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ABSTRACT

The multiple system V505 Sagittarii is composed of at least three stars: a compact eclipsing pair and a distant
component, whose orbit is measured directly using speckle interferometry. In order to explain the observed orbit
of the third body in V505 Sagittarii and also other observable quantities, namely the minima timings of the eclips-
ing binary and three different radial velocities (RVs) detected in the spectrum, we thoroughly test a fourth-body
hypothesis—a perturbation by a dim, yet-unobserved object. We use an N-body numerical integrator to simulate
future and past orbital evolution of three or four components in this system. We construct a suitable χ2 metric from
all available speckle-interferometry, minima-timings, and RV data and we scan a part of a parameter space to get
at least some of the possible solutions. In principle, we are able to explain all observable quantities by the presence
of a fourth body, but the resulting likelihood of this hypothesis is very low. We also discuss other theoretical
explanations of the minima-timing variations. Further observations of the minima timings during the next decade
or high-resolution spectroscopic data can significantly constrain the model.
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1. INTRODUCTION

The star V505 Sagittarii (HD 187949, HR 7571, HIP 97849,
WDS 19531-1436) is known as an eclipsing binary with a vari-
able period. Spectral types of its primary and secondary com-
ponents are A2 V and G5 IV, orbital period is 1.183 days, and
visual magnitude is maximum 6.m5 (Chambliss et al. 1993). In
1985, the V505 Sgr was also resolved using speckle interferom-
etry (McAlister et al. 1987b), and several measurements of the
third component were published since that time. Mayer (1997)
attempted to join the measured times of minima with visual orbit
and determined a distance of the system 102 pc.

The third-body orbit with the period of about 40 years
seemed well justified until about the year 2000. An abrupt
change in more recent data, however, excludes this simple
model—it is impossible to fit both light-time effect data and
the interferometric trajectory assuming three bodies on stable
orbits. We thus test a fourth-body hypothesis: a perturbation
by a low-mass star (i.e., the fourth body), which has not been
resolved spatially so far. Such a fourth body was suspected
already by Chochol et al. (2006) due to conspicuous deviations
of minimum times from those expected. While we consider the
fourth-body model as the main working hypothesis in this paper,
we also discuss other possible effects that can produce minima
timing variations.

The data set we have for V505 Sgr is described in Section 2.
We introduce our dynamical model, numerical method, free/
dependent parameters, and χ2 metric in Section 3. The results
of our simulations and conclusions are presented in Sections 4
and 5.

4 On leave from Astronomical Institute, Slovak Academy of Sciences, 05960
Tatranská Lomnica, Slovakia.

2. OBSERVATIONAL DATA

2.1. Speckle Interferometry

The available speckle-interferometry data are summarized in
Table 1. Most of them were extracted from the Fourth Catalog of
Interferometric Measurements of Binary Stars (Hartkopf et al.
2009), but we also added two speckle measurements from the
SAO BTA 6 m telescope by E. Malogolovets (using a speckle
camera and a method described in Balega et al. 2002 and
Maksimov et al. 2009) and one direct-imaging measurement,
performed at CFHT by S. Rucinski (using a method described
in Rucinski et al. 2007).

We estimated weight factors w and corresponding uncertain-
ties as σsky = 0.005 arcsec/w. This uncertainty refers to the
measured position on the plane of the sky (X2 + Y 2), which
results from a combination of uncertainties in the measured an-
gular separations and position angles. The values of σsky vary
because different telescopes and techniques were used. Any non-
monotonic changes in the measured position angles are simply
due to observational uncertainties.

We are aware of a possible 180◦ ambiguity in the speckle
measurements, but V505 Sgr is a lucky case: we have one direct
measurement by Hipparcos prior to 2000 perihelion passage,
and another direct-imaging datum after 2000. We thus can be
sure about the shape of the orbit.

2.2. Minima Timings

We list recent O − C data for the (1+2) binary in Table 2.
Only measurements not presented in Chambliss et al. (1993)
are included in the table, but we use all of them of course.
An uncertainty of a minimum determination is estimated to be
σlite = 1 minute in most cases, only photographic minima and
data from Hipparcos were considered worse. Epoch and O − C
were calculated using the ephemeris of Mayer (1997), with zero
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Table 1
Speckle-interferometry Data for V505 Sgr, Mainly from the Fourth

Interferometric Catalogue (Hartkopf et al. 2009)a

Year P.A. (deg) ρ (mas) Weight Source

1985.5150 189.6 302 1 3.6 m
1985.8425 189.8 311 1 3.8 m
1989.3069 181.0 261 1 4.0 m
1990.3445 176.9 246 1 4.0 m
1991.2500 170 234 0.6 Hipparcos
1991.3903 173.4 234 1 4.0 m
1991.5575 174 240 0.4 2.1 m
1991.5602 174 260 0.4 2.1 m
1991.7124 173.3 226 1 4.0 m
1992.4497 171.7 214 1 4.0 m
1992.6961 164 190 0.4 2.1 m
1994.7079 159.9 192 1 3.8 m
1995.4398 152.5 169 0.6 2.5 m
1995.7675 154.2 177 0.3 2.5 m
1996.5320 145.8 149 0.3 2.5 m
2003.6365 236.3 152 1 3.5 m
2005.7948 218 183 0.6 Direct CFHT
2006.1947 215.8 182 1 4.0 m
2007.3306 212.4 210 1 3.5 m
2007.4927 212.0 212 1 6.0 m
2008.4901 207.8 231 1 6.0 m
2009.2662 204.2 247.5 1 4.0 m

Notes. a P.A. denotes the position angle and ρ the angular distance between
the central pair (1+2) and the third component. Estimated weight factors w and
uncertainties σsky = 0.005 arcsec/w correspond to the sizes of telescopes and
techniques, which were used to acquire these measurements (1991.25 and 2005
measurements result from direct imaging).

point shifted by 6754 epochs:

Pri.Min. = 2433490.483 + 1.d1828688 × E . (1)

In the analysis below, when we compare minima timings to
our simulations, the period and base minimum are treated as
adjustable variables and may therefore differ from the values
presented here.

2.3. Radial Velocities

We use radial-velocity (RV) data from Tomkin (1992),
Table 4, who measured sharp spectral lines in the 5580–5610 Å
region and attributed them to the third component. The values of
vrad3 range from −13 to −9 km s−1. One more measurement ex-
ists (Worek 1996), which confirms the values given by Tomkin.

The uncertainties of the RV data σrv = 2 km s−1 were
estimated from a scatter of the RV measurements close in time.
We also checked for possible blends with nearby faint lines—we
computed a synthetic spectrum with the same resolution as
Tomkin (1992) and fitted the lines in question by a Gaussian
function. The observed width of the sharp lines is Δλ � 1 Å. If
we fit them by a Gaussian function, assuming the broadening is
mostly caused by a rotational Doppler effect, we can estimate
rotational velocity about vrot3 = (20 ± 5) km s−1.

Wide lines in the V505 Sgr spectrum are attributed to
the components of the eclipsing pair (1+2). The binary is
tight and in all likelihood rotates synchronously; thus the
corresponding rotational Doppler broadening is large (vrot1+2 =
(100 ± 10) km s−1). The systemic RV of the (1+2) body is
vrad1+2 = (1.9 ± 1.4) km s−1.

Table 2
Minima Timings for the Eclipsing Binary (1+2) in V505 Sgra

HJD − 2400000 Epoch O − C (d) σlite (d) Source

48432.4871 12632.0 +0.0054 0.0007 R.-L.
48501.0981 12690.0 +0.0100 0.0021 Chochol
48858.3253 12992.0 +0.0109 0.0007 Müyesseroglu
51000.4948 14803.0 +0.0049 0.0007 Ibanoglu
51051.3578 14846.0 +0.0046 0.0007 ”
51057.2724 14851.0 +0.0048 0.0007 ”
51064.3692 14857.0 +0.0044 0.0007 ”
52754.6756 16286.0 −0.0087 0.0007 Chochol
52843.3891 16361.0 −0.0103 0.0007 ”
53263.3029 16716.0 −0.0150 0.0007 ”
53525.8969 16938.0 −0.0178 0.0007 Cook
53626.4399 17023.0 −0.0187 0.0007 Chochol
54267.5469 17565.0 −0.0266 0.0007 Zasche
54267.5472 17565.0 −0.0263 0.0007 ”
54648.4260 17887.0 −0.0313 0.0005 ”
54655.5233 17893.0 −0.0312 0.0003 ”
54658.4817 17895.5 −0.0299 0.0005 ”
54706.3869 17936.0 −0.0309 0.0002 ”
55027.5302 18207.5 −0.0365 0.0018 Uhlář
55049.4152 18226.0 −0.0346 0.0002 ”
55062.4266 18237.0 −0.0347 0.0011 Šmelcer
55068.3400 18242.0 −0.0357 0.0011 Uhlář

Notes. a Epoch and O − C were calculated using the ephemeris Pri.Min. =
2433490.483 + 1.d1828688 × E. σlite denotes the assumed standard uncertainty
of the minimum determination. Only newer minima after Chambliss et al. (1993)
are listed. The last four measurements are new.
References. Rovithis-Livaniou & Rovithis 1992; Müyesseroglu et al. 1996;
Ibanoglu et al. 2000; Cook et al. 2005; Chochol et al. 2006; and Zasche et al.
2009.

Table 3
Free Parameters of Our Dynamical Four-body Model

No. Parameter Brief Description

1. d Distance between the Earth and V505 Sgr barycenter, in pc
2. m3 Mass of the third body, in M�
3. zh3 Position, (1+2)-centric, epoch T0, in AU
4. vxh3 Velocities, (1+2)-centric, epoch T0, in AU d−1

5. vyh3

6. vzh3

7. m4 Mass of the fourth body, in M�
8. xh4 Positions, (1+2)-centric, epoch T0, in AU
9. yh4

10. zh4

11. vxh4 Velocities, (1+2)-centric, epoch T0, AU d−1

12. vyh4

13. vzh4

3. NUMERICAL INTEGRATOR AND χ2 METRIC

In order to model orbital evolution of the multiple-star system
V505 Sgr, namely mutual gravitational interactions of all bodies,
we use a Bulirsch–Stöer (BS) N-body numerical integrator from
the SWIFT package (Levison & Duncan 1994).

Our method is quite general—we can model classical Kep-
lerian orbits, of course, but also non-Keplerian ones (involving
three-body interactions). We are able to search for both bound
(elliptical) and unbound (hyperbolic) trajectories. Free parame-
ters of our model are listed in Table 3. Hereinafter, we strictly
denote individual bodies by numbers: 1, 2 (Algol-type pair), 3
(resolved third component), and 4 to avoid any confusion.

Fixed (assumed) parameters are listed in Table 4. Masses of
the first three components are well constrained by photometry
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Figure 1. Comparison of two third-body trajectories, computed for three-body (1, 2, 3) and two-body (1+2, 3) configurations. Left: an overview of the trajectories in
a 1-centric frame. Right: a detail of the small part of the trajectory, where the difference is visible. Error bars denote speckle-interferometry observations.

Table 4
Fixed (Assumed) Parameters of Our Model

No. Parameter Brief Description

14. m1+2 = 3.4 M� Mass of the (1+2) body
16. xh1+2 = 0 AU Positions of the (1+2) body,
17. yh1+2 = 0 (1+2)-centric
18. zh1+2 = 0
19. vxh1+2 = 0 AU d−1 Velocities
20. vyh1+2 = 0
21. vzh1+2 = 0
22. xh3 Positions of the third body,
23. yh3 (1+2)-centric, in AU
24. T0 = 2446282.24375 JD UTC time corresponding

(or 2447607.5185) to initial conditions

and spectroscopy: m1 = (2.20 ± 0.09) M�, m2 = (1.15 ±
0.05) M�, m3 = (1.2±0.1) M� (Chambliss et al. 1993; Tomkin
1992). We take m3 as a free parameter, though, because of larger
relative uncertainty. When we test three-body configurations, we
have simply m4 = 0.

First, it is often useful to adopt a simplification: first and
second bodies can be regarded as a single (1+2) body in
our dynamical model. The central pair (1+2) is so compact
(a = 0.033 AU) and the distance of other components so large
that it behaves like a single body; its equivalent J2 gravitational
moment is negligible. Indeed, at distance r = 10 AU,

J2 � 1

2

(a

r

)2 m1m2

(m1 + m2)2
� 10−6 . (2)

This can be confirmed easily by a direct numerical integration.
The difference between trajectories computed for three-body (1,
2, 3) and two-body (1+2, 3) configurations is insignificant and
always smaller than observational uncertainties (see Figure 1).

We also make use of the following two constraints: (1)
initial positions xh3, yh3, and zero time T0 of the third body
correspond to a selected speckle-interferometry datum (e.g., the
mean of the first two points, or to the third point) (2) third-body
initial velocity components are almost tangent to the observed
interferometric trajectory in the (x, y) plane.

Initial conditions of the integration are specified in an arbi-
trary (usually 1+2-centric) frame. We then perform a transfor-
mation to a barycentric frame. The numerical integration runs in
the barycentric Cartesian frame, where x, y axes correspond to

the sky plane, the z axis is oriented from the observer toward the
system. We use AU, AU day−1 units for positions and velocities.

We integrate the system forward for 10,000 days and back-
ward (i.e., with opposite sign of initial velocities) for 20,000
days in order to cover the observational time span. The time
step used is Δt = 10 days and the precision parameter of the BS
integrator is ε = 10−8. Finally, we transform the output back to
the (1+2)-centric frame and linearly interpolate the output data
to the exact times of observations.

In order to compare the observations to our model, we
constructed a χ2 metric as follows:

χ2 = χ2
sky + χ2

lite + χ2
rv , (3)

where

χ2
sky =

Nsky∑
i=1

(x ′
h3 − xh3[i])2 + (y ′

h3 − yh3[i])2

σ 2
sky[i]

. (4)

We denote x ′
h3, y ′

h3 (1+2)-centric coordinates of the third body
calculated from our model, which were linearly interpolated to
the times tsky[i] of observations xh3[i], yh3[i]. Distance d is used
to convert angular coordinates to AU. Second,

χ2
lite =

Nlite∑
i=1

(z′
b1+2 − zb1+2[i])2

σ 2
lite[i]

, (5)

where z′
b1+2 are barycentric coordinates of the (1+2) body

computed from our model and interpolated to the times tlite[i]
of observations zb1+2[i]. In order to convert O − C values from
Table 2 to AU, we use a simple formula: zb1+2 = [O − C]days ·
86,400 s · c , where c denotes the speed of light. Because of
freedom in the period determination and freedom in the selection
of initial velocities, we have to detrend the light-time effect data
(by two least-square fits of z′

b1+2(t) and zb1+2(t)). Finally,

χ2
rv =

Nrv∑
i=1

(v′
zh3 − vzh3[i])2

σ 2
rv[i]

, (6)

where we again interpolate our model to the times trv[i]. Note
that in case of a four-body configuration we will attribute the
velocities to the fourth body and change this metric correspond-
ingly (see below).
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Figure 2. Best-fit solution for the trajectory of the third body, which corresponds to speckle-interferometry data (but excluding 1985 measurements). Neither light-time
effect nor RVs were fitted in this case. Left panel: trajectory of the third body in the sky-plane angular coordinates (X, Y ), observations are denoted by error bars and
our simulated data by small crosses, red lines represent the residuals. Middle panel: minima timings (O − C) of the (1+2) eclipsing binary vs. time (HJD). Right panel:
RV vzh3 of the third body vs. time. Parameters of the third body are m3 = 1.17 M�, xh3 = −0.15 AU, yh3 = −25.9 AU, zh3 = −0.63 AU, vxh3 = 0.0037 AU d−1,
vyh3 = 0.0017 AU d−1, vzh3 = 0.0000 AU d−1 for T0 = 2447607.5185 JD. The inclination of the orbit is very low in this case (I = 1.◦5). The resulting χ2

sky = 52,

with the number of data points Nsky = 20. Note there is a strong disagreement of this Keplerian orbit with both O − C data and RVs (total χ2 = 1700, N = 90).

(A color version of this figure is available in the online journal.)

Optionally, we can add an artificial function to χ2 in order to
constrain the mass m4 within reasonable limits, e.g.,

χ2
m4

=
[(

m4 − m4min + m4max

2

)
· 2

m4max − m4min

]100

, (7)

with m4min = 0.1 M�, m4max = 1.2 M�. The upper limit follows
from the fact that no other bright star is observed in the vicinity
of V505 Sgr.

A similar expression can be used to constrain the absolute
value of velocity v4 (e.g., to be smaller than the escape
velocity from the system, otherwise, we often obtain hyperbolic
velocities).

Occasionally, we use a different metric instead of
Equation (3):

χ2 = wskyχ
2
sky + wliteχ

2
lite + wrvχ

2
rv, (8)

with weights wsky � wlite, wrv, in order to fit the interferometric
trajectory better. There are only five points after the periastron
passage, which would otherwise have too low statistical signif-
icance compared to a lot of light-time data.

What can we expect about the 13 dimensional function
χ2(d,m3, zh3, . . . , vzh4)? It will surely have many local minima,
which would be statistically almost equivalent. (One can shoot
the fourth body from a slightly different position with a slightly
different velocity to get almost the same result.) The problem is
degenerate in this sense. Clearly, there are strong correlations,
e.g., between the mass m4 and the minimal distance of a close
encounter (and consequently initial positions/velocities of the
fourth body). Minimization of the χ2 function is thus a difficult
task.

We use a simplex algorithm (Press et al. 1997) to save
computational resources and to find local minima. However,
it is not our goal to find a global minimum of χ2, because of
the degeneracy and the immense size of the parameter space.
We anyway do not expect a deep, statistically significant global
minimum. Instead, we will choose a set of starting points for
the fourth body and look for a subset of allowed solutions.

On the other hand, in the case we test a three-body configu-
ration only, the problem is much simpler: the six-dimensional
χ2(d,m3, zh3, vxh3, vyh3, vzh3) is well behaved and we may ex-
pect to find a unique solution (and its uncertainty).

4. RESULTS

In the following subsections, we consider and analyze several
hypotheses about the nature of the V505 Sgr system.

1. There are three bodies only in V505 Sgr.
2. The third body directly perturbs the central pair.
3. A steady mass transfer causes minima timing variations.
4. There is modulation of mass transfer by the third body.
5. A sudden mass transfer occurred around 2000.
6. Appelgate’s mechanism is operating.
7. A fourth body is present (either on a bound or hyperbolic

orbit).

4.1. The Third Body Alone on a Keplerian Orbit

At first, let us test a standard “null” hypothesis, i.e., only
a third body exists (m4 = 0). It is possible to fit speckle
data alone (wlite = wrv = 0) by an elliptical orbit with a
(29 ± 1) year period, especially, if we assume the first two 1985
measurements are erroneous (offset by 50 mas; see Figure 2,
left). The χ2

sky = 50 for this fit and the respective number of data
points is Nsky = 20 (though ideally, χ2 should be comparable
to N.).

Note the χ2
sky would be much higher, if we include the

1985 measurements: χ2
sky = 210, Nsky = 22. It means, if

these two measurements are not systematic errors, the 29 year
Keplerian orbit is essentially excluded! The two respective
measurements were obtained by two different telescopes during
two different nights (see McAlister et al. 1987a, 1987b). We
checked measurements of another 34 stars in these publications,
observed with the same telescope and during the same night as
V505 Sgr, and we have found no indication of a wrong plate
scale—all measurements lie on Keplerian ellipses within usual
observational uncertainties (5 mas). We thus believe the 1985
measurements are not erroneous and they should be included in
the χ2 metric.

Without additional (non-positional) data it is not possible to
distinguish between different inclinations—there are equivalent
low-I and high-I solutions with almost the same χ2 � 50.
Nevertheless, every inclined orbit of the third body has to cause
a corresponding light-time effect, otherwise must be considered
wrong! Even a slight I � 2◦ inclination would easily be
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Figure 3. Simulated osculating orbital period P of the central binary (bodies 1
and 2), perturbed by the third body. The periastron passage occurred in 2000 and
the corresponding change of period is ΔP � 10−7 days. The observed values
of |ΔP | � 10−5 days are much larger than in this simulation.

detectable in the light-time effect data (see Figure 2, middle).
A period analysis of the O − C data (with Period04 program;
Lenz 2008) also does not show a prominent 29 year period. On
the other hand, there is a clear signal at P = 39 years, with an
amplitude of the peak A = 0.0092 days.

If we assume the O − C data are indeed caused by a light-
time effect, there is a strong disagreement of the 29 year
Keplerian orbit with the light-time effect data (and also with
RVs), even prior to 2000! If we try to fit the whole orbit and
light-time effect data together, we would have χ2

sky = 107
and Nsky = 20, i.e., such an orbit is excluded with a high
significance. There are also clear systematic departures between
the observed interferometric data and calculated Keplerian orbit.

The only possibility is that the inclination of the third-body
orbit is almost zero I � 2◦, so we do not see any light-time
effect at all. The observed O − C variations then must caused
by an entirely different phenomenon (see Sections 4.2–4.6 for a
detailed discussion).

Nevertheless, there still remains a strong disagreement with
the observed high RVs vrad3 � 10 km s−1, because a non-
inclined orbit should have vrad3 � 1 km s−1. We have no solution
for this problem (unless there is a fourth body present in the
system; see Sections 4.7–4.9).

4.2. Direct Perturbation of the 1+2 Orbital Period by the
Third Body

One may ask, if the observed variations in minima timings
(Table 2), which correspond to the changes of the period of
the order |ΔP | � 10−5 days, could be caused by a direct
gravitational perturbation of the tight central pair (1, 2) by the
orbiting third body. In periastron, the minimum distance is of the
order �10 AU. So as to test this possibility, we use our dynamical
model with three bodies 1, 2, and 3 taken separately. A detection
of minute changes of the orbital period requires a smaller time
step and higher precision of the BS integrator (Δt = 0.01 day,
ε = 10−12). The resulting osculating orbital period changes
during one periastron passage are shown in Figure 3. They are
much smaller than ΔP � 10−7 days, if we compare values
far from periastron, i.e., ∼ 2 years before and after periastron
passage. An extremely close encounter (within less than 0.1 AU,
which corresponds to 0.001 arcsec) would be needed to change
the orbital period of the tight Algol system substantially.

Moreover, anything directly connected with the third body
should conform to the 39 year period of the minima timings
and this, according to Section 4.1, is in conflict with any
29 year Keplerian orbit of the third body.
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4.3. Effects of Mass Transfer Between 1 and 2

Past photometric and spectroscopic observations confirm that
the central pair of V505 Sgr is a classical semi-detached Algol
system, with a less-massive secondary filling its Roche lobe
(Chambliss et al. 1993). In the case of a conservative mass
transfer, the sum of masses is constant,

M1(t) + M2(t) = K , (9)

as well as the orbital angular momentum

A(t)M2
1 (t)M2

2 (t) = C , (10)

where A(t) denotes the actual separation of the stars. We
can substitute current masses and separation A = 7.1 R�
(Chambliss et al. 1993) into these equations, compute constants
K, C, and consequently the dependence A(M1) (see also
Figure 4),

A(M1) = CM−2
1 (K − M1)−2 . (11)

A smooth conservative mass transfer should increase the orbital
period steadily, since in the V505 Sgr case the mass ratio has
been reversed already (M1 > M2). On the contrary, we observe
an abrupt decrease of the period ΔP = −1.2 × 10−5 days after
2000. We thus conclude a simple mass transfer cannot explain
the observer minima timings.

4.4. Modulation of Mass Transfer Between 1 and 2 During the
Third-body Encounter

In this section, we test if the third body is capable of changing
the Roche potential of the central binary (bodies 1 and 2) in a
such a way that the mass transfer rate dM/dt (and consequently
dP/dt) changes by a substantial amount. We add a third-body
term to the Roche potential:

Ω(x, y, z) = 1

r1
+

q

r2
+

1

2
(1 + q)r2

3 +
q3rd

r3rd
, (12)

where q = M2/M1 denotes the mass ratio and similarly
q3rd = M3/M1. We see immediately, that relative change of
the potential due to the third body at distance r3rd � 10 AU
is δΩ/Ω � 10−13. We do not find it likely that such a
minuscule perturbation of the potential, and thus the related tidal
acceleration, could produce significant effects. Consequently,
we cannot explain minima timing variations by the modulation
of mass transfer. Finally, as in Section 4.2, this effect would also
be in conflict with a 29 year Keplerian orbit of the third body.
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Figure 5. Best-fit solution for the orbit of the third body and the light-time effect before 2000: d = 102 pc, m3 = 1.2 M�, zh3 = 4.0 AU, vxh3 = 0.0036 AU day−1,
vyh3 = 0.0013 AU day−1, vzh3 = −0.0015 AU day−1 for T0 = 2446282.24375 JD. The resulting χ2 = 88, with the total number of data points N = 46. The red lines
denote differences between observed and calculated data. Radial velocities were not fitted in this case; they are shown for comparison only.

(A color version of this figure is available in the online journal.)

4.5. A Sudden Mass Transfer of Biermann & Hall (1973)

According to Biermann & Hall (1973) a sudden mass transfer
between the Algol components may result in a temporary
decrease of the orbital period, even though mass is flowing from
the lighter component to the more massive one. In our case, we
would need dM/dt as high as � 10−6 M� yr−1 to explain period
changes |dP/dt | � 10−6 days yr−1. Such a mass transfer rate
seems to be too large compared to theoretical models (Harmanec
1970), dM/dt � 10−6 M� yr−1 are reached only during a very
short interval of time, before the reversal of mass ratio.

Another problem of this scenario is that we observe rather
smooth periodic variations of the minima timings before 2000.
These do not seem to be entirely compatible with this mecha-
nism, which may be more irregular in time. This phenomenon
is also rarely confirmed by independent observations. (It would
require a very precise photometry on a long timescale or a
spectroscopic confirmation of circumstellar matter.) Today, this
mechanism is not generally accepted as a major cause of minima
timing variations among Algol-type systems.

4.6. Applegate (1992) Magnetic Mechanism

Applegate (1992) proposed that a gravitational quadrupole
coupling of orbit and shape variations of a magnetically ac-
tive subgiant (second component) can result in variations
of the orbital period and hence minima timings. In this scenario,
the observed 39 year period would correspond to the period of
the magnetic dynamo.

The second (G5 IV) star rotates quickly (1.2 d); it has a
convective envelope in this evolutionary stage and, presumably,
there is a differential rotation and operating dynamo, which can
result in a sufficiently strong magnetic field (104 G), necessary
for Applegate’s mechanism to work. Period changes of the
order ΔP/P � 10−5 should also correspond to changes of
the luminosity ΔL2/L2 = 0.1, in phase with minima timings.
Unfortunately, we are not able to confirm this by our photometry
(0.01 mag precision over tens of years would be required).

In principle, this mechanism can explain minima timing
variations, but it is not clear, why there is an abrupt change
after 2000. An independent confirmation is rare and difficult.
One of the possibilities might be a spectroscopic observation of
magnetically active lines (Ca ii H and K or Mg ii). This scenario
also does not provide any solution for the observed large RVs.

4.7. Distance, Mass, and the Third-body Orbit (Prior to 2000)

Hereinafter, we assume minima timing variations are caused
mainly by the light-time effect due to the orbiting third body.
Because the orbit of the third body prior the periastron passage in
2000 seems unperturbed, we first determine the optimal distance
d of the system, third-body mass m3, and orbit (z3, vxh3, vyh3,
vzh3). We use only the observational data older than 2000 for
this purpose.

We compute χ2 values for the following set of initial condi-
tions (we do not use a simplex here): d ∈ (95, 105) pc, Δd =
1 pc, m3 ∈ (1.1, 1.3) M�, Δm3 = 0.1 M�, zh3 ∈ (2.0, 8.0) AU,
Δzh3 = 1.0 AU, vxh3 ∈ (0.0033, 0.0040) AU day−1,
vyh3 ∈ (0.0008, 0.0016) AU day−1, vzh3 ∈ (−0.0018, 0.0012)
AU day−1, Δvxh3 = Δvyh3 = Δvzh3 = 0.0001 AU day−1.

The best-fit solution is displayed in Figure 5. The orbital
period of the third body is P = (39 ± 2) years. The resulting
distance d = (102 ± 5) pc. This solution is very similar to that
in Mayer (1997). The parallactic distance of V505 Sgr given
by Hipparcos (π = (8.40 ± 0.57) mas, d = 111–128 pc, cf.,
van Leeuwen 2007) is offset and even the error intervals do not
overlap.

Note that the RVs of the order −10 km s−1 measured by
Tomkin (1992) cannot be attributed to the third body, whose
orbital velocity should be much smaller ((−2.5 ± 0.5) km s−1)
according to interferometric and light-time effect data. Conse-
quently, we do not fit the velocities in this case (wrv = 0); we
are going to attribute them to the fourth body (in Section 4.8).

Finally, it is important to mention that our solution does not
depend on the two (“offset”) 1985 speckle measurements at all!
We can exclude them completely from our considerations and
the result would be the same. Our only assumption was that
minima timing variations are caused by the light-time effect
and this enforces the orbital period of P � 39 years. (But
coincidentally, both 1985 measurements fit perfectly this longer-
period orbit.)

4.8. Encounter with a Fourth Body (a χ2 Map)

We next fix initial conditions of the third body according to
the results in Section 4.7 and model a perturbation by a fourth
body under different geometries.

The free parameters of the model are m4, xh4, yh4, zh4,
vxh4, vyh4, vzh4. We include RV data, but we assume the spec-
tral lines (and corresponding velocities) belong to the fourth
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Figure 6. Best-fit solution for the trajectory of the fourth body, which best explains the observed trajectory of the third body, light-time effect, and RVs: m4 = 0.8 M�,
xh4 = 45.0 AU, yh4 = 39.5 AU, zh4 = 28.0 AU, vxh4 = −0.0105 AU day−1, vyh4 = −0.008 AU day−1, vzh4 = −0.0075 AU day−1. The resulting χ2 = 331, with
the total number of data points N = 102. The motion of the fourth body captured in the left panel spans from 1994 to 2003. The squares connected by a straight line
indicate the closest encounter between the third and fourth bodies.

(A color version of this figure is available in the online journal.)
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body. Note that there might be a problem with too low lu-
minosity and thus too weak spectral lines of the fourth body,
in case it has low mass. We discuss this possible inconsis-
tency in detail in Section 4.11. We scan the following lim-
ited set of initial conditions (over 8 million trials): m4 ∈
(0.5, 0.8) M�, Δm4 = 0.05 M�, xh4 ∈ (38, 45) AU, Δxh4 =
1.0 AU, yh4 ∈ (37, 40) AU, Δyh4 = 0.5 AU, zh4 ∈ (20, 30) AU,
Δzh4 = 1.0 AU, vxh4 ∈ (−0.011,−0.005) AU day−1,
vyh4 ∈ (−0.010,−0.005) AU day−1, vzh4 ∈ (−0.012,−0.006)
AU day−1, Δvxh4 = Δvyh4 = Δvzh4 = 0.0005 AU day−1.

A comparison of the best-fit solution with observational data
is displayed in Figure 6. We use a modified metric, Equation (8),
with wsky = 10, wlite = wrv = 1. The respective trajectories of
the bodies are shown in Figure 7. Note, however, that according
to the χ2 map (Figure 8) there are many local minima, which
cannot be distinguished from a statistical point of view, because
the values of χ2 differ only little (χ2 ∈ [284, 325]). The
corresponding χ2 probabilities Q(χ2|N ) that the observed value
of χ2 = 340 (for a given number of degrees of freedom N =
105) is that large by chance even for a correct model are too low
(essentially zero). It may also indicate that real uncertainties
might be a bit larger (by a factor of 2) than the values estimated
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Figure 8. Minima of the seven-dimensional function χ2(m4, xh4, yh4, zh4, vxh4,

vyh4, vzh4) at given positions (xh4, yh4). The minimum is taken over remaining
free parameters m4, zh4, vxh4, vyh4, vzh4. Cross is an overall minimum and black
dots represent computed points.

by us. Nevertheless, we will find better solutions using a simplex
method (in Section 4.9).

4.9. Encounter with a Fourth Body (Different Geometry,
Simplex)

We selected a different set of initial conditions for the
following modeling. They serve as starting points for the
simplex algorithm: m4 = 0.5 M�, xh4 ∈ (−100,−10) AU,
yh4 ∈ (−50.1,−0.1) AU, zh4 ∈ (0, 50) AU, Δxh4 =
Δyh4 = Δzh4 = 5.0 AU, vxh4 ∈ (0.005, 0.015) AU day−1,
Δvxh4 = 0.001 AU day−1, vyh4 ∈ (0, 0.01) AU day−1, Δvyh4 =
0.002 AU day−1, vzh4 ∈ (−0.007, 0) AU day−1, Δvzh4 =
0.001 AU day−1. The total number of trials reaches 106.

We reject RV constraints (wrv = 0), although we can find
a lot of allowed solutions with velocities in the correct range
(vzh4

.= −0.008 AU day−1). On the other hand, we use a mass
limit according to Equation (7). An example of a typical good
fit is shown in Figure 9. We selected one with mass around
m4 = 0.6 M�; the corresponding χ2 = 168, N = 73, and
probability Q(χ2|N ) � 10−9, still too low. This solution can
be further improved by a 15 dimensional simplex (i.e., with all
parameters of the third-body free) to reach χ2 as low as 130 and
Q(χ2|N ) as high as 10−5.

As before, there are many solutions, which are statistically
equivalent. We present allowed solutions in Figure 10 as plots
χ2 versus a free parameter, with each dot representing one
local minimum found by simplex. Prominent concentrations of
solutions in these plots can be regarded as an indication of more
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Figure 9. Typical solution (out of many) for the trajectory and light-time effect (without RVs): m4 = 0.576 M�, xh4 = 27.912 AU, yh4 = −84.809 AU,
zh4 = 30.482 AU, vxh4 = −0.00584 AU day−1, vyh4 = 0.01612 AU day−1, vzh4 = −0.00620 AU day−1. The corresponding χ2 = 168, with the number of
data points N = 73. This solution can be further improved by a 15 dimensional simplex to reach χ2 as low as 130.

(A color version of this figure is available in the online journal.)

Figure 10. Distribution of good solutions (χ2 < 300) in the space of free parameters: xh4, yh4, zh4, vxh4, vyh4, vzh4.

probable solutions. Only minority of trials were successful. Most
of them were stopped too early (at high χ2) due to numerous
local minima.

According to the histogram of masses m4 (Figure 11, left)
the values m4 < 0.5 M� are less probable, and the histogram
peaks around m4 = 0.9 M�. Note the simplex sometimes tends
to “drift” to zero or large masses, which leads to artificial
peaks at the limits of the allowed interval. The same applies to
velocity v4.

Histogram of total energies E4 of the fourth body
(Figure 11, middle) shows a strong preference for hyperbolic
orbits (E4 > 0), but elliptic orbits (E4 < 0) also exist
(with a 1% probability and slightly larger best χ2 = 199).

The reason for this preference stems from the fact that third-
body orbit seems almost unperturbed prior to 2000, so one needs
rather a higher-velocity encounter of the fourth body from larger
initial distance.

Typical minimum distances between the fourth and third
bodies during an encounter are around dmin3 � 6 AU and they
are even smaller between the fourth body and the (1+2) body
dmin1+2 � 1.5 AU (Figure 11, right). They are of comparable
size and consequently a simple impulse approximation, i.e., an
instantaneous change of orbital velocity, cannot be used to link
the two elliptic orbits of the third body (before and after the
perturbation). There are no good solutions (with χ2 < 300),
which would lead to an escape of the third body.



2266 BROŽ ET AL. Vol. 139

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0.2  0.4  0.6  0.8  1  1.2

N

m4 [MS]

all trials
χ2 < 300

and v4 < 100 km/s

 0

 2000

 4000

 6000

 8000

 10000

-1039 0 1039 2·1039 3·1039 4·1039 5·1039

N

E4 [J]

all trials
χ2 < 300

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  2  4  6  8  10  12  14

N

dmin [AU]

dmin12, χ2 < 300, v4 < 100 km/s
dmin3

Figure 11. Left: histogram of masses m4 of all trials and good ones (with χ2 < 300 and the lower absolute value of velocity |v4| < 100 km s−1). Middle: histogram
of total energies E4 of the fourth body at the epoch T0. There is a strong preference for hyperbolic orbits (E4 > 0), but one can find approximately 1% of orbits with
negative energies. Right: histogram of minimum distances dmin1+2, dmin3 of the fourth body from the (1+2) and third body (only good trials are shown). According to
these distributions, it is more likely that the fourth body approached the (1+2) body closer than the third body. Median values are d̄min1+2 = 1.6 AU and d̄min3 = 5.9 AU.

Figure 12. Observational limits (black lines) of interferometric measurements (left panel) and the CFHT imaging (right panel). Our solutions from Section 4.9 are
plotted as dots. Many of them are well below the observational limits.

4.10. Observational Limits of Interferometry and CFHT
Imaging

Postulating an existence of a fourth body, inferred from its
gravitational influence on the V505 Sgr system, we should check
if this object could have been directly observed in the past.

According to A. Tokovinin (2009, private communication),
the limit of recent interferometric measurements can be approx-
imated by a linear dependence of brightness difference δy in
Strömgren y magnitudes on angular separation d of the compo-
nents: Δy = 4.7 mag at d = 0.15 arcsec and Δy = 6.5 mag at
d = 1 arcsec adaptive optics at CFHT can reach even fainter.
The limit in the K band is given by Rucinski et al. (2007),
Figure 7, as a nonlinear dependence ΔK(d).

We can easily select solutions from Section 4.9, which fulfill
both limits, albeit a lot of them is excluded by the CFHT limit
(see Figure 12). Note that we are not able to predict exact
magnitudes or positions of the fourth body, because there are
still many solutions possible.

Note that there is an object in the USNO-A2.0 catalog, very
close to V505 Sgr: 0750-19281506, R.A.J2000 = 298.◦277034,
decl.J2000 = −14.◦603839. This corresponds to an angular
separation of 2.6 arcsec and a position angle of 235◦ with
respect to V505 Sgr, at the epoch of observation 1951.574.
The magnitudes R = 10.9 mag and B = 11.8 mag are marked
as uncertain (since the object is located in the area flooded
by light of V505 Sgr). This is an interesting coincidence
with “our” fourth body, but we doubt if the source is real.
Moreover, if the brightness of the USNO source is correct within

±1 mag, it should be well above the observational limits of
CFHT.

4.11. Constraints from Spectral Lines Radial-velocity
Measurements

In Section 4.8, we tried to attribute the observed high RVs
to a hypothetic fourth component. We thus have to ask a
question: could the low-mass fourth component be visible in
the spectrum?

To this end, we used a grid of synthetic spectra based on
Kurucz model atmospheres, which was calculated and provided
for general use by J. Kubát (for details of the calculations,
cf., e.g., Harmanec et al. 1997). We calculate synthetic spectra
for three and four lights (stars) and compare them with the
spectrum observed by Tomkin (1992), Figure 2. This spectrum
was taken at HJD = 2444862.588, close to the primary eclipse
of the central binary, which decreases the luminosity of the first
component and thus weak narrow lines of the third (or fourth)
component are more prominent.

Modeling of spectra (relative intensities) requires a number of
parameters: luminosities, effective temperatures, surface grav-
ity, rotational and RVs. Luminosities of the known components
are L1 = 26 L�, L2 = 3.8 L�, L3 = 2.1 L�, respectively. The
amplitude of the light curve is Δm = 1.1 mag (Chambliss et al.
1993). The effective temperatures are approximately (Popper
1980) Teff1 � 9000 K (corresponding to A2 V spectral type),
Teff2 � 6000 K (F8 IV to G6–8 IV), Teff3 � 6000 K (F8 V).
We assume the following values of the surface gravitational
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equal to 542. For T4 = 5700 K, we would have L4 = 0.43 L� and χ2 = 495.

acceleration: log g1 = log g2 = 4.0 (cgs units), log g3 = 4.5
(valid for stars close to the main sequence). Rotational veloci-
ties of the first and second components, a semi-contact binary
with an orbital period of 1.2 days, are synchronized by tidal
lock and are of the order vrot1 � vrot2 � 100 km s−1. These
are in concert with the observed width of broad spectral lines
Δλ = 6 Å. For the third component, we assume a lower velocity
vrot3 = 20 km s−1, usual for late F-type main-sequence stars.
This matches the width of sharp lines. Radial velocities of the
first and second components are close to zero because of the
eclipse proximity (vrad1 = vrad2

.= 0).
We assume the following reasonable parameters for the

fourth component: T4 = 4000 K or 5700 K, log g4 = 4.0,
vrot4 = 20 km s−1. We construct a χ2 metric:

χ2 =
Nobs∑
i=1

(Iobs[i] − I ′)2

σobs[i]2
, (13)

where Iobs[i] denote observed relative intensities, σobs[i] as-
sociated uncertainties, and I ′ is a sum of synthetic intensities
weighted by luminosities:

I ′ =
∑4

j=1 I ′(Teffj , log gj , vrotj ) · Lj∑4
j=1 Lj

(14)

and of course Doppler shifted due to RVs (λ′ = λobs[i](1 −
vradj /c)) and interpolated to the required wavelengths λ′ using
Hermite polynomials (Hill 1982). We use a simple eclipse
modeling: we decrease L1 according to the Pogson equation
to get the observed total magnitude increase Δm. Errors σobs[i]
were estimated from the scatter in small continua, σ = 0.01.
Artificially small errors σ = 0.003 were assigned to the
measurements in the cores of the narrow lines, in order to match
precisely their depths.

We constructed a simplex algorithm (Press et al. 1997) with
the following free parameters: L4, vrad3, vrad4. Other luminosities
and RVs remain fixed. This simplex is well behaved and
converges to final values almost regardless of the starting
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(A color version of this figure is available in the online journal.)

point. There is no reasonable improvement, if we let all eight
parameters (Lj, vradj ) to be free.

The result for a selected temperature T4 = 4000 K is shown
in Figure 13. The best fit is for L4 = 0.22 L�, and it is
marginally better that the fit with three lights only (i.e., with
fixed L4 = 0). The luminosity corresponds roughly to the mass
m4/M� ∝ (L4/L�)1/4 = 0.68, which seems reasonable with
respect to the results in Section 4.9.

Note that we used vrot3 = 20 km s−1 for rotational velocity
of the third body. No reasonable solution was found for vrot3
as high as 100 km s−1, which would cause a strong rotational
broadening and almost a “disappearance” of spectral lines of the
third body. It means that a low-mass fourth body alone cannot
produce deep sharp lines. We thus suspect, there is a blend of
lines in the spectrum observed by Tomkin (1992), which may
originate on the third and fourth bodies, with low and high RVs.
However, observations with high spectral resolution would be
needed to resolve such blending.

4.12. Constraints from the Stellar Evolution of the Eclipsing
Binary

To assess the long-term evolution of V505 Sgr, we need
some information about the age of the system. An upper limit
for the age can be estimated easily from masses of stars. The
semi-detached central binary (bodies 1 and 2) has a total mass
(3.4 ± 0.1) M�. In order to evolve into the current stage, when
the second lighter component fills its Roche lobe, the original
mass of the second star had to be at least slightly larger than half
of the total mass, i.e., M2 > 1.7 M�. The evolution of radius
is shown in Figure 14; we are mainly concerned with the large
increase of radius, when the star leaves main sequence. Given
the uncertainties of the masses and unknown metallicities, the
upper limit for the age is (2.0 ± 0.5) Gyr.

In order to find a lower limit, we have to check a minimum
separation of the components first (cf. Equation (11) and
Figure 4). A minimum separation occurs when M1 = 0.5 K,
in our case Amin = (5.9 ± 0.1) R�. This value is larger than the
radius of a 3.4 M� star during the whole evolution on the main
sequence. Thus, the mass transfer had to start later, in the red
giant phase.
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The maximum mass of the second star had to be slightly
below the total mass, i.e., M2 < 3.4 M�. According to the R(t)
dependence (Figure 14), the red giant phase starts at the age of
(0.26 ± 0.03) Gyr, which could be considered as a lower limit
for the age of the V505 Sgr system.

5. CONCLUSIONS

Generally speaking, we are able to explain the observed
orbit of the third body together minima timings and RVs by
a low-mass fourth body, which encounters the observed three
bodies with a suitable geometry. There is no unique solution,
but rather a set of allowed solutions for the trajectory of the
hypothetic fourth body. It is quite difficult to find a solution for
both speckle-interferometry and light-time effect data. There
are a few systematic discrepancies at the 2σ level, which cause
the likelihood of the hypothesis to be low. Possibly, realistic
uncertainties σsky are slightly larger (by a factor of 1.5) than the
errors estimated by us.

Of course, there are other hypotheses, which do not need
a fourth body at all (a sudden mass transfer, Applegate’s
mechanism, etc.), but none of them provides a unified solution
for all observational data we have for V505 Sgr.

Further observations of the light-time effect during the
next decade can significantly constrain the model. A new
determination of the systemic velocity of V505 Sgr may confirm,
that the change in the O − C data after 2000 resulted from
an external perturbation. (Tomkin’s (1992) value was (1.9 ±
1.4) km s−1.) Spectroscopic measurements of the indicative
sharp lines would also be very helpful to resolve the problem
with radial velocities and relative intensity of spectral lines.
These lines can be attributed neither to the third nor to the
fourth body alone.

If we indeed observe the V505 Sgr system by chance during
the phase of a close encounter with a fourth star, we can imagine
several scenarios for its origin:

1. A random passing star approaching V505 Sgr on a hyper-
bolic orbit. The problem of this scenario is a very low num-
ber density of stars. If we take the value n	 � 0.073 pc−3

from the solar vicinity (Fernández 2005), the mean velocity
with respect to other stars of the order vrel � 10 km s−1 and
the required minimum distance of the order rimp � 102 AU,
we end up with a mean time between two encounters τ �
1/(n	vrelr

2
imp) � 1012 yr, thus an extremely unlikely event.

2. A loosely bound star on a highly eccentric orbit, with
the same age as other three components of V505 Sgr.
Unfortunately, there is a large number of revolutions and
encounters (102–105) over the estimated age of V505 Sgr
and the system practically cannot remain stable over this
timescale (Valtonen & Mikkola 1991).

3. A more tightly bound star on a lower-eccentricity orbit,
which experienced some sort of a late instability, induced
by long-term evolution due to galactic tides, distant passing
stars, which shifted an initially stable configuration into

an unstable state, e.g., driven by mutual gravitational
resonances between components. The problem in this case
is that tightly bound orbits of the fourth body are very rare
in our simulations, thus seem improbable.

None of the scenarios is satisfactory. Nevertheless, we find
the fourth-body hypothesis, the only one which is able to
explain all available observations. Clearly, more observations
and theoretical effort is needed to better understand the V505
Sagittarii system.
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