of shape in spherical
harmonics expansion and ignores shadowing; (3) our analytic
method that uses Equation (58). The results of methods (1) and
(3) for K = 0 are shown in Figure 3. In general, there exists
excellent agreement among all three methods.

According to Figure 3, the asteroid 1998 KY26 is clearly a
Class-1 object controlled by first-order YORP deformations (see
Section 4 and NV07 for a definition of the YORP torque). This
result can be also directly inferred from the criterion discussed
in NV07, because the leading term in Equation (29), 
(a∗

5,5a7,5),
is positive (4.5 × 10−8 km2; see Table 2 in NV07). Therefore, it
is indeed expected that the shape of 1998 KY26 should produce
a Class-1 YORP torque. For reference, the leading negative term
is 
(a∗

5,4a7,4) = −1.6 × 10−8 km2, about a factor of 3 smaller
in magnitude than 
(a∗

5,5a7,5).
We used the method described in Section 5 to calculate τ̄ε(ε)

for K �= 0. In Figure 4 we plot the results for K = 10−9,
10−8, 10−7, . . . , 0.1, 1, and 10 W m−1 K−1. This figure can be
compared to Figure 3 in Čapek & Vokrouhlický (2004), where
τ̄ε(ε) was calculated for the same values of K using a numerical
method. The agreement is good. Some of the slight differences
apparent for large conductivity values probably stem from the
approximative treatment of the heat conduction within the body
that we adopted in this work.

Figure 4. Effect of the thermal conductivity K on τ̄ε . As in Figure 3, the case
with K = 0 is denoted by the thick solid line. Cases corresponding to K ranging
from 10−9 to 1 W m−1 K−1 are denoted by the thin solid lines. For reference,
the dashed line shows the exact numerical solution for K = 0. This figure can
be compared with Figure 3 in Čapek & Vokrouhlický (2004).

Figure 5. Thermal torques τ̄ε and τ̄s for (66391) 1999 KW4 that we determined
from our analytic model (solid lines) and the exact numerical solution (dashed
lines). Both methods used K = 0 and a low-resolution shape model defined
by coefficients an,k up to n = 24. Obtained torques are characteristic for the
YORP order 1/Class 2 deformation (compare to Figure 1(b)). Symbol C on the
ordinate denotes the principal moment of inertia of (66391) 1999 KW4 that we
calculated assuming constant density ρ = 2.0 g cm−3. We used a = 0.64 AU
for the semimajor axis of (66391) 1999 KW4.

6.2. (66391) 1999 KW4

The asteroid (66391) 1999 KW4 is a binary system with the
≈1.5 km diameter primary (alpha) and ≈0.5 km diameter sec-
ondary (beta) components. We neglected the effect of interaction
between beta on alpha and calculated thermal torques on alpha
only. We used the shape model of alpha as derived from radar
imaging by Ostro et al. (2006). This shape model consists of
4586 vertices. Coefficients an,k up to n = 24 were determined
for the shape model. This gives the ≈15◦ angular resolution
of the surface features, including the alpha’s prominent equa-
torial bulge. The bulk density ρ = 2 g cm−3 and semimajor
axis a = 0.64 AU were assumed (Ostro et al. 2006). Below we
describe the results for K = 0.

Figure 5 shows the torques τ̄ε and τ̄s for 1999 KW4. To
validate our calculation we compared results obtained with
methods (2) and (3) described in Section 6.1. The agreement
between the numerical and analytical results is pretty good.
Both show torques characteristic of the YORP order 1/Class 2
surface deformation.

When we compared these results to those recently obtained
for 1999 KW4 by Scheeres & Mirrahimi (2008), we found that
the results differ. For example, Scheeres & Mirrahimi (2008)
showed that both τ̄ε and τ̄s should be positive in an interval near
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ε = 0, while we find that τ̄ε < 0 and τ̄s < 0 near ε = 0. This
difference probably stems from the fact that we approximated
the surface of 1999 KW4 by spherical harmonics up to n = 24
only. We verified that our results become slightly more similar
to those of Scheeres & Mirrahimi (2008) when the resolution
is increased. We were unable, however, to push the resolution
beyond n = 36 due to various problems with the numerical
evaluation of coefficients in series in Equations (29) and (32).
We will address this issue in our future work.

7. CONCLUSIONS

We developed an analytic theory for the YORP effect on
obliquity. Our results show that τ̄ε is sensitive to surface thermal
conductivity, K . For K ∼ 0.01–1 W m−1 K−1, which may be the
realistic range of conductivity values for small asteroids, torque
τ̄ε can be modified by a large factor relative to the K = 0 case.
For Θ1 � 1, where Θ1 ∝ √

Kω as defined by Equation (45),
τ̄ε ∝ 1/

√
Kω, showing that the obliquity component of the

torque should diminish when a fast-rotating, small asteroid is
spun up by τ̄s .

Conversely, the analytic results discussed in Section 5 show
that τ̄s should be nearly independent of K because it is not
affected by a phase lag or diminished variation of temperature
of a surface element during its rotation. Instead, these results
suggest that τ̄s stems from the global surface variation of the
spin-averaged temperature (due to different tilts of surface
elements with respect to the annually changing sunlight).

These findings explain the behavior of YORP torques found
in previous studies (Čapek & Vokrouhlický 2004, S07). They
have important implications for spin dynamics of small asteroids
that are subject to YORP torques.
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