
On interpretation of the magnetized Kerr-Newman black hole 
V. Karas and D. Vokrouhlick$i 
Department of Astronomy and Astrophysics, Charles University, ?vt;dskir 8, 150 00 Prague, Czechoslovakia 

(Received 6 July 1990; accepted for publication 3 October 1990) 

An electromagnetic field in the vicinity of the magnetized Kerr-Newman black hole is studied. 
In the extreme case, the field does not thread the horizon of an electrically neutral 
configuration. Analogically, the magnetic field is expelled out of an extreme black hole with 
zero angular momentum. Uniqueness of the magnetized Schwarzschild black hole is discussed. 

I. INTRODUCTION 

The main purpose of this paper is to elucidate some in- 
teresting features of the magnetized Kerr-Newman 
(MKN) metric. The MKN metric’.’ is an exact stationary 
solution of the Einstein-Maxwell equations, which reduces 
to the ordinary Kerr-Newman black hole when the magnet- 
ic field parameter B, is set equal to zero. Therefore, the 
MKN metric may be relevant for astrophysical applications 
and is in this respect intensively investigated.“*4 For B,, #O, 
however, the space-time is not asymptotically flat and the 
remaining three parameters of this solution M, cc, and e, have 
no direct physical interpretation. Particularly, the magne- 
tized Kerr black hole (e = 0) possesses a nonzero electric 
charge, while the magnetized Reissner-Nordstrom black 
hole (a = 0) has a nonzero angular momentum; in these two 
cases the magnetic flux across the horizon of a magnetized 
extreme hole does not vanish, as we could expect on the basis 
of our experience with the test field approximations.5.6 

To improve our insight, we search, in Sec. II, for config- 
urations with vanishing charge or angular momentum of the 
hole. In the extreme case, we study electromagnetic horizon 
fields to show how the field is expelled out of the horizon, in 
close analogy with the case of an extreme Kerr’ or extreme 
Reissner-Nordstrom* black hole immersed in a weak, axi- 
symmetric, asymptotically uniform magnetic field. This en- 
ables us to extend one of Hiscock’s uniqueness theorems on 
magnetized black holes.’ 

We start out from the MKN metric in spheroidal co- 
ordinates ( x”,x’,x2,x3) = ( f,r,@,p) : 

g= ]A/2):[A-‘d?+d62-AA -‘dt2] 

+ ~RJ-2AZ-‘sin26[d~-u’dt]2, (1) 
where 

Z=v?+a2cos28, A=?-2Mr+a2+e2, 

A=(?+a’)2-Aa’sin20, A= l+B,Q---$Bf,F5’. (2) 

Functions @(r,B) and %‘( r,@ are the Ernst potentials of the 
Kerr-Newman solution, 

Q, = earZ- ’ sin” 6 - ie(? f a2)Z - ’ cos 19, 

Z?= -I;-‘[Asin2B+e2(a2+?cos2~)] 

+ 2iaZ - ’ cos 6 [ fVX( 3 - co? 19) + Ma2 sin4 e 

- i-e2 sin’ 8 1, 

and o’ is given by the equation 
(3) 

dw’= IA[zdw+iX4 -‘sin-‘0 [ (Az,A*)dr 

- (A;j,A*)A de], (4) 
with w = (2Mr - e’)aA - I. The Ernst potentials Q’(r$), 
g’(r,@) of the MKN solution are 

@ ‘=A-‘[Q,-f&g], g’=A-‘G’, (5) 
and corresponding orthonormal components of the electro- 
magnetic field in a locally nonrotating frame are 

f4 r, + iE, r, = A - ‘I2 sin - ’ 0 de@‘, (6) 

if,,, + iE,,, = - (A/A)“‘sin-‘Bd,@‘. (7) 

Explicit form of w’ was given in Ref. 2. ( Let us note that the 
parameter E in Ref. 2 corresponds to our - B,/2, so that 
the asymptotic value of the magnetic field component paral- 
leltothetaxisatr-+~,sin8~0isequaltoBo.) 

Denoting canonical Killing vectors k = d,, m = 4, and 
the horizon Killing vector I = k + w’m, and putting 
l”I =0 we obtain r=r It + =M+ (A42-a2-e2)“2, 
which is where the horizon is located in the Kerr-Newman 
limit. Since in the magnetized case the only singularity is 
again hidden below a nonsingular horizon, we name ( 1) as a 
black hole. Range of angular coordinates is given by 
0<8<77,0<p<277&~‘, where A0 denotes the value of A on 
the polar axis 0 = 0, n-‘. 

II. PARAMETERS OF THE MKN METRIC 
The space-time ( 1) is not asymptotically flat, neverthe- 

less, some results that were derived for ordinary black holes 
remain valid. The extreme configuration can be defined by 
vanishing of the surface gravity of the black hole, 

h-f,z~~(r=r+ ) =jlp”‘l,,l,(r=r+ ) =O. (8) 

The expression for tc is rather complicated, but it reduces to 
its Kerr-Newman value K~ = (r + - M) (?+ + a*) - ’ at 
Y = r + . [Here, w’ = const, as can be verified directly from 
Eq. (4) 1. Thus Eq. (8) yields M2 = a’ + e’, independently 
of the value of the magnetic field parameter. 

The electric charge of the hole is given by the surface 
integral of the electromagnetic field: 

c& = -& s, F”“dZ,,, = - ]A,12 Im[Q’(r+ ,O)]. 

(9) 
The uncharged configuration QH = 0 is then given by 

Bo&3+ = 2eL3[2Ma t (4M’a + e4)“‘]. (10) 
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Analogically, the magnetic flux across an upper hemisphere 
Y’ located axisymmetrically on the horizon is 

F,, = f 
s 

*Ftlv dZ,,. 
./ 

= 2~]&]‘Re[@‘(r+ ,0)]:5,“‘. (11) 
In the extreme case with B, = B, , we have 

@‘(r, ,8) = + .$e3/(2a2 + e2) = const and the magnetic 
flux ( 11) is zero. Then it follows from Eq. (6) that the elec- 
tromagneticjield does not thread the horizon of an electrically 
neutral, extreme, magnetized Kerr-Newman black hole. 

Let us remark that this result is valid only for extreme 
configurations of the MKN metric. It cannot be considered 
as a general feature of the solutions obtained by the two- 
parameter Ernst transformation technique (when both mag- 
netic and electric parameters B, and ,!$, are nonzero). For 
example, the extreme, electromagnetized Reissner-Nord- 
Strom (a = 0) configurations with QH = 0 are character- 
ized by Ei + Bz = 4e - 2; however, the condition 
EC,, (r, ) = 0, H(,, (r+ ) = 0 then requires E, = 0, 
B, = f 2e - ‘, which is a special case of the previous MKN 
solution [Eq. ( 10) with a = 01. 

The magnetic flux ( 11) across an extreme hole also van- 
ishes for 

B,=BJ =2a.-‘(3e2+4a2)-‘[ * (2a2+e2) 

- e(a2 + e2)“2], (12) 
but in this case Q,, #O. This solution will be discussed later. 

It is instructive to consider the limit of a weak magnetic 
field (Bi = 0) in Eq. (11). With the uncharged solution 
Q,, = 0 we obtain 

F~v~B~[A+2Mr~-‘(~--a~)]sin~6, (13) 

in perfect analogy with the approximation of asymptotically 
uniform, aligned, magnetic test field on the Kerr back- 
ground.h The extreme configuration is now given by 
a2 = M 2, in which case the flux across the horizon vanishes. 
However, as noted above, the test field approximation does 
not correspond to the linearization of the magnetized Kerr 
solution: Curiously, assuming e = 0 in ( 11) we obtain 

FrrrB,[A+2MrZ-‘(?+a2)]sin2f3. (14) 
Now we turn to Komar’s integral relations for the angu- 

lar momentum and mass contained within a black hole: 

J,, = - -!- 
s 

mt’:’ & 
16~ Y PI’ 

s 77 =- glAo I’(?+ + a214 F21AI -4J,o’sin3f3de, 
n 

(15) M, =-J- s 897 /v 
k w*” dB,,, = 21~4, Ju + & KHd, (16) 

where .d = 4n(?+ + a2) ]A0 1’ is the surface of the horizon 
and w;, = w’(r + ). Equation ( 16) acquires the form of the 
well-known Smarr formula, which has been, however, usual- 
ly considered only for asymptotically flat space-times. Eval- 
uating integral ( 15) for the angular momentum at r--r 03 and 
assuming B, nonzero, we obtain J, = 0; on the other hand, 

M, , which is given by ( 16) at r+ CO, diverges whenever 
B, #O, because the amount of energy in the magnetic field is 
infinite. 

We verified numerically that no combination of the pa- 
rameters a, e satisfies both conditions Jn = 0, QH = 0 simul- 
taneously, except for the magnetized Schwarzschild black 
hole (e = a = 0). By applying theorems proved in Ref. 9 we 
can state that theonlystatic magnetized Kerr-Newman black 
hole isgiven by (1) with Ju = 0 and QH = 0. Comparing with 
a nonmagnetized case, staticity requires an additional condi- 
tion Q, = 0 when B0 #O. 

In the extreme case, Eq. (4) yields d,w’ = const on the 
horizon. The solution to the equation J, = 0 is then given by 
the real roots of 

d,w--2X4 -‘]Al-2sin-’ 19 [Im(A)z, Re(A)] =0 (17) 

atr=r+, which, interestingly, coincide with B ‘* , the sec- 
ond pair of roots of Fn = 0 (Fig. 1). In this case we have 
Re[@‘(r+ ,@I = f$z(4a2+3e2)(2a2+e2)-‘=const, 
so that the radial tetrad component of the magnetic field on 
the horizon again vanishes. (On the other hand, 
Im[@‘(r + ,0) ] is now a complicated function of 8; the elec- 
tric field on the horizon does not vanish.) 

The weak-field limit of the magnetic flux ( 11) with 
Jn = 0 is 

F=:?rB, [? - 3e2 + 2e2r’+ r-‘(3Mr+ - 2e2) -‘Isin 8, 

a = Boer’+ (3Mr+ - 2e2) - ‘. (18) 
It is tempting to compare this result with the case of asymp- 
totically uniform magnetic test field on the Reissner-Nord- 
Strom background. One can verify that taking the integra- 
tion constant in Eq. (4.2) of Ref. 8 as 

a = B,e?+ (3Mr, - 2e2) - I - 2B,e”M - ’ (19) 
results of both approaches coincide. (In Sec. V of Ref. 8 the 
authors assumed a = 0; in this case, however, the angular 

a.0 0.5 O/M 1 .O 

FIG. 1. Dimensionless magnetic parameter L&M as a function of a/M for 
several extreme MKN solutions. The curves B t correspond to electrically 
neutral configurations [Q,, = 0, Eq. (lo)]; B’, denotes configurations 
with zero angular momentum J,, and mass M,, [ Eq. ( 12) 1; the curves B, , 
B2 have M,, = 0 but J,, #O [Eq. (16) with K,, = 0, w;, = 01. 

715 J. Math. Phys., Vol. 32, No. 3, March 1991 V. Karas and D. Vokrouhlickg 715 

Downloaded 16 Jul 2010 to 65.241.78.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



momentum of the hole is nonzero and this configuration 
should not be interpreted as a nonrotating charged black 
hole.) A more intuitive picture can be obtained by construct- 
ing the lines of constant magnetic flux, F= const. In the 
extreme case the field lines are expelled out of the horizon 
and their shape is very similar to the lines of the test field 
when constructed in Boyer-Lindquist coordinates.‘** 

We conclude by emphasizing the following point. The 
behavior of the horizon electromagnetic field and magnetic 
fluxes allows us to consider the MKN solution with Q,, = 0 
or JH = 0 as magnetized generalizations of the Kerr black 
hole or the Reissner-Nordstrom black hole, respectively. 
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These solutions have both parameters a, e nonzero, except 
for a trivial case of the magnetized Schwarzschild solution. 
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